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Oppsummering av det vi har gjort i statistikk. Obs! Her kan det være noen feil her og der.
Gi meg beskjed hvis du finner noe som er uklart. Dokumentet vil oppdateres etterhvert med
korreksjoner, så se på datoen på framsida.

Teksten er skrevet med LATEX.
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1 Sannsynlighetsfordelinger

1.1 Hva er en sannsynlighetsfordeling?
Vi kan ikke si noe om utfallet av et stokastisk forsøk. Vi vet, som regel, utfallsrommet, men
akkurat hvilket utfall er overlatt til tilfeldighetene. Det vi ofte vet noe om er sannsynligheten
om hvordan utfallene vil fordele seg. Vi vet sannsynlighetsfordelingen.

Et problem vi kjenner fra historien er sannsynligheten for utfallene når vi kaster to mynter1.
Utfallsrommet vil være U = {MM,MK,KK}, hvor M står for «mynt» og K for «kron». Vi
kan skrive om slik at vi ser på antall «kron». Det gir denne tabellen

x 0 1 2

P (X = x) 1
4

1
2

1
4

Denne tabellen gir sannsynlighetsfordelingen for den stokastiske variabelen X. Vi kan også
tegne dette som et histogram.

0 1 2
0

0.25

0.5

Dette gir oss en grafisk framstilling av sannsynlighetsfordelingen av utfallene. Når vi nå vet
sannsynlighetsfordelingen vil det være mulig å slå opp i den for å finne sannsynlighetene. Ta-
bellen gir oss en sammenheng mellom x og sannsynligheten slik at P (X = x) = p(x). Sannsyn-
ligheten kan uttrykkes som en funksjon av x. I dette tilfellet har vi at p(0) = 1

4
, p(1) = 1

2
og

p(2) = 1
4
.

Sannsynlighetsfordelinger kan være av to typer

diskrete når den stokastiske variabelen er diskret. Det betyr at variabelen bare kan være
verdier i en mengde av enkeltelementer. Terningkast og myntkast er eksempler

kontinuerlige når den stokastiske variabelen er kontinuerlig.
1Dette er kjent som diskusjonen mellom Laplace og d’Alembert
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1.2 Uniform fordeling
Kaster vi en ideell terning vil det være like sannsynlig hvilken side den lander på. Når alle
utfallene er like sannsynlige har vi en uniform sannsynlighetsfordeling. Det samme gjelder
myntkast med en ideell mynt. Erstatter vi utfallene «mynt» og «kron» med 0 og 1 får vi

P (X = 0) =
1

2

P (X = 1) =
1

2

Vi kjenner også terningkast med en ideell terning hvor vi har denne sannsynlighetsfordelingen

x 1 2 3 4 5 6
P (X = x) 1

6
1
6

1
6

1
6

1
6

1
6

Tegner vi opp denne sannsynlighetsfordelingen får vi dette histogrammet.

0 1 2 3 4 5 6
0

0.17

Alle sannsynlighetene er like store for alle utfallene. De er uniforme og vi har at P (X = x) =
p(x) = 1

6
for alle verdier av x. Legg også merke til at summen av alle sannsynlighetene er lik 1

og tilsvarer arealet i histogrammet.

Forventningsverdi
Hva er forventningsverdien når vi kaster en terning? Hvor mange øyne kan vi forvente å få om
vi kaster terningen mange ganger? Svaret kan vi finne ved å gjennomføre forsøket og fordele
antall øyne på antall kast. Vi vet at det er like stor sannsynlighet for at terningen lander på
alle sidene. Da kan vi finne svaret slik

1

6
· 1 + 1

6
· 2 + 1

6
· 3 + 1

6
· 4 + 1

6
· 5 + 1

6
· 6 =

1

6
· (1 + 2 + 3 + 4 + 5 + 6) =

21

6
= 3.5

Nå er det ikke mulig å få forventningsverdien i noen av kastene, men den forteller oss hvor
mange øyne vi vil få i gjennomsnitt. Med symboler blir utregningen
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E(X) = µ =
6∑

x=1

x · P (X = x) = 3.5

E(X) står for Expected value eller forventningsverdi på norsk. Summetegnet gir oss en kort
måte å skrive alle summene over. Startverdien for x er x = 1 og sluttverdien x = 6 – akkurat
som i summen over.

Dette kan vi også simulere med et programmering hvor vi kaster mange ganger og finner
gjennomsnittet av resultatene.

1 import random as rd
2 antall_kast = 1000
3 sum = 0
4
5 for i in range(antall_kast):
6 terning = rd.randint(1,6)
7 sum = sum + terning
8
9 print( sum/antall_kast)

Programkode 1.1: Forventningsverdi ved uniform sannsynlighet

Et resultat ble

3.523

1.3 Binomisk fordeling
Et binomisk forsøk, eller Bernoulli-forsøk2, kjennetegnes av to utfall, samme sannsynlighet i
hvert forsøk og uavhengighet mellom forsøkene. Et myntkast kan være et eksempel på det.

Kaster vi en perfekt mynt seks ganger kan vi finne sannsynligheten antall «kron» på denne
måten

P (X = x) =

(
n

x

)
· px · (1− p)n−x

hvor n er antall forsøk, x er antall «kron» og p er sannsynligheten for å oppnå det. Legg merke
til at vi her har en funksjon som gir oss sannsynlighetene: P (X = x) = p(x).

La oss si at vi kaster mynten seks ganger n = 6 og vi antar at sannsynligheten for å oppnå
«kron» er like stor som å oppnå «mynt», p = 1

2
. Da gjør vi et binomisk forsøk og sannsynlig-

hetsfordelingen vil være en binomisk fordeling. Nå kan vi tegne sannsynlighetsfordelingen ved
å benytte GeoGebra. Figur 1.1 viser resultatet.

GeoGebra gir oss både et histogram og en tabell for de forskjellige sannsynlighetene. I dette
tilfellet ser vi at verdiene blir symmetriske, men det er ikke alltid tilfelle.

2Oppkalt etter Jacob Bernoulli (1655 - 1705) som var en kjent matematiker fra en hel familie med matema-
tikere. Han er bl. a. kjent for de store talls lov, som han skrev om i boka Ars Conjectandi.
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Figur 1.1: Binomisk sannsynlighetsfordeling med GeoGebra

I dette tilfellet sier vi at sannsynlighetene er binomisk fordelt med n = 6 og p = 1
2
. Det skrives

ofte kortere som at X er bin
(
6, 1

2

)
eller b

(
6, 1

2

)
.

Binomisk fordeling

I en binomisk forsøksserie vil den stokastiske variabelen X være binomisk fordelt. Vi
finner sannsynligheten for at X inntreffer k ganger ved

P (X = k) =

(
n

k

)
· pk · (1− p)n−k

X er binomisk fordelt med n og p og kan skrives slik: X ∼ bin (n, p) eller X ∼ b (n, p)

0 10 20 30 40 50

0.0

0.1

0.1

0.2
p = 0.2
p = 0.5
p = 0.8

Forventningsverdi og varians i en binomisk fordeling
Vi kan finne både gjennomsnitt og standardavvik i sannsynlighetsfordelinger på samme måte
som vi benytter for relative frekvenser i datamaterialer.
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Gjennomsnittet finner vi ved

µ =
n∑

x=0

x · p(x)

For å regne det ut er det greit å sette opp denne tabellen (den siste kolonna er med til seinere
bruk, så se på de første).

x P (X = x) x · P (X = x) (x− µ)2 · P (X = x)

0 0.01563 0 0.14063
1 0.09375 0.09375 0.37500
2 0.23438 0.46875 0.23438
3 0.31250 0.93750 0
4 0.23438 0.93750 0.23438
5 0.09375 0.46875 0.37500
6 0.01563 0.09375 0.14063

sum 1 3 1.5

Da har vi at µ = 3. Egentlig kunne vi spart oss all denne utregningen for GeoGebra har allerede
funnet det ut for oss. Se figur 1.1. Nå er dette resultatet også noe vi kan tenke oss til. I hvert
delforsøk – hver gang vi kaster mynten - er sannsynligheten for å få «kron», p = 1

2
. Det er dette

delforsøket vi gjentar seks ganger. Da kan vi forvente at vi får 6 · 1
2
= 3 «kron» når vi kaster

mynten seks ganger. Vi ser at utregningene stemmer med det. Å bevise at disse utregningene
gir akkurat det resultatet kan vi også gjøre, men vi tar ikke det med her.

Vi kan altså forvente oss tre «kron» i dette tilfellet. Vi sier at forventningsverdien er tre. Denne
verdien kan vi regne ut før vi kaster mynter eller utfører andre stokastiske forsøk. «Gjennom-
snitt» er et ord som viser til noe som har skjedd. Derfor bruker vi heller «forventningsverdi».
Ofte skrives det da som Expected value, E(X), i stedet for µ. I en binomisk fordeling har vi at
forventningsverdien er

E(X) = µ = n · p

Variansen finner vi ved
V ar(X) = σ2 =

∑
x

(x− µ)2 · P (X = x)

Ser vi tilbake på tabellen ser vi at det i vårt tilfelle blir σ2 = 1.5. Da har vi at σ =
√
1.5 =

1.224744871391589. Det er det samme som GeoGebra fant for oss i øverst til venstre i figur 1.1.

I en binomisk fordeling kan vi vise at variansen blir
V ar(X) = σ2 = n · p · (1− p)

Her kan vi se at det vi fant stemmer ved å regne ut

V ar(X) = σ2 = 6 · 1
2
· (1− 1

2
) =

3

2

Forventningsverdi og varians

Hvis den stokastiske variabelen (X er bin(n, p) har vi at

E(X) = µ = np

V ar(X) = σ2 = np(1− p)
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Oppgave 1

Eksperimenter med binomisk fordeling i sannsynlighetskalkulatoren i GeoGebra og se
hvordan sannsynlighetsfordelingene endrer seg.

Python

1 import matplotlib.pyplot as plt
2 import math as m
3
4 antall = 5
5 p = 0.7
6
7 xverdier = []
8 yverdier = []
9

10 def binomial(a,b):
11 bin = m.factorial(a)//(m.factorial(b)*m.factorial(a-b))
12 return bin
13
14 def binomisk(n, p, x):
15 bin = binomial(n, x)*p**x*(1 - p)**(n-x)
16 return bin
17
18 for i in range(antall+1):
19 xverdier.append(i)
20 yverdier.append(binomisk(antall,p,i))
21 print(i, binomisk(antall,p,i))
22
23 plt.title("Binomisk fordeling")
24 plt.bar(xverdier, yverdier)
25 plt.show()

Programkode 1.2: Binomisk fordeling

0 0.0024300000000000016
1 0.028350000000000018
2 0.13230000000000006
3 0.30870000000000003
4 0.36014999999999997
5 0.16806999999999994

Eksemplet over kunne vært gjort enklere ved at vi benytter modulen scipy. Her finner
vi funksjonen binom.pmf(k,N,p), den binomiske tetthetsfunksjonen (probability mass
function) som regner ut P (X = k) når vi utfører N forsøk med sannsynligheten p.
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Programkode 1.3 viser hvordan vi kan gjøre det. Resultatet blir samme tabell som den
vi fikk i programkode 1.2.

1 import scipy.stats as st
2 antall = 5
3 p = 0.7
4
5 for k in range (6):
6 s = st.binom.pmf(k,antall,p)
7 print(s)

Programkode 1.3: Binomisk fordeling

1.4 Hypergeometrisk fordeling
Hypergeometrisk forsøk kjennetegnes ved trekking uten tilbakelegging.

Et eksempel er at vi trekker fra ei urne med ti kuler hvor fire er grønne. La oss si at vi trekker
tre kuler uten å legge tilbake. Da har vi muligheten for å få ingen, ei, to eller tre grønne kuler. Vi
definerer den stokastiske variabelen X som «antall grønne kuler». Sannsynlighetene bestemmes
av en hypergeomtrisk fordeling av sannsynlighetene. Vi har vært innom hypergeometriske forsøk
og kan regne de forskjellige sannsynlighetene ved

P (X = x) =

(
s

x

)
·
(
n− s

r − x

)
(
n

r

)
her er n det totale antall kuler, s er antall spesielle og r er antallet i utvalget vi gjør. Sannsyn-
ligheten for å trekke to grønne kuler blir da:

P (X = 2) =

(
s

x

)
·
(
n− s

r − x

)
(
n

r

) =

(
4

2

)
·
(
6

1

)
(
10

3

) =
3

10
= 0.3

Denne sannsynligheten, og fordelingen for alle de andre sannsynlighetene, kan vi få ved hjelp
av GeoGebra og sannsynlighetskalkulatoren. Figur 1.2 viser fordelingen både som tabell og
histogram.

Eksemplet gir denne sannsynlighetsfordelingen

x 0 1 2 3

P (X = x) 1
6

1
2

3
10

1
30
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Figur 1.2: Hypergeometrisk GeoGebra

Python

Det samme er også mulig i Python. Da må vi importere modulen scipy og benytte
funksjonen hypergeom.pmf(k, n , s, r). Her er k det samme som x i utregninga over.
Programkode 1.4 viser hvordan vi kan få skrevet ut hele tabellen.

1 import scipy.stats as st
2
3 s = 4
4 n = 10
5 r = 3
6
7 for k in range (r+1):
8 p = st.hypergeom.pmf(k,n,s,r)
9 print(p)

Programkode 1.4: Hypergeometrisk fordeling

Vi ender opp med dette resultatet

0.16666666666666646
0.4999999999999995
0.30000000000000016
0.03333333333333332

Forventningsverdi og varians
Forventningsverdien til en stokastisk variabel er gitt ved

µ = E(x) =
n∑

i=1

xi · P (X = xi)
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I eksemplet vårt får vi

µ = E(x) = 0 · 1
6
+ 1 · 1

2
+ 2 · 3

10
+ 3 · 1

30
=

12

10
= 1.2

Variansen kan vi finne ved

σ2 = V ar(X) =
n∑

i=1

(xi − µ)2 · P (X = xi)

Regner vi ut får vi

σ2 = V ar(X) = (0− 12

10
)2 · 1

6
+ (1− 12

10
)2 · 1

2
+ (2− 12

10
)2 · 3

10
+ (3− 12

10
)2 · 1

30
=

14

25
= 0.56

Standardavviket finner vi ved
σ =

√
V ar(X) =

√
0.56 = 0.74833147735479

Som vi kan se av figur 1.2 har GeoGebra allerede funnet disse verdiene for oss.

I en hypergeometrisk fordeling fins det en annen måte å finne forventningsverdi og varians på.
Vi har da at

µ = E(X) = r · s
n

σ2 = V ar(X) =
n− r

n− 1
· r · s

n
·
(
1− s

n

)
Det gir

µ = E(X) = 3 · 4

10
=

12

10
= 1.2

σ2 = V ar(X) =
10− 3

10− 1
· 3 · 4

10
·
(
1− 4

10

)
=

14

25

Hypergeometrisk fordeling

Vi har n elementer hvor s er spesielle. Det trekkes et utvalg av r elementer uten til-
bakelegging. La X være antall spesielle i utvalget. Da er sannsynlighetsfordelingen gitt
ved

P (X = x) =

(
s

x

)
·
(
n− s

r − x

)
(
n

r

)
Forventningsverdi

µ = E(X) = r · s
n

Varians
σ2 = V ar(X) =

n− r

n− 1
· r · s

n
·
(
1− s

n

)
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1.5 Normalfordeling
Gjennom historien har vitenskapsmenn oppdaget at målinger i naturen følger en lovmessighet.
De fordeler seg på samme måte. Noen verdier er det mange av og de andre fordeler seg på hver
side av disse. Settes de opp i hyppighetsdiagram vil de følge en kurve som er ganske symmetrisk
og fin. Vi kaller kurven for en Gauss-kurve, oppkalt etter den store matematikeren, fysikeren
og astronomen Carl Friedrich Gauss (1777 - 1855). Gauss-kurven viser en representasjon av
den den matematiske modellen som kalles Gauss-modellen. Når sannsynligheter er fordelt på
samme måte sier vi at vi har en normalfordeling eller en Gaussfordeling.

Vi har sett på den binomiske fordelinga. Det å regne ut sannsynligheter for store verdier av n
var krevende før i tida. Abraham de Moivre3 tok i bruk et nytt våpen: funksjonsanalyse eller
kalkulus. Han fant at den binomiske fordelinga når p = 0.5 var omtrent lik en kontinuerlig
tetthetsfunksjon som ser slik ut:

f(x) =
1

σ ·
√
2π

· e−
(x−µ)2

2·σ2 =
1

σ ·
√
2π

· e−
1
2(

x−µ
σ )

2

Nå ser den kanskje ikke så enkel ut, her er det mange symboler, men både e og π er konstanter
og vet vi µ og σ, så har vi en funksjon med variabelen x. Vi ser at det er en kontinuerlig
sannsynlighetsmodell. Funksjonen gjorde det enklere å gjøre beregninger som omtrent tilsvarte
en binomisk fordeling med p = 0.5. I dag har vi andre verktøy som gjør det enklere å regne
med alle sannsynlighetsfordelinger. Denne funksjonen beskriver normalfordelinga.

Definisjon 1 Normalfordeling

En stokastisk variabel X er normalfordelt med forventningsverdi µ og standardavvik σ
hvis sannsynlighetstettheten er

f(x) =
1

σ ·
√
2π

· e−
(x−µ)2

2·σ2

For å skrive at en stokastisk variabel X er normalfordelt med en forventningsverdi µ og
standardavvik σ skriver vi: X ∼ Normal(µ, σ) eller bare X ∼ N(µ, σ).

Noen velger også å skrive X ∼ Normal(µ, σ2) eller X ∼ N(µ, σ2). Bare vi passer på spiller
ikke det noen rolle om det er standardavvik eller variansen som benyttes i skrivemåten.

Legg merke til at vi at X er en kontinuerlig variabel og ikke en diskret variabel.

Figur 1.3 viser to grafer med samme µ, men forskjellig σ. Her har f1 en stor σ og f2 en liten.

Oppgave 2

Bruk et digitalt verktøy for å tegne grafer som viser normalfordeling. Både GeoGebra og
Desmos egner seg godt. Eksperimenter med forskjellige verdier av µ og σ.

Prøver vi med forskjellige forventningsverdier og standardavvik vil vi se at grafene endrer
seg, men bevarer formen som ei klokke. Forventningsverdien flytter grafen langs x-aksen og
standardavviket avgjør hvor høy og brei den er. Egenskapene kan beskrives som i figur 1.4
hvor vi ser at vi får et toppunkt for µ. Grafen er symmetrisk om linja for x = µ. Går vi

3Abraham de Moivre (1667 - 1754) var en fransk matematiker. Wikipedia: Abraham de Moivre
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µ

f1

f2

x

y

Figur 1.3: Typisk normalfordeling med samme µ og forskjellig σ

ett standardavvik til hver side for linja finner vi vendepunktene for grafen. På figur 1.4 er de
markert med A og C.

µµ− σ µ+ σ

B

A C

Figur 1.4: Egenskaper ved grafen til normalfordeling

1.6 Standardnormalfordeling
Hvis en normalfordeling har forventningsverdi µ = 0 og standardavvik σ = 1 sier vi at den er
standardnormalfordelt. Tidligere var en standardnormalfordeling god å ha siden det gjorde det
mulig å slå opp i tabeller for å få utregningene. Har vi allerede en normalfordeling er det ikke
noe problem å gjøre den om til en standardnormalfordeling. Det er bare å regne litt om. Har
vi en stokastisk variabel X som er normalfordelt: X ∼ Normal(µ, σ) kan vi finne en stokastisk
variabel Z som er standardnormalfordelt ved

Z =
X − µ

σ
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Z vil nå være standardnormalfordelt med forventningsverdi µ = 0 og standardavvik σ = 1. Vi
skriver da

Z ∼ Normal(0, 1)

1.7 Sannsynligheter i normalfordelinga
Ser vi på arealet under kurven vil det gi oss sannsynlighetene. Normalfordelinga er symmetrisk
og inneholder noen sammenhenger som er interessante. Figur 1.5 viser hvordan sannsynlighetene
fordeler seg ut fra standardavvikene i en standardnormalfordeling.

68.2 %

95.4 %

99.7 %

34.1 % 34.1 % 13.6 %13.6 %
2.1 %2.1 %

−4 −3 −2 −1 0 1 2 3 4

Standardnormalfordeling

Fr
ek

ve
ns

Figur 1.5: Sannsynlighet i normalfordelinga

Figur 1.5 viser en standardnormalfordeling, men gjelder for alle normalfordelinger. Her kan
vi se at 95.4 % av arealet under kurven er mellom ett standardavvik under og over forvent-
ningsverdien. Går vi to standardavvik i hver retning fra forventningsverdien, vil 68.2 % av hele
arealet være med. Hva betyr det? Vet vi forventningsverdi og standardavvik kan vi si noe om
grensene for at vi at det er 95.4 % eller 68.2 % sannsynlig for at verdiene er med. Et eksempel
kan sikkert klargjøre det bedre.

Eksempel 1

Kroppshøydene for norske menn er normalfordelt med µ = 179 cm og σ = 6 cm. Vi trekker
ut en tilfeldig norsk mann. Hvilken kroppshøyde kan vi si med 95.4 % sannsynlighet at
denne personen har? Hva med 68.2 % sannsynlighet?

Vi benytter X for kroppshøyden og vet at X ∼ N(179, 6). Ut fra egenskapene til normalforde-
linga har vi da at grensene blir

sannsynlighet nedre grense øvre grense
0.954 179− 2 · 6 = 167 179 + 2 · 6 = 191
0.682 179− 1 · 6 = 173 179 + 1 · 6 = 185

Sannsynligheten er 0.954 for at kroppshøyden er i intervallet [167, 191].

Sannsynligheten er 0.682 for at kroppshøyden er i intervallet [173, 185].

Det samme kan vi skrive sånn
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P (167 ≤ X ≤ 191) = 0.954

P (173 ≤ X ≤ 185) = 0.682

Vi kan regne ut sannsynlighetene for en stokastisk variabel X som er X ∼ N(µ, σ) ved å
benytte integrasjon

P (a ≤ X ≤ b) =
1

σ ·
√
2π

∫ b

a

e−
1
2(

t−µ
σ )

2

dt

Dette integralet må vi ha hjelp for å få regna ut siden det ikke kan beregnes eksakt. Heldigvis
har vi digitale verktøy til slikt. Figur 1.6 viser bruk av Desmos og figur 1.7 viser GeoGebra.

Figur 1.6: Desmos: Normalfordeling

Figur 1.7: GeoGebra

Spredningsintervall Vi har sett på hvor sikkert det er at en stokastisk variabel er innafor
at gitt intervall. Da sier vi at vi angir et spredningsintervall. Vi fant at det er 95.4 % sikkert at
X har en verdi i intervallet µ± 2 · σ. Arealet avgrensa av disse verdiene utgjør 95.4 % av hele
arealet, slik figur 1.9 viser. Ønsker vi å være 99 % sikre må vi utvide arealet til µ ± 2.58 · σ.
Vil vi være 99.7 % sikre blir intervallet µ ± 3 · σ. Vi kan observere at verdien vi multipliserer
standardavviket med avgjør sannsynligheten. Det er en sammenheng mellom disse to verdiene.

Hva blir intervallet om vi ønsker en sannsynligheten på akkurat 95 % for at kroppshøyden er
i intervallet? Vi vet at intervallet må være omtrent [167, 191], så vi kan eksperimentere ved å
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Figur 1.8: GeoGebra

kutte litt på det intervallet. Litt eksperimentering gjør at vi kan komme fram til intervallet
[167.24, 190.76]. Figur 1.8 viser det.

Da kan vi finne ut hvor langt vi flytter oss til hver side av linja x = µ. Vi får 179−167.24 = 11.76
og 190.76−179 = 11.76. Hvor mange standardavvik blir det? Jo, 11.76/6 = 1.96. Denne verdien
vil bli viktig for oss. Det viser seg at dette gjelder generelt.

P (µ− 1.96 · σ ≤ X ≤ µ+ 1.96 · σ) = 0.95

µµ− 1.96 · σ µ+ 1.96 · σ

95%Fr
ek

ve
ns

Figur 1.9: spredningsintervall for 95 % sannsynlighet

Figur 1.9 viser arealet som gir 95 % sannsynlighet. Den delen av totalarealet som ikke er med
utgjør da 5 % og ligger likt fordelt med 2.5 % på hver side.

Ønsker vi et intervall med 99 % sannsynlighet får vi dette intervallet

P (µ− 2.576 · σ ≤ X ≤ µ+ 2.576 · σ) = 0.99

Vanligvis benytter vi disse verdiene
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z P (µ− z · σ ≤ X ≤ µ+ z · σ)

1.645 0.9
1.960 0.95
2.326 0.98
2.576 0.99

Disse verdiene kan vi finne ved å se på standardnormalfordelinga. Kaller vi verdiene for z har
vi dette intervallet

µ− z · σ ≤ X ≤ µ+ z · σ (1.1)

Vi kan få alle normalfordelinger standardnormalfordelt ved å sette Z = X−µ
σ

. Da har vi

Z =
X − µ

σ
=⇒ X = σ · Z + µ

Setter vi det inn i (1.1) får vi

µ− z · σ ≤X ≤ µ+ z · σ
µ− z · σ ≤ σ·Z + µ ≤ µ+ z · σ

−z ≤Z ≤ z

Verdiene vi fant for z ved å eksperimentere kan vi enkelt finne ved regning eller i tabeller. Siden
vi ikke har behov for så mange kan vi gå ut fra denne tabellen

z P (−z ≤ Z ≤ z)

1.645 0.9
1.960 0.95
2.326 0.98
2.576 0.99

0 zα

α

Fr
ek

ve
ns

Arealet α tabell

α zα

0.100 1.282
0.050 1.645
0.025 1.960
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Hvorfor er denne så viktig?
Normafordelinga har fått en spesiell plass siden den forekommer så ofte og i så mange sam-
menhenger. Tidligere var det også sånn at andre fordelinger var vanskelige å regne på, men
for normalfordelinga fantes det tabeller som gjorde beregningene mye enklere. Nå har vi andre
verktøy som gjør det enklere å regne med all slags sannsynlighetsfordelinger, men det kan være
greit å ta med seg både binomisk- og hypergeometriske fordelinger vil kunne være tilnærma
normalfordelt under disse betingelsene:

• binomisk fordeling når np > 5 og n(1− p) > 5

• hypergeometrisk når rN >> n og np > 5 og n(1− p) > 5. Da er P = A
N

Normalfordeling

Normalfordelingsfunksjonen er gitt ved:

f(x) =
1

σ ·
√
2π

· e−
(x−µ)2

2·σ2 =
1

σ ·
√
2π

· e−
1
2(

x−µ
σ )

2

Her er µ forventningsverdien og σ standardavviket til fordelinga.
Hvis X er normalfordelt med µ og σ2 og kan skrives slik: X ∼ N(µ, σ2) eller X ∼ N(µ, σ)

1.8 Andre fordelinger
Det fins mange sannsynlighetsfordelinger. De som er presentert så langt er vanligst å ha med i
skolematematikken, men det kan være greit å være kjent med noen av de andre også.

1.8.1 Geometrisk fordeling
Den geometriske fordelingen knytter seg til binomiske forsøksserier. La oss si at vi kaster terning
igjen og registrerer om vi får en sekser eller ikke. Det kjenner vi nå som et binomisk forsøk, men
nå stiller vi et annet spørsmål. Hva er sannsynligheten for at vi får en sekser i kast nummer x?

Vi kaster terningen og er bare interessert i å finne sannsynligheten for å få sekser i kast x

kast 1 2 3 4 5 · · · x
sekser Nei Nei Nei Nei Nei · · · Ja

Dette kan vi regne ut. Vi får

(1− p) · (1− p) · (1− p) · (1− p) · (1− p) · · · p = (1− p)x−1 · p = p · (1− p)x−1

Dette kan vi skrive som
P (X = x) = p · (1− p)x−1

Hvor mange ganger må vi kaste terningen før en sekser dukker opp?
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Geometrisk fordeling

X er geomterisk fordelt med sannsynligheten p

P (X = x) = p · (1− p)x−1

Forventningsverdi og varians

E(Y ) =
1

p

V ar(X) =
1− p

p2
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2 Estimering og konfidensintervall
2.1 Estimering – Hva er det?
Estimering er å prøve å finne en sannsynlig mengde eller størrelse for et eller annet. I statistikken
må vi gjøre noe mer enn å bare tippe. Vi må forsøke å finne estimatet på en så god måte som
mulig. Hvordan vi gjør det skal vi nå se litt på.

Oppgave 3

Finn eksempler på estimat og estimeringer som både du gjør deg og fra nyhetene. Hvordan
har en kommet fram til estimatene?

Punktestimat og intervallestimat
Spørreundersøkelser er populært. Et utvalg av personer, respondenter, gir svarene sine og så vil
de som har laget undersøkelsen kunne telle opp svarene. Det kan være at 37 % av respondentene
forteller at de skal stemme på en bestemt kandidat i et valg. Det er da gjort et punktestimat.
Hva det virkelige resultatet blir vet vi ikke før valget er over. Her er noen definisjoner det kan
være greit å ha med seg.

Definisjon 2 Estimator

En estimator er en stokastisk variabel som kan benyttes for å gi et estimat for den verdien
vi prøver å anslå.

Definisjon 3 Punktestimat

Verdien til en estimator kalles for et punktestimat.

For å komme fram til et punktestimat er det av flere grunner ikke mulig å undersøke hva alle
mener. Det kan bli for dyrt, praktisk umulig, eller det tar for lang tid. Forskerne plukker derfor
ut et utvalg av hele populasjonen og undersøker utvalget.

Basert på utvalget blir det gjort et forsøk på å beskrive egenskaper ved hele populasjonen: Et
estimat. Her er det viktig å legge merke til at en klar feilkilde kan være at utvalget ikke er
representativt for hele populasjonen.

Kanskje ønsker den som gjør en undersøkelse en grundigere vurdering av punktestimatet? Med
statistikken som verktøy er det mulig å si noe om hvor sikkert dette resultatet er. Statistikerne
vil for eksempel kunne si at de er 95 % sikre på at kandidaten får mellom 35% og 39 % av
stemmene. Da har de gitt et intervallestimat med 95 % sannsynlighet.

Vi har sett på sansynlighetsmodeller hvor vi har en kjent forventningsverdi og et kjent stan-
dardavvik. Ofte er det sånn at vi ikke kjenner disse verdiene og ønsker å finne dem. Da må vi
estimere dem. I punktestimering anslår vi en verdi. Et konfidensintervall gir et intervall hvor
vi med en viss sikkerhet kan si at verdien ligger.
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Figur 2.1: Utvalg

En hatt gjør forskjellen
Det kan benyttes forskjellige symboler for estimatorer. En vanlig symbolbruk er å merke med
en hatt.

populasjonen estimator
standardavvik σ σ̂
varians σ2 σ̂2

forventingsverdi µ µ̂
sannsynlighet p p̂

Hvor sikre kan vi være?
Ved å utføre en estimering finner vi et estimat. Det kan være en valgprognose hvor vi finner en
sannsynlighet for at en person skal stemme på et bestemt parti, eller det kan være et estimat
for en gjennomsnittslengde i en dyrepopulasjon. Uansett hva det er kan vi ikke være helt sikre
på estimatet vi kommer fram til. Det vi kan si noe om er hvor usikre vi er. Har vi en estimator,
µ̂, for forventningsverdien, µ, i en populasjon vil den ha en sannsynlighetsfordeling. Som regel
kan vi argumentere for at µ̂ er normalfordelt eller tilnærma normalfordelt. Med den antakelsen,
og det vi vet om normalfordeling, kan vi uttale oss om hvor sikre vi kan være på estimatet vårt.

Standardavviket til estimatoren kaller vi standardfeilen og vi skriver det som SE(µ̂). Figur 2.2
viser intervallet hvor vi kan si at µ̂ ligger i med 95 % sikkerhet.

Vi kaller dette for et konfidensintervall og kan skrive det som intervallet:

[µ̂− 1.96 · SE(µ̂) , µ̂+ 1.96 · SE(µ̂)]

Mer generelt
[µ̂− z · SE(µ̂) , µ̂+ z · SE(µ̂)]

hvor z er gitt i denne tabellen
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µµ− 1.96 · SE(µ̂) µ+ 1.96 · SE(µ̂)

95%

Figur 2.2: Konfidensintervall med 95 % sannsynlighet

z Sannsynlighet
1.645 0.9
1.960 0.95
2.326 0.98
2.576 0.99

Verdiene er gitt ut fra normalfordelingen.

Konfidensintervallet gir oss et intervall hvor vi med en viss sikkerhet kan si at estimatet befinner
seg. Det vil bety at også konfidensintervallet vil være stokastisk. Gjør vi flere undersøkelser vil
vi kunne finne andre estimat og andre standardfeil slik at konfidensintervallet endrer seg. Figur
2.9 viser flere beregna konfidensintervall og hvordan den ukjente verdien, som skal estimeres,
vil ligge innafor konfidensintervallene i de aller fleste tilfellene.

Figur 2.3: Flere konfidensintervaller
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Konfidensintervall
Hvis vi har en estimator θ som er normalfordelt har den konfidensintervallet

[θ − z · SE(θ) , θ + z · SE(θ)]

Verdien av z bestemmer bredden av konfidensintervallet ved

z Sannsynlighet
1.645 0.9
1.960 0.95
2.326 0.98
2.576 0.99

2.2 Estimering av standardavvik i en populasjon
Som regel kjenner vi ikke standardavvik i en populasjon, men ofte krever videre utforsking at vi
vet noe om spredningen i populasjonen. Da må vi prøve å finne et estimat for standardavviket
σ eller variansen σ2. Spørsmålet blir hvordan vi kan gjøre det. Kan vi ikke undersøke hele
populasjonen blir svaret at vi må ta noen stikkprøver.

Et eksempel: Kroppshøyder
Vi ser på et eksempel hvor vi har ei liste med høydene til 200 gutter på en videregående skole.

171 174 167 187 174 169 182 180 186 177 178 190 180 176 183 180 169 187 170 181
178 175 181 183 184 179 195 176 176 179 190 165 178 182 179 186 188 170 191 183
179 188 178 177 179 175 186 184 187 174 171 181 171 189 183 174 193 192 181 184
177 194 185 180 173 185 189 189 172 185 180 185 182 173 172 186 177 175 176 184
191 182 172 183 175 184 166 178 176 180 181 188 177 182 168 173 180 181 188 177
182 168 173 182 180 186 177 178 190 180 176 174 167 187 174 169 182 180 186 177
178 171 174 167 187 174 169 182 180 195 176 176 179 190 165 178 182 179 186 188
170 191 183 179 175 186 184 187 174 171 181 171 189 183 174 174 169 182 180 186
177 178 171 174 167 187 174 175 176 184 191 182 172 183 175 184 166 178 176 180
181 169 178 194 175 184 166 178 176 180 172 185 164 191 178 176 180 164 179 181

Verdiene er delt i et regneark på denne adressen : https://bit.ly/3D8UFif og som ei fil her
https://bit.ly/3NhEK5x.

Nå kjenner vi hele populasjonen og vi kan finne de statistiske verdiene vi vil. Enten vi gjør det
for hånd, eller benytter et verktøy, skal vi få disse verdiene

µ = X̄ = 179.2

σ = 6.843
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Python

Python kan gjøre dette for oss. Jeg har alle høydene, separert med et semikolon, i ei
fil og leser den inn. Måten jeg leser inn på gjør at høydene legges inn i en matrise, eller
array, så jeg må konvertere til den til ei liste.

Etter at vi har fått høydene inn i ei liste kan vi benytte kommandoen mean til å finne
gjennomsnittet og kommandoen pstdev til å finne σ. Vi får de samme verdiene som med
andre verktøy.

Programkode 2.1 benytter modulen statistics for å finne de statistiske verdiene. Al-
ternative moduler må benyttes hvis en benytter versjoner før 3.8.

1 import numpy as np
2 import statistics as st
3
4 data = np.loadtxt("hoyder.txt", delimiter = ";")
5 hoyder = data.tolist()
6
7 gjennomsnitt = st.mean(hoyder)
8 standardavvik = st.pstdev(hoyder)
9

10 print("Gjennomsnitt er: ", gjennomsnitt)
11 print("Standardavvik er: ", standardavvik)

Programkode 2.1: Statistiske verdier

Gjennomsnitt er:  179.2
Standardavvik er:  6.84324484437025

Da har vi fasiten! Vi kjenner både µ og σ i populasjonen. Det er vanligvis verdiene vi er ute
etter å estimere. Nå later vi som om vi ikke kjenner noen av dem og forsøker å finne et estimat
for σ.

Nå kan vi ta noen stikkprøver og for at det ikke skal bli for mye å holde styr på tar vi ti
stikkprøver med ti verdier i hver. Så få i hver stikkprøve, og så få stikkprøver, er bare valgt for
at det skal være mulig å vise utregningene. I praksis bør vi ta med så mange som mulig i hver
stikkprøve og gjerne ta så mange stikkprøver som vi kan.

Et mulig resultat kan du se i tabellen hvor gjennomsnittet i hver stikkprøve er funnet.
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utvalg
1 174 182 168 188 182 186 180 179 177 184
2 177 172 184 183 172 191 171 183 177 179
3 180 183 174 194 177 175 184 174 173 195
4 181 164 176 166 182 178 186 180 174 165
5 185 180 184 165 176 180 187 181 169 174
6 166 180 182 175 191 177 181 178 191 179
7 187 181 183 175 173 176 183 180 184 184
8 195 184 178 190 178 175 184 174 175 193
9 191 189 171 181 182 182 180 173 174 182
10 184 181 176 165 179 167 177 171 178 186

Vi kan se nærmere på utvalg 1 og finne gjennomsnittshøyde og standardavvik i det.

Gjennomsnittshøyden

X̄ =
174 + 182 + 168 + 188 + 182 + 186 + 180 + 179 + 177 + 184

10
= 180.0

Standardavviket i utvalg 1 finner vi ved

σ2 =

∑
(xi − X̄)2

n

=
(174− 180.0)2 + (182− 180.0)2 + . . . (177− 180.0)2 + (184− 180.0)2

10

=
314

10

σ =

√
314

10
= 5.60357029044876 ≈ 5.60

Da har vi har et estimat for σ i populasjonen. Som vi ser skiller det seg en del fra det vi nå vet
er fasiten.

Nå kan statistikerne fortelle oss at vi bør gjøre en liten justering når vi skal estimere ut fra et
slikt utvalg. Vi bør ikke dele på n, men justere litt ved å heller dele på n− 1. Vi prøver det og
bruker s for denne måten å regne på.

s2 =

∑
(xi −X)2

n− 1

=
(174− 180.0)2 + (182− 180.0)2 + . . . (177− 180.0)2 + (184− 180.0)2

9

=
314

9

s =

√
314

9
= 5.90668171555645 ≈ 5.91

Ofte vil vi finne σn−1 brukt for denne verdien.

Med denne justeringen ser vi at svaret kom noe nærmere det vi vet er fasiten.

La oss gjøre det for alle stikkprøvene og se hva som skjer
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utvalg s = σn−1 σn

1 174 182 168 188 182 186 180 179 177 184 5.91 5.60
2 177 172 184 183 172 191 171 183 177 179 6.42 6.09
3 180 183 174 194 177 175 184 174 173 195 8.11 7.70
4 181 164 176 166 182 178 186 180 174 165 7.77 7.37
5 185 180 184 165 176 180 187 181 169 174 7.09 6.73
6 166 180 182 175 191 177 181 178 191 179 7.32 6.94
7 187 181 183 175 173 176 183 180 184 184 4.55 4.32
8 195 184 178 190 178 175 184 174 175 193 7.83 7.43
9 191 189 171 181 182 182 180 173 174 182 6.49 6.15
10 184 181 176 165 179 167 177 171 178 186 6.90 6.55

snitt 6.84 6.49

I tabellen er det regnet ut standardavvik ved å dele på henholdsvis n− 1 og n. Gjennomsnittet
av alle disse standardavvikene viser at vi får et meget godt estimat. Gjennomsnittet av alle
standardavvikene beregnet med n − 1 gir s̄ = 6.84 og det er jo akkurat det standardavviket
som er i populasjonen. Perfekt estimat! Samtidig ser vi at gjennomsnittet av standardavvikene
beregna på vanlig måte ikke gir et like godt estimat. Rådet fra statistikken ser ut til å være godt.
Vi bør benytte s for å finne et forventningsrett estimat for standardavviket i poplulasjonen.

Python

Vi kan la Python gjøre det samme for oss.
1 import numpy as np
2 import statistics as st
3 import random as rd
4 # Leser inn høyder og legger i liste
5 data = np.loadtxt("hoyder.txt", delimiter = ";", dtype = "int")
6 hoyder = data.tolist()
7 # Utvalg
8 ant_utvalg = 10
9 ant_hoyder = 10

10 # Lister det blir bruk for
11 gjsn_liste = []
12 s_n_liste = []
13 s_n_1_liste = []
14 # Tar utvalg og skriver ut
15 print(f"Utvalg s sigma")
16 for i in range (ant_utvalg):
17 utvalg = rd.sample(hoyder, ant_hoyder)
18 s_n = st.pstdev(utvalg)
19 s_n_liste.append(s_n)
20 s_n_1 = st.stdev(utvalg)
21 s_n_1_liste.append(s_n_1)
22 print(f"{i + 1:2d} {s_n:10.3f} {s_n_1:10.3f}")
23
24 print(f"snitt {st.mean(s_n_1_liste):7.3f} {st.mean(s_n_liste):10.3f}")

Programkode 2.2: Estimering med Python
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Utvalg  s          sigma
 1      5.779      6.092
 2      5.621      5.925
 3      3.494      3.683
 4      8.987      9.473
 5      6.655      7.015
 6      9.421      9.931
 7      6.135      6.467
 8      6.715      7.078
 9      6.818      7.187
10      5.192      5.473
snitt   6.832      6.482

I denne koden benyttes formatteringer i utskrifta som bare fungerer med Python 3. Det
er bare gjort for å pynte litt og kan godt unngås. Programkoden og fila med høydene kan
hentes her: Gist

Forventningsrett estimat

Punktestimatorer

Vi har en populasjon med ukjent gjennomsnitt µ og ukjent varians σ2. Vi gjør n uavhen-
gige observasjoner X1, X2, · · · , Xn. Forventningsrette estimatorer for gjennomsnittet og
variansen i populasjonen vil da være

µ̂ = X̄

s2 =

∑
(Xi − X̄)2

n− 1

Hvordan kan vi finne standardavvikene uten å regne ut? Alle hjelpemidler har muligheten for
det. Vi kan se på noen.

Python krever at vi benytter modulen statistics. Da har vi disse kommandoene:
pstdev population standard deviation of data s
stdev standard deviation of data σ

Geogebra har disse to variantene for standardavvik Standardavvik[Liste] og
UtvalgStandardavvik[Liste]. Den første gir oss vanlig standardavvik og den siste det for-
ventningsrette standardavviket.

Regneark kan også benyttes. Her kan det variere, men to vanlige kommandoer er STDAVP
for vanlig standardavvik og STDAVVIKA for det forventningsrette.

R er et programmeringsspråk for statistikk. Kommandoen for det forventningsrette standard-
avviket er sd(). Da benyttes n− 1 og vi kan regne om for å få det vanlige standardavviket på
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denne måten:
σ = sd() ·

√
n− 1

n

2.3 Sentralgrenseteoremet
Sentralgrenseteoremet, eller sentralgrensesetningen, er svært viktig for statistikken. Det fortel-
ler at tar vi flere stikkprøver i en populasjon og observerer en gjennomsnittsverdi, så vil de
observerte gjennomsnittsverdiene være normalfordelt. Kjenner vi standardavviket i populasjon
kan vi også vite standardavviket i den normalfordelingen. Egentlig er dette ganske utrolig, men
det kan bevises. For oss rekker det å se på et eksempel.

Sentralgrenseteoremet defineres som varianter av de to definisjonene som følger.

Teorem 1 Sentralgrenseteoremet

La X være en stokastisk variabel med forventningsverdi µ og standardavviket σ. La X̄
være gjennomsnittet av X i et utvalg med n elementer. Da er X̄ tilnærma normalfordelt.
Desto større n er, jo bedre tilnærming. X̄ har forventningsverdien µX̄ = µ og standard-
avviket σX̄ = σ√

n

Teorem 2 Sentralgrenseteoremet

En populasjon har gjennomsnittsverdi µ og varians σ2. Vi trekker uendelig mange stikk-
prøver fra populasjonen. Hver stikkprøve er på n uavhengige observasjoner. La X være
gjennomsnittet i hver av stikkprøvene. Dersom n er tilstrekkelig stor vil X være tilnærma
normalfordelt X̄ ∼ N

(
µ, σ

2

n

)
og X̄ har forventningsverdien µX̄ = µ og standardavviket

σX̄ = σ√
n

Hva forteller sentralgrenseteoremet?
Vi tenker oss en stokastisk variabel, X, med en eller annen sannsynlighetsfordeling. Forvent-
ningsverdien kaller vi µ og standardavvik σ.

X kan være lengden av sild, massen til vågehval eller hva du vil. Hvordan fordelingen av X er
spiller mindre rolle.

Vi tar et tilfeldig utvalg av populasjonen og finner gjennomsnittet X̄. Dette gjentar vi flere
ganger. Alle de X̄ vi finner vil da være normalfordelt med forventningsverdi µX̄ og standard-
avvik σX̄ . Her blir det en del symboler, men husk at indeksene som er brukt viser at dette er
forventningsverdien og standardavviket til X̄. Det er gjort for å ikke blande disse med de andre.
I hver stikkprøve er det n elementer.

Vi kan illustrere sentralgrenseteoremet som i figur 2.4.

Vi tar noen stikkprøver fra populasjonen og henter ut verdiene X1, X2, · · · , Xn. X̄ er gjennom-
snittet av verdiene. Gjentar vi det samme flere ganger vil vi få flere X̄. Sentralgrenseteoremet
forteller oss da at X̄ ∼ N

(
µ, σ

2

n

)
. Det gir oss disse sammenhengene
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populasjon
µ σ

X1, X2, · · · , Xn

X1, X2, · · · , Xn

X1, X2, · · · , Xn

X1, X2, · · · , Xn X̄

X̄

X̄

X̄

Disse er normalfordelt med µX̄

og σX̄

Figur 2.4: Stikkprøver fra en populasjon

µX̄ = µ

σX̄ =
σ√
n

Dette gjelder nesten uansett hvilken fordeling det er i populasjonen. Kaller vi fordelinga i
populasjonen for p og fordelinga av X̄ for q har vi at

q er normalfordelt hvis p er en normalfordelt

q er tilnærmet en normalfordelt hvis p er

• symmetrisk

• ikke har for lange haler

• n ≥ 30

Simulering av sentralgrenseteoremet
At sentralgrenseteoremet stemmer kan bevises, men det ligger utafor det vi skal ta for oss. Det
vi kan gjøre er å se på et tilfelle der vi simulerer og ser at vi får de resultatene som forventes.

Fisk i et vann Vi tenker oss et vann med et antall fisk og at massen 1 til fiskene varierer
mellom 1 g og 1 kg. En slik populasjon kan vi simulere med Python. Vi kan også tegne et
histogram som viser fordelingen. Programkode 2.3 viser hvordan vi lager 500 fiskemasser og
legger de i ei liste. Så tegner vi et histogram.

1 import random as rd
2 import matplotlib.pyplot as plt
3 antall = 500
4 # lager liste med fiskemasser
5 masse = [rd.randint(1,1001) for i in range(antall)]
6 # tegner histogram
7 plt.title("Histogram masse")
8 plt.xlabel("Masse")
9 plt.ylabel("Frekvens")

10 plt.hist(masse, bins = 50, range = (0,1000))
11 plt.show()

1masse er det som populært kalles vekta
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Programkode 2.3: Fiskemasser i et vann

Histogrammet vil endre seg hver gang vi kjører programmet, men figur 2.5 viser et resultatet.

Figur 2.5: Histogram som viser fiskemassene

Vi kan se at massene er ganske jevnt, og tilfeldig, fordelt mellom 1 g og 1000 g. For å finne
gjennomsnittsmasse og standardavvik i populasjonen kan vi legge til to kommandoer i pro-
grammet vårt, slik som i programkode 2.4. Det krever at vi importerer modulen statistics
med kommandoen import statistics as st.

1 # Statistiske data hele populasjonen
2 print("Statistiske data hele populasjonen")
3 print("Gjennomsnitt er :", st.mean(masse))
4 print("Standardavvik er :", st.pstdev(masse))

Programkode 2.4: Statistiske data i populasjonen

Det kan gi dette resultatet

Statistiske data hele populasjonen
Gjennomsnitt er  : 496.574
Standardavvik er : 280.0366128276801

Kommandoen pstdev står for population standard deviation of data og gir den vanlige måten
å regne ut standardavvik på.

Nå skal vi ta noen stikkprøver. Vi kan ta stikkprøver fra populasjonen vi har fått laget ved å
legge til koden i programkode 2.5.

1 for i in range(ant_stikkprover):
2 utvalg = rd.sample(masse, ant_i_utvalg)
3 gjennomsnitt = st.mean(utvalg)
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4 stikkprover.append(gjennomsnitt)

Programkode 2.5: Vi tar stikkprøver

Da får vi gjennomsnittet av hver stikkprøve lagt inn i lista stikkprover. Nå kan vi tegne et
histogram av verdiene i den lista og få noe som likner på figur 2.6.

(a) 50 stikkprøver med 25 i hver (b) 5000 stikkprøver med 50 i hver

Figur 2.6: Fordelingen av gjennomsnittsverdiene i stikkprøvene

I figure 2.6a ble det kanskje ikke helt normalfordelt, men det er ikke langt unna. Her hadde jeg
tatt 50 stikkprøver med 25 i hver. Vi kan i alle fall se at fordelingen likner på en normalfordeling
og er en helt annen fordeling enn den i populasjonen. Øker vi antall stikkprøver til 5000 og
antallet i hver stikkprøve til 50, blir resultatet slik som i figur 2.6b. Nå begynner det å likne en
normalfordeling.

Dette viser sentralgrenseteoremet. I utgangspunktet har vi en nesten uniform fordeling av mas-
sene med µ = 497 og σ = 280. Ved å ta stikkprøver fra denne populasjonen viser simuleringen
at vi får en X̄ som ser normalfordelt ut Vi har sett sentralgrenseteoremet simulert!

Programkode 2.6 viser et helt program for simulering av sentralgrenseteoremet. Det er noe
utvidet og tegner også opp en gauss-kurve over gjennomsnittsmassene i stikkprøvene. Setter vi
verdiene slik som i programkoden, vil et typisk resultat av programmet være histogrammene i
figur 2.7. Her kan vi se fordelingen av fiskemassene i populasjonen og i stikkprøvene. Samtidig er
det vist en gauss-kurve. Som vi kan se stemmer den godt overens med fordelingen i stikkprøvene.

Programmet skrev så ut dette

Statistiske data hele populasjonen
Gjennomsnitt er  : 538.81
Standardavvik er : 290.21298713186496
Statistiske data for stikkprøvene
Gjennomsnitt er  : 538.71728
Standardavvik er : 38.29254436834408
Beregna standardavvik:  41.04231423786919

Denne simuleringen viser at verdiene i populasjonen ble
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Figur 2.7: Histogram

µ = 538.8

σ = 290.2

Sentralgrenseteoremet for teller at X̄ skal være normalfordelt med

µX̄ = µ = 538.8

σX̄ =
σ√
n
=

290.2√
50

= 41.04

Når vi beregne µs og standardavvik σs i de stikkprøvene som er tatt (indeksen s er der for å
vise at dette er i stikkprøvene) får vi

µs = 538.7

σs = 38.2

Det er ikke så langt unna de verdiene som er beregna.

I statistikken benytter vi sentralgrenseteoremet i flere sammenhenger. At vi vet at stikkprøve-
gjennomsnittene er normaltfordelt gjør at vi kan fortelle noe om hvor sikker en stikkprøve er.
For å gjøre det må vi vite noe om populasjonen. Det er to problem: Vi må kjenne standardavvi-
ket i populasjonen for å vite hvordan stikkprøvene er normalfordelt og vi må ha ganske mange
i hver stikkprøve. Hvis standardavviket i populasjonen er ukjent, og det er det vanligvis, må vi
estimere det.
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Hele programmet litt utvidet
Her er ei lenke til programkoden: programmet på gist.

1 import random as rd
2 import statistics as st
3 import matplotlib.pyplot as plt
4 import numpy as np
5 antall = 500
6 ant_i_utvalg = 50
7 ant_stikkprover = 500
8 stikkprover = []
9

10 # definerer funksjon for gauss-fordelingen av massene
11 def gauss(x,m,s,a):
12 g = a*np.exp(-(x-m)**2/(2*s**2))
13 return g
14
15 # lager liste med fiskemasser
16 masse = [rd.randint(1,1001) for i in range(antall)]
17
18 # tar stikkprøver og finner statistiske data
19 for i in range(ant_stikkprover):
20 utvalg = rd.sample(masse, ant_i_utvalg)
21 gjennomsnitt = st.mean(utvalg)
22 stikkprover.append(gjennomsnitt)
23
24 # tegner histogram
25 plt.style.use('ggplot')
26 x = np.linspace(200,800,500)
27 # hele populasjonen
28 plt.subplot(1,2,1)
29 plt.title("Histogram høyder i populasjonen")
30 plt.xlabel("Høyder")
31 plt.ylabel("Frekvens")
32 plt.hist(masse, bins = 50, range = (0,1000))
33 # stikkprøvene
34 plt.subplot(1,2,2)
35 plt.title("Histogram høyder stikkprøver")
36 plt.xlabel("Høyder")
37 plt.ylabel("Frekvens")
38 y, x,_= plt.hist(stikkprover, bins = 50, range = (200,800))
39 # tegner gauss-fordelingen
40 plt.plot(x,gauss(x,st.mean(stikkprover),st.pstdev(stikkprover),y. max()))
41 plt.show()
42
43 # Statistiske data hele populasjonen
44 print("Statistiske data hele populasjonen")
45 print("Gjennomsnitt er :", st.mean(masse))
46 print("Standardavvik er :", st.pstdev(masse))
47
48 #Statistiske data for stikkprøvene
49 print("Statistiske data for stikkprøvene")
50 print("Gjennomsnitt er :", st.mean(stikkprover))
51 print("Standardavvik er :", st.pstdev(stikkprover))
52 print("Beregna standardavvik: ", st.pstdev(masse)/ant_i_utvalg**0.5)

Programkode 2.6: Simulering av sentralgrenseteoret
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2.4 Punktestimering av gjennomsnitt i en populasjon

En undersøkelse av en fiskepopulasjon
Vi kan ta utgangspunkt i fiskene vi allerede har sett på og ser på hvordan vi ville brukt noe
slikt i en praktisk situasjon hvor vi ønsker å undersøke hvordan vekta fordeler seg hos fjellørret
i fjellvannet Bratjern. De fiskene som er i vannet vet vi ikke så mye om. Den sikreste metoden
vil være å plukke ut hver eneste fisk og legge den på vekta. Det vil ikke være mulig for oss! Da
har vi behov for en lur metode. Vi tar en stikkprøve ved å sette ut et garn. Stikkprøven ønsker
vi skal være så representativ for alle fiskene som er i vannet som mulig. Det må vi prøve å tenke
på når vi setter ut garnet. Det vil også være lurt å gjenta garnfangsten noen ganger.

Alle fiskene som er i vannet kaller vi populasjonen og stikkprøven vil være et utvalg.

I populasjonen sier vi at massene i populasjonen vil ha forventningsverdien µ og standardavviket
σ

stikkprøve

fiskepopulasjon

µ −  forventningsverdi
σ −  standardavvik

X −  gjennomsnittsvekt
µX −  forventningsverdi
σ X −  standardavvik

Hvordan kan vi gå fram for å kunne si noe om gjennomsnittsmassen i hele populasjonen? Vi
kan ikke veie alle fiskene, så da blir løsningen å ta en stikkprøve.

En stikkprøve Vi fanger n fisker fra vannet, legger alle på vekta og finner massen til hver av
fiskene i stikkprøven. Vi benytter variabelen X for massen til en tilfeldig valgt fisk, og vi finner

X1, X2, X3, · · · , Xn

Nå kan vi finne gjennomsnittsmassen i stikkprøven

X̄ =

∑n
i=1 Xi

n
=

X1 +X2 +X3 + · · ·+Xn

n

Vi må altså anta at stikkprøven gir et godt bilde på hele populasjonen. I så fall vil gjennom-
snittsmassen være en estimator for µ. For å skille de to kaller vi estimatoren for µ̂ og har

µ̂ = µX̄ = X̄

Etter å ha regnet ut den har vi et estimat for forventningsverdien i hele populasjonen.
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Simulering med Python
Vi lar igjen teknologien hjelpe oss for å lage en populasjon med ørret i et fjellvann. I vannet
vårt er det 500 ørreter som veier mellom 1 g og 1 kg. Så tar vi stikkprøver i «vannet vårt» og
finner gjennomsnittet. Programkode 2.7 er den samme som vi har sett på tidligere og den viser
en måte å gjøre det på.

1 import random as rd
2 import statistics as st
3 antall = 500
4 ant_i_utvalg = 25
5 ant_stikkprover = 50
6 stikkprover = []
7 # lager liste med fiskemasser
8 masse = [rd.randint(1,1001) for i in range(antall)]
9 # tar stikkprøver og finner statistiske data

10 for i in range(ant_stikkprover):
11 utvalg = rd.sample(masse, ant_i_utvalg)
12 gjennomsnitt = st.mean(utvalg)
13 stikkprover.append(gjennomsnitt)
14
15 # Statistiske data hele populasjonen
16 print("Statistiske data hele populasjonen")
17 print("Gjennomsnitt er :", st.mean(masse))
18 print("Standardavvik er :", st.pstdev(masse))
19
20 #Statistiske data for stikkprøvene
21 print("Statistiske data for stikkprøvene")
22 print("Gjennomsnitt er :", st.mean(stikkprover))

Programkode 2.7: Stikkprøver

Denne gjennomføringen ga resultatene

Statistiske data hele populasjonen
Gjennomsnitt er  : 501.472
Standardavvik er : 283.14324504744945
Statistiske data for stikkprøvene
Gjennomsnitt er  : 501.1896

Her har vi tatt stikkprøver ved hjelp av kommandoen sample fra modulen random. Simuleringen
viser at vi får estimatet

µ̂ = µx̄ = 501.19

Vi sitter med fasiten som er µ = 501.47 og kan si at det var ikke så aller verst – særlig når vi
tenker på at dette er verdier som varierer mellom 1 g og 1 kg.

2.5 Estimatorer for en populasjon
Fra før av har sitt sett hvordan vi kan estimere standardavviket i populasjonen. Vi tar med det
vi fant der og har disse punktestimatorene for populasjonen
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Punktestimatorer for µ og σ2

Vi har en populasjon med gjennomsnitt µ og varians σ2 hvor disse verdiene er ukjente.
Vi gjør n uavhengige observasjoner fra populasjonen X1, X2, · · · , Xn.
Forventningsrette estimatorer vil da være

µ̂ = X̄

σ̂2 =

∑
(Xi − X̄)2

n− 1

Spørsmålet nå er om hvor sikre vi kan være på at vi har kommet fram til riktig verdi. For å
avgjøre det må vi innom noe som heter konfidensintervall

Konfidensintervall for µ

Vi kan ikke være helt sikre på estimatene vi kommer fram til, men vi kan si noe om hvor sikre
vi er. Vi finner et intervall hvor vi kan uttale oss om sannsynligheten. La oss si at vi ønsker å
være 95 % sikre

95 % sannsynlig

µk k

Vi vil finne et intervall slik at

P (X̄ − k ≤ µ ≤ X̄ + k) = 0.95

Sentralgrenseteoremet forteller at gjennomsnittsverdiene i stikkprøvene vil være normalfordelt
med µ og σX̄ = σ√

n
. Fra normalfordelingen vet vi at 95 % av alle verdiene vil ligge mellom 1.96

standardavvik større og mindre enn forventningsverdien. Det gir at

P (X̄ − 1.96 · σ√
n
≤ µ ≤ X̄ + 1.96 · σ√

n
) = 0.95

Det gir dette intervallet

[X̄ − 1.96 · σ√
n

, X̄ + 1.96 · σ√
n
]

La oss ta fiskene som et eksempel igjen. Vi tar vi bare en stikkprøver med 25 fisker og får
X̄ = 560.58. Jukser vi litt og går ut fra at vi vet standardavviket i populasjonen har vi at det
er σ = 283.14 g. Da kan vi finne et intervall hvor vi er 95 % sikre på at estimatet vårt ligger.
Intervallet blir

[X̄ − 1.96 · σ√
n

, X̄ + 1.96 · σ√
n
]

[560.58− 1.96 · 283.14√
25

, 560.58 + 1.96 · 283.14√
25

]

[449.60 , 671.57]
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Ved hjelp av sentralgrenseteoremet og det vi vet om normalfordeling har vi nå kommet fram
til at vi kan være 95 % sikre på at gjennomsnittsmassen til fiskene i populasjonen vil ligge i
det intervallet.

Konfidensintervall
Et konfidensintervall for µ basert på n uavhengige observasjonene er gitt ved

Hvis vi kjenner σ:
[X̄ − z · σ√

n
, X̄ + z · σ√

n
]

Hvis vi ikke kjenner
[X̄ − z · σ̂√

n
, X̄ + z · σ̂√

n
]

Verdien for z kan vi hente fra det vi vet om normalfordelingen.

z P (−z ≤ Z ≤ z)

1.645 0.9
1.960 0.95
2.326 0.98
2.576 0.99

Ønsker vi et 95 % konfidensintervall er det bare å bytte ut z med 1.96

Eksempel: Høyder
Vi ser på høydene til guttene igjen

171 174 167 187 174 169 182 180 186 177 178 190 180 176 183 180 169 187 170 181
178 175 181 183 184 179 195 176 176 179 190 165 178 182 179 186 188 170 191 183
179 188 178 177 179 175 186 184 187 174 171 181 171 189 183 174 193 192 181 184
177 194 185 180 173 185 189 189 172 185 180 185 182 173 172 186 177 175 176 184
191 182 172 183 175 184 166 178 176 180 181 188 177 182 168 173 180 181 188 177
182 168 173 182 180 186 177 178 190 180 176 174 167 187 174 169 182 180 186 177
178 171 174 167 187 174 169 182 180 195 176 176 179 190 165 178 182 179 186 188
170 191 183 179 175 186 184 187 174 171 181 171 189 183 174 174 169 182 180 186
177 178 171 174 167 187 174 175 176 184 191 182 172 183 175 184 166 178 176 180
181 169 178 194 175 184 166 178 176 180 172 185 164 191 178 176 180 164 179 181

I denne populasjonen hadde vi

µ = 179.2

σ2 = 47.07

σ = 6.86

Nå kan vi prøve å estimere disse verdiene. Vi glemmer dem et øyeblikk og ser på dette eksemplet
på en oppgave.
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Eksempel 2

Finn estimat for µ og σ ved å ta en stikkprøve fra alle kroppshøydene.

Vi starter med å ta en stikkprøve på 50 tilfeldige høyder.

194 185 180 173 185 188 179 180 172 187
167 187 174 169 182 194 176 181 185 174
174 167 187 174 175 170 177 178 177 195
182 179 186 188 170 181 185 190 180 182
176 176 179 190 165 169 183 176 182 165

Ut fra stikkprøven får vi

µ̂ = X̄ = 179.4

σ̂ = s = 7.61

Her er det brukt den forventningsrette standardavviket

s2 =

∑
(xi − X̄)2

n− 1

Eksempel 3

Sett opp et 95 % konfidensintervall for forventningsverdien.

Da har vi estimert både µ og σ og kan ut fra det finne et 95 % konfidensintervall.

Vi setter z = 1.96, bruker estimatene og regner ut

[X̄ − z · σ̂√
n

, X̄ + z · σ̂√
n
]

[179.4− 1.96 · 7.61√
50

, 179.4 + 1.96 · 7.61√
50

]

[177.3 , 181.5]

GeoGebra kan gjøre den jobben for oss ved at vi benytter sannsynlighetskalkulatoren på
den måten som figur 2.8 viser.

Standardfeil
I forbindelse med konfidensintervall introduseres ofte uttrykket standardfeil. Det har vi allerede
benyttet i utregningene våre. Standardfeil, eller på engelsk Standard Error, SE, defineres slik

SE(X̄) =
s√
n

hvor s er det forventningsrette standardavviket i utvalget (der vi delte på (n−1)). Vi har brukt
det uten å vite hva det heter. Siden ordet dukker opp innimellom kan det være greit å kjenne
til det. Legger merke til at GeoGebra regner det ut for oss. I figur 2.8 kan vi se at det står
SF = 1.0762. I den norske versjonen av GeoGebra benyttes SF for SE. Legg merke til at det
er det samme som 7.61√

50
= 1.076216520965925.
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Figur 2.8: Konfidensintervall med GeoGebra

Oppgaver med løsning

Oppgave 4

Vi ønsker å finne gjennomsnittshøyden for alle guttene som går siste året på videregående
skole i en by. Standardavviket for høyden på gutter ved sesjon er 7 cm. Vi antar at det
gjelder for disse guttene også. 100 gutter plukkes ut i en stikkprøve og vi finner at
gjennomsnittshøyden er 180.7 cm

Finn et konfidensintervall for gjennomsnittshøyden med konfidensnivå 0.95

Løsningsforslag

Vi setter X for høyden til en tilfeldig valgt gutt og antar at X er normalfordelt N(µ, 72)

X̄ er gjennomsnittshøyden til guttene i stikkprøven på n = 100 tilfeldig valgte gutter.
Sentralgrenseteoremet sier at X̄ er normalfordelt N(µ, 7√

100
) = N(µ, 0.7). Da har vi

P (X̄ − 1.96 · σX̄ ≤ µ ≤ X̄ + 1.96 · σX̄) = 0.95

P (180.7− 1.96 · 0.7 ≤ µ ≤ 180.7 + 1.96 · 0.7) = 0.95

P (179.3 ≤ µ ≤ 182.1) = 0.95

Konfidensintervallet
[179.3, 182.1]

Husk at dette er et 95 % konfidensintervall for forventningsverdien, µ, for alle høydene.

Vi kan få det samme svaret med GeoGebra

39



2.6 Punktestimering for sannsynligheter
Vi skal nå se på hvordan vi kan estimere sannsynligheter i binomiske sannsynlighetsfordelinger.

En binomisk sannsynlighetsfordeling får vi når det utføres binomiske forsøksserier. Da har vi
sett at sannsynligheten kan beregnes ved

P (S = k) =

(
n

k

)
· pk · (1− p)n−k

Ofte kjenner vi ikke p, men vi ønsker å finne et estimat, p̂. Nå skal vi se mer på hvordan vi kan
gjøre det og hvordan vi kan uttale oss om hvor godt dette estimatet er. Før det må se litt mer
på forventningsverdi og varians.

Forventningsverdi og varians til p̂
Når vi skal estimere sannsynligheten p vil vi observere det binomiske forsøket og finne hvor
mange ganger suksess-utfallet inntreffer. Utfører vi forsøket n ganger og finner at det skjer X
ganger har vi

p̂ =
X

n

Vi vet også at X er binomisk fordelt og at forventningsverdien og variansen i en binomisk
sannsynlighetsfordeling er

E(X) = µ = np

Var(X) = σ2 = np(1− p)

Det gjør at vi kan regne ut det samme for estimatoren
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E(p̂) = E
(
X

n

)
=

1

n
· E(X) =

1

n
· np = p

Var(p̂) = Var
(
X

n

)
=

1

n2
· Var(X) =

1

n2
· np(1− p) =

p(1− p)

n

Her er det satt inn det vi har for p̂ og utledet. Uten at vi går inn på det er det greit å legge
merke til at Var

(
X

n

)
=

1

n2
· Var(X).

Legg også merke til at dette er en forventningsrett varians som avtar desto flere vi velger. Det
kan vi se av uttrykket hvor vi dividerer med n. Store verdier av n gir mindre varians. Vi kan
få den så nøyaktig vi ønsker.

Vi ender opp dette resultatet

Forventningsverdi og varians for p̂

Hvis p̂ er en estimator for en sannsynlighet i en binomisk sannsynlighetsfordeling har vi
at

E(p̂) = p

Var(p̂) = p(1− p)

n

Et eksempel: Valgprognose
Et eksempel kan vise dette og da er en spørreundersøkelse nærliggende. Slikt utføres på et
utvalg for å si noe om en hel populasjon.

Eksempel 4

I en gallupundersøkelse undersøkes det hvor mange som vil stemme Arbeiderpartiet ved
neste valg. 1500 personer er plukket ut og av dem svarer 447 personer at de vil stemme
på Arbeiderpartiet.
Estimer oppslutningen Arbeiderpartiet vil få ved neste valg og drøft usikkerheten.

Noen har gjort en undersøkelse for oss og vi kan finne et estimat for sannsynligheten for at en
tilfeldig valgt person skal stemme på Arbeiderpartiet ved neste valg. Ut fra eksemplet er vårt
beste estimat for sannsynligheten

p̂ =
447

1500
= 0.298

Undersøkelsen gir oss et estimat for at 29.8 % av stemmene vil gå til Arbeiderpartiet.

Nå skjønner vi at det er vanskelig å spå oppslutningen i det endelige valget. De som ble spurt
kan endre oppfatning og alle de som ikke ble spurt kan ha helt andre syn på saken. Det viktige
er at det er gjort et representativt utvalg når de 1500 respondentene ble plukket ut.

Vi gjør også en forutsetning om at det å spørre noen om de vil stemme på Arbeiderpartiet er
et binomisk forsøk. Det kan diskuteres og det er viktig å være klar over alle forutsetninger vi
gjør.
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Vi får holde oss til dette eksemplet når vi skal uttale oss om usikkerheten ved estimatet. Vi vil
finne et konfidensintervall for estimatet.

Konfidensintervall for p̂

Vi fant et estimat
p̂ =

X

n

Vi ønsker å finne et konfidensintervall som kan si noe om estimatet vi kom fram til. Vi vil fram
til noen verdier hvor vi kan si at vi er f. eks. 95 % sikre på at sannsynligheten vil ligge. Figur
2.9 illustrerer det.

0 1

p̂a b

p̂+ hp̂− h

Figur 2.9: Et konfidensintervall for p̂

For å finne et konfidensintervall må vi gjøre en antakelse om at p̂ er normalfordelt. En binomisk
fordeling kan jo nesten være det!

Vi har sett at variansen til p̂ er
Var(p̂) = p(1− p)

n

Nå kjenner vi ikke p i høyre side av dette uttrykket, men vi har funnet en estimator for p som
er p̂. Bruker vi den får vi

Var(p̂) ≈ p̂(1− p̂)

n

Det er variansen. Standardavviket, som er rota av variansen, har fått et eget navn: standardfeilen

Standardfeilen til p̂

Standardfeilen er standardavviket til en estimator for en binomisk sannsynlighet er gitt
ved

SE(p̂) =
√

p̂(1− p̂)

n

Konfidensintervallet for p er

⟨p̂− z · SE(p̂) , p̂+ z · SE(p̂)⟩

hvor

p̂ =
X

n
SE(p̂) =

√
p̂(1− p̂)

n

Det er verdien av z som avgjør bredden på intervallet. Figur 2.10 minner oss på hvordan
sannsynlighetene fordelte seg i normalfordelingen.

De mest brukte verdiene for z fant vi i denne tabellen
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z = −1.96 z = 1.96

0.95

x

Figur 2.10: Normalfordeling

z konfidensintervall
1.65 90 %
1.96 95 %
2.58 99 %

Konfidensintervallet i eksemplet vårt forteller noe om hvor sikre vi kan være på estimatet
vi fant. Vi kom fram til at

p̂ = 0.298

Nå ønsker vi å finne et 95% konfidensintervall for den sanne stemmeandelen Arbeiderpartiet
vil få ved neste valg.

Standardfeilen

SE(p̂) =
√

p̂(1− p̂)

n
=

√
0.298(1− 0.298)

1500
= 0.011809

I et 95% konfidensintervall er z = 1.96 og intervallet blir

KI95 = ⟨p̂− 1.96 · SE(p̂) , p̂+ 1.96 · SE(p̂)⟩
= ⟨0.298− 1.96 · 0.012, 0.298 + 1.96 · 0.012⟩ = ⟨0.275, 0.321⟩

Ut fra det vi har funnet kan vi si at vi kan være 95 % sikre på at stemmeandelen vil være
mellom 27.5 % og 32.1 %.

Her har vi funnet det ved regning. GeoGebra kan gjøre den jobben for oss. I figure 2.11 ser vi
at vi får de samme svarene når vi velger at vi vil ha et Z-estimat av en andel. De 447 personene
som svarte at de ville stemme på Arbeiderpartiet må vi skrive inn som antall treff i det totale
antallet som er N. Vi må også si fra om at vi ønsker et konfidensnivå som er 0.95.

GeoGebra gir oss den nedre- og den øvre grensa i intervallet. I tillegg ser vi også at vi har fått
regna ut standardfeilen, SF, som er den samme som vi fant tidligere.
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Figur 2.11: Konfidensintervallet med GeoGebra

Kan vi anta et dette er et binomisk forsøk? Den antakelsen krever at det er samme
sannsynlighet hver gang for å plukke ut en person som stemmer på Arbeiderpartiet. Det
betyr i så fall at vi velger ut personer med tilbakelegging! I en praktisk situasjon ville vi
vel ikke risikert å spørre samme person to ganger? I så fall vil spørreundersøkelsen vår
være et hypergeometrisk forsøk.
For en hypergeoemtrisk situasjon kan det vises at:

Var(p̂) ≈ 1

n
· N − n

N − 1
· X
n

·
(
1− X

n

)
=

1

n
· N − n

N − 1
· p̂ · (1− p̂)

I en binomisk situasjon har vi sett at

Var(p̂) ≈ p̂(1− p̂)

n

Det som skiller disse to beregningene er verdien av N−n
N−1

La oss gå ut fra at det er 5 millioner stemmeberettige i Norge. Da har vi dette regnestykket

N − n

N − 1
=

5000000− 1500

5000000− 1
= 0.99970019994004

Med alle andre feilkilder ser vi at denne verdien ikke vil gjøre noe stort utslag. Uansett
om vi velger å se det som en binomisk eller en hypergeometrisk situasjon vil konfidensin-
tervallet bli omtrent det samme hvis n er liten i forhold til N .

Flere eksempler
Vi kan se på en typisk oppgave i neste eksempel.
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Eksempel 5

Vi skal finne sannsynligheten p for at ei fyrstikkeske lander på ei av de «største» sidene.
La X være at eska lander på «stor side»
Så utfører vi et forsøk hvor vi kaster eska 500 ganger og finner at den lander med den
«store» sida opp 263 ganger

Finn et estimat for p og et intervall som med 99 prosent sannsynlighet inneholder p

Her får vi vite at
X = 263 n = 500

Det gir
p̂ =

X

n
=

263

500
= 0.526

Standardfeilen

SE(p̂) =
√

p̂(1− p̂)

n
=

√
0.526(1− 0.526)

500
= 0.02233

I et 99% konfidensintervall er z = 2.58 og intervallet blir

KI99 = ⟨p̂− 2.58 · SE(p̂) , p̂+ 2.58 · SE(p̂)⟩
= ⟨0.526− 2.58 · 0.022 , 0.526 + 2.58 · 0.022⟩
= ⟨0.469 , 0.583⟩

0.469

a b

0.583

p̂

0.99

KI99 = ⟨0.469 , 0.583⟩

Bruker vi GeoGebra får vi resultatet i figur 2.12.

Konklusjon: Ut fra eksperimentet kan vi med 99 % sannsynlighet si at sannsynligheten for at
fyrstikkeska lander med «stor side» ned er mellom 0.469 og 0.583.

Eksempel 6

Vi kaster en mynt hundre ganger og får 64 kron. Er det noe rart med denne mynten?

Ut fra eksperimentet finner vi et estimat for sannsynligheten for å få «kron» med denne mynten.

p̂ =
X

n
=

64

100
= 0.64

For å finne et konfidensintervall for estimatet må vi finne standardfeilen

SE(p̂) =
√

p̂(1− p̂)

n
=

√
0.64(1− 0.64)

100
= 0.048
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Figur 2.12: Konfidensintervallet med GeoGebra

Da kan vi sette opp et 95 % konfidensintervall

⟨p̂− z · SE(p̂) , p̂+ z · SE(p̂)⟩
⟨0.64− z · 0.048 , 0.64 + z · 0.048⟩

Velger vi et 95 % konfidensintervall blir z = 1.96 og vi får

⟨0.54592 , 0.73408⟩

Vi kan finne dette konfidensintervallet med GeoGebra også. Velg Z-estimat av andel og skriv
inn konfidensnivå. Resultatet vises i figur 2.13.

I et 99% konfidensintervall er z = 2.58 og intervallet blir

⟨0.51616 , 0.76384⟩

Ingen av konfidensintervallene omfatter sannsynligheten for å få «kron» med en ideell mynt,
som er p = 0.5. Her må det være noe rart!
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Figur 2.13: Konfidensintervallet med GeoGebra

47



3 Hypotesetesting
3.1 Hypotesetesting
En hypotese er en ubekrefta antakelse – noe vi tror er sant. I vitenskaplig arbeid ønsker vi å
finne ut mer om denne antakelsen. Hvor sikker kan vi være på at den stemmer? For å avgjøre
det må vi teste hypotesen.

Definisjon 4 Hypotese

En statistisk hypotese er en antakelse eller påstand om en eller flere populasjoner som
kan enten være sanne eller usanne.

Når vi kommer med en hypotese vil det alltid kunne formuleres en alternativ hypotese, som
er den motsatte. Påstår jeg at «jorda er rund», så vil den vil den alternative hypotesen være:
«jorda er ikke rund». Vi vil kalle de to hypotesene for

H0 : Nullhypotese
H1 : Alternativ hypotese

I hypotesetesting vil det være H1, den alternative hypotesen vi ønsker å teste. Det gjør vi med
utgangspunkt i at H0, nullhypotesen, stemmer. I likhet med grunnleggende prinsipp i rettssaler
antar vi at den tiltalte er uskyldig inntil det motsatte er bevist. I hypotesetestingen blir det at
vi må ha tilstrekkelig med bevis for lande på den alternative hypotesen. En utfordring er hva
som er tilstrekkelig. I hypotesetestingen må vi gjøre noen valg for det også. Vi vil derfor aldri
kunne fullstendig bekrefte eller avkrefte hypotesen vår, men vi kan si noe om hvor sannsynlig
den er.

Vanligvis kan vi ikke undersøke en hel populasjon. Det kan være flere grunner til det. Vi må
gjøre et utvalg og basere oss på det vi kan finne ut om utvalget. Det betyr at det vil være et
estimat vi undersøker.

Eksempel: Klatretau
Vi tenker oss en produsent av klatretau som sier at tauene vil tåle en belastning på 2500 kg.
Vi plukker ut 49 tau og undersøker hvor stor belastning de tåler før de ryker. Vi finner ut at de
i gjennomsnitt tåler 2400 kg og at standardavviket er 350 kg. Kan vi med det si at påstanden
til produsenten er feil?

Vi vet ikke noe om alle tauene. Bare om utvalget vi har undersøkt. Hvordan skal vi gå fram
for å komme til en konklusjon basert på en statistisk undersøkelse?

Vi har altså 49 tau i utvalget. Populasjonen, alle klatretauene, har en gjennomsnittlig brudd-
grense, µ. Den er oppgitt til å være 2500 kg og vi kan anta at den er normalfordelt. Den
gjennomsnittlige bruddgrensen i utvalget er X̄ = 2400 kg og standardavviket i utvalget er
s = 350 kg.

Nå skal vi sette opp hypotesene. Vi kaller den ene for nullhypotesen og den andre for alternativ
hypotese. En vanlig måte å skrive det på er slik
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H0 :µ = 2500 Produsenten oppgir korrekt belastningsevne
H1 :µ < 2500 Belastningsevnen er mindre enn det som er oppgitt

Da har vi satt opp de to hypoteser som vi vil undersøke. Figur 3.8 viser situasjonen. Produsenten
har oppgitt µ = 2500. Vi har gjort et utvalg og funnet X̄ = 2400. Det er mindre enn det
oppgitte, men er det innafor en normal variasjon?

µ = 2500X̄ = 2400

Figur 3.1: Typisk normalfordeling

Sentralgrenseteoremet gir at X̄ er normalfordelt med µX̄ = µ = 2500. Standardavviket må vi
estimere siden det ikke er oppgitt. Vi kom fram til at s = 350. Da har vi at standardfeilen er

σX̄ =
s√
n
=

350√
49

= 50

Det gir at X̄ ∼ N(2500, 50). Hva er da sannsynligheten for å få resultatet i utvalget? Vi må
finne

P (X̄ ≤ 2400)

Desmos eller GeoGebra kan gi oss svaret. Figur 3.9 viser hvordan vi kan bruke Desmos

Sannsynligheten blir
P (X̄ ≤ 2400) = 0.02275

Ut fra beregningene våre er verdien vi har funnet ved å undersøke utvalget ikke så veldig
sannsynlig gitt at µ = 2500. Som regel setter vi ei grense på 5 %, men den kan vi velge som vi
vil. Her ser vi at det bare er 2.23 % sannsynlig at nullhypotesen stemmer. Det gjør at vi forkaster
nullhypotesen. Vi tror ikke at det stemmer det produsenten oppgir. Vi tror at bruddevnen er
mindre enn det. Legg merke til at vi ikke kan bevise det, bare sannsynliggjøre at det er tilfelle.

GeoGebra har en egen kalkulator for hypotesetesting. I dette tilfellet vi vi velge Z-test av et
gjennomsnitt. Skriver vi inn verdiene vi har får vi resultatet i figur 3.10. Resultatet oppgir en
P-verdi vi kjenner igjen. Den er den samme som sannsynligheten vi fant tidligere. Her finner
vi også standardfeilen vi regna ut. GeoGebra bruker SF for standardfeilen. I kalkulatoren har
vi skrevet inn nullhypotesen og at den alternative hypotesen er verdier mindre enn det.
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Figur 3.2: Sannsynligheten med Desmos

Figur 3.3: Hypotesetesting med GeoGebra

3.2 Feiltyper
Når vi forkaster en nullhypotesen kan vi naturligvis gjøre en feil. I så fall gjør vi en forkast-
ningsfeil, ofte kalt en feil av type 1. Vi kan også godta nullhypotesen om den ikke stemmer. Da
gjør vi en godtakingsfeil, som også kalles feil av type 2. Det hele kan summeres opp i tabellen
under.

H0 er sann H1 er sann
beholder H0 korrekt godtakingsfeil
forkaster H0 forkastningsfeil korrekt

I eksemplet med klatretauet fant vi at tauene i utvalget tålte 2400 kg i gjennomsnitt. Vi
måtte vurdere denne verdien mot produsentens oppgitte bruddstyrke på 2500 kg. Vi fant at
sannsynligheten for at et utvalg med det antall vi valgte skulle tåle bare 2400 kg var godt under
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5 %. Vi valgte å forkaste nullhypotesen, men vi kan ikke være helt sikre. Det kan hende vi gjør en
forkastningsfeil. Grensa vi satte på 5 % gjør at sannsynligheten for å gjøre en forkastningsfeil er
nettopp 5 %. Hvis denne feiltypen var den eneste bekymringen vår kunne vi satt grensa lavere.
Hadde vi valgt den til 2 %, ville vi, så vidt, ikke kunne forkast nullhypotesen. Da oppstår et
annet problem: Muligheten for en godtakingsfeil ville lettere oppstå.

En analogi til denne problematikken er røykvarslere. Røykvarslere kan være irriterende. Den
begynner å ule om en åpner steikovnen eller svir maten. Den tror det er brann uten at det
er det. I vår terminologi forkaster den nullhypotesen om at det ikke brenner. Den gjør en
forkastningsfeil. En enkel løsning på problemet er å fjerne batteriene. Ulinga i tide og utide
stopper, men nå oppstår problemet om at det kan skje en godtakingsfeil: Alarmen går ikke om
det brenner. Her er det et dilemma. En hypersensitiv røykvarsler gjør aldri godtakingsfeil, men
ofte forkastningsfeil. I statistikken må vi finne en balanse ved å finne et passende signifikansnivå.
En god justering av røykvarsleren som unngår begge typer feil i størst mulig grad.

3.3 Signifikansnivå
I eksemplet vårt bestemte vi oss for å forkaste nullhypotesen siden sannsynligheten var så lav.
Vi satte et signifikansnivå på 5 %. Det skriver vi som

α = 0.05

Definisjon 5 Signifikansnivå

Signifikansnivå α er hvor stor sannsynligheten for forkastningsfeil vi er villig til å aksep-
tere

Vi kan skrive det som

α = P (forkaste H0 når H0 er riktig) = P (forkaste H0 | H0) = P (forkastningsfeil | H0)

Måten å skrive det på er kanskje ikke helt korrekt siden dette egentlig ikke er betinga sannsyn-
lighet og H0 er ikke en hending. Meningen kommer fram.

I eksemplet vårt kan vi markere α som et areal under normalfordelingskurven. Figur 3.4 viser
det. Dette området kalles en kritisk region. I eksemplet satte vi den alternative hypotesen til å
være H1 : µ < 2500. Det gjør at den kritiske regionen havner til venstre. I andre tilfeller kunne
det vært området lengst til høyre. Det skjer når vi utfører ensidige hypotesetester.

Noen ganger ønsker vi å gjøre tester som er dobbelsidige. Figur 3.5 viser det.

Som en introduksjon til hypotesetesting vil vi holde oss til ensidige tester, men tankegangen
vil være den samme for andre typer hypotesetesting.

3.4 Hypotesestest av gjennomsnitt
Eksemplet med klatretau viser en hypotesetest av et gjennomsnitt vi fant i et utvalg. I dette
eksemplet visste vi heller ikke standardavviket i populasjonen. Egentlig vil det være problema-
tisk siden vi først må finne et estimat for standardavviket. I statistikken vil vi da gjøre noen
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µ = 2500X̄ = 2400

α

Figur 3.4: Signifikansnivå

µ

α
2

α
2

Figur 3.5: Dobbelsidig

justeringer i testen. Det kan vi se på seinere og heller fortsette med et eksempel hvor vi tester
en gjennomsnittsverdi i et utvalg med oppgitt standardavvik.

Les først eksemplet og tenk på hvordan vi kan gå fram.

Eksempel 7

En bedrift produserer esker med sjokolade. Sjokoladeeskene skal ha ei normalfordelt vekt
på 35 hg. Standardavviket er oppgitt til 3 hg. Bedriften har mistanke om at vekta er
lavere enn 35 hg og tar en stikkprøve på ti esker. Resultatet er

35 30 32 37 29 31 37 32 31 36
Hva kan vi si om bedriftens mistanke? Stemmer den?

Vi starter med å setter opp disse hypotesene

H0 :µ = 35 Sjokoladeeskene er 35 hg med gitte avvik
H1 :µ < 35 Sjokoladeeskene veier mindre enn 35 hg
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Gjennomsnittet i stikkprøven gir

X̄ =
35 + 30 + 32 + 37 + 29 + 31 + 37 + 32 + 31 + 36

10
= 33

Vi ser at X̄ er mindre enn det som er oppgitt, men er denne forskjellen signifikant? Det kan vi
si noe om ved hypotesetesting. Før vi går videre bestemmer vi oss for å sette signifikansnivå til
5 %. Vi får også oppgitt at vekta er normalfordelt.

Sentralgrenseteoremet forteller at utvalget er normalfordelt med X̄ ∼ N(µ, σ√
n
). Da har vi at

standardfeilen er
σX̄ =

σ√
n
=

3√
10

= 0.949

Vi kan finne sannsynligheten for at vi kan få X̄ = 33 med et verktøy. Figur 3.6 viser hvordan
vi kan benytte Desmos.

Figur 3.6: Sannsynligheten med Desmos

Sannsynligheten for at vi får en gjennomsnittsverdi på X̄ = 33 i en stikkprøve er 1.75 %.
Vi har valgt et siginifikansnivå på 5 %, så konklusjonen blir at vi forkaster nullhypotesen.
Sannsynligheten for en forkastningsfeil blir 1.75 %.

Figur 3.7 viser hvordan vi kan benytte GeoGebra ved å utføre en Z-test av et gjennomsnitt
i sannsynlighetskalkulatoren. Vi fyllet inn opplysningene og GeoGebra regner ut.

Figur 3.7: Hypotesetest med GeoGebra
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Legg merke til at vi må skrive inn standardavviket i populasjonen og at GeoGebra regner ut
standardfeilen SF = σX̄ = σ√

n
= 3√

10
= 0.949

P-verdien forteller oss sannsynligheten for at gjennomsnittet i utvalget, X̄, vil være 33, eller
mindre, gitt at nullhypotesen stemmer. At vi også inkluderer sannsynligheten for at gjennom-
snittet kan være mindre vil øke sannsynligheten for at det inntreffer. Det vil være til støtte for
nullhypotesen og minke sannsynligheten for forkastningsfeil.

3.5 Hypotesetest av sannsynlighet
Vi skal også se på hypotesetesting av sannsynlighet, eller andeler.

Eksempel 8

Etter å ha vært på kasino får James mistanke om at terningene som ble brukt var laget
slik at de ga seksere for ofte. En slik manipulering kan bli gjort ved å flytte tyngdepunktet.
James vil ha hjelp til å undersøke om det er tilfelle.

Hvordan kan vi konkludere med at terningene er fikset eller ikke? Hvis den ikke er fikset kan
vi anta at sannsynligheten for å få en sekser er 1

6
.

Vi setter opp to hypoteser
H0 Nullhypotesen Terningen er ikke manipulert p = 1

6

H1 Alternativ hypotese Terningen er manipulert p > 1
6

Vi vil undersøke om vi kan forkaste nullhypotesen. Det kan vi gjøre om vi greier å skaffe oss
terningen. Da kan vi kaste den og sjekke resultatet. Vi får tak i terningen og kaster den 100
ganger. Resultatet blir 26 seksere. Er det for mange for en ideell terning?

Å kaste terning er et binomisk forsøk. Forventningsverdien i en binomisk fordeling kjenner vi.
Den forteller at vi kan forvente oss å få

E(X) = n · p = 100 · 1
6
= 16.67

Resultatet er langt over det. Det neste vi kan gjøre er å finne ut mer om sannsynligheten. For
å være på den sikre sida finner vi sannsynligheten for å få 26 eller flere seksere

P (X ≥ 26)

Heldigvis vet vi at dette er et binomisk forsøk og regne ut sannsynligheten. Vi gjør det med
GeoGebra og sannsynlighetskalkulatoren. Se figur 3.8.

Vi får at
P (X ≥ 26) = 0.0119

Sannsynligheten for å få 26, eller flere, seksere på 100 kast er altså 0.0119 eller 1.19%. Det er
ikke veldig sannsynlig, men er det såpass liten sannsynlighet at vi kan forkaste nullhypotesen
vår? Vi finner ikke et klart svar på det, men vi kan si noe om hvor sikre vi ønsker å være. Vi
må bestemme et signifikansnivå.

La oss si at vi setter det til 5%. Det betyr at P(påstå juks | han jukser ikke) ≤ 0.05. Vi må
altså finne ut om

P

(
X ≥ 26 | p =

1

6

)
≤ 0.05
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Figur 3.8: Sannsynlighetene i GeoGebra

Vi har funnet at
P

(
X ≥ 26 | p =

1

6

)
= 0.0119

Da har vi at sannsynligheten er mindre enn signifikansnivået og at vi forkaster nullhypotesen
på det grunnlaget.

Vi ser på et eksempel til 1.

Eksempel 9

Et meningsmålingsinstitutt gjennomfører en spørreundersøkelse for et bestemt politisk
parti.
I undersøkelsen blir 1500 tilfeldig valgte personer spurt om de ville ha stemt på partiet
dersom det var valg.
I undersøkelsen svarer 321 personer at de ville ha stemt på partiet. Ved forrige valg stemte
19,8 % av velgerne på partiet.
Bruk det du har lært i statistikk, til å vurdere om partiet har hatt framgang siden forrige
valg. Begrunn resonnementet ditt med beregninger.

Vi lar X være antall personer av de 1500 personene som ville stemt på partiet. Dette er et
binomisk forsøk og X er binomisk fordelt med p = 0.198 og n = 1500.

Hypotesene blir

H0 : p = 0.198 partiet har ikke hatt framgang siden forrige valg
H1 : p > 0.198 partiet har hatt framgang siden forrige valg

1Eksemplet er henta fra eksamen i S2 høsten 2009
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Andel som sier de vil stemme på partiet:
321

1500
= 0.214

I undersøkelsen er det altså 21.4 % som sier at de vil stemme på partiet. Vi må finne ut om det
skiller seg signifikant fra resultatet ved forrige valg. Det gjør vi ved å teste hypotesene våre.

Vi velger et signifikansnivå på 5 % og setter α = 0.05. Da vil sannsynligheten for å forkaste H0

på feil grunnlag være 5 %.

Nå blir spørsmålet: Hva er sannsynligheten for at minst 321 personer i et utvalg på 1500 sier at
de vil stemme på partiet gitt at 19.8 % prosent av befolkningen virkelig stemmer på partiet?

Vi velger å betrakte dette som et binomisk forsøk hvor vi spør om en person stemmer på partiet
eller ikke. Det gjentar vi 1500 ganger.

Sannsynligheten kan vi regne ut

P (X ≥ 321) =
1500∑
x=1

=

(
1500

x

)
· 0.198x · (1− 0.198)1500−x ≈ 0.065

Figur 3.9: Sannsynligheten i GeoGebra

For å forkaste nullhypotesen har vi stilt dette kravet
P (X ≥ 321) | p = 0.198) ≤ 0.05

Resultat ble
P (X ≥ 321) ≈ 0.065

Kravet var at denne sannsynligheten skulle være mindre enn 0.05 for å forkaste nullhypotesen.
Vi har ikke grunnlag for å si at partiet har gått fram siden forrige valg. Vi beholder nullhypotesen
med det valgte signifikansnivået.

Det fins en kalkulator i GeoGebra som kan benyttes for hypotesetesting av andel. Figur 3.10
viser hvordan vi kan skrive inn nullhypotesen og alternativ hypotese for å få ut en P-verdi. Vi
må velge Z-test av andel og GeoGebra benytter en tilnærma normalfordeling for å regne ut.
Det gjør at vi ikke får nøyaktig samme sannsynlighet som ved utregning. Fordelen med å regne
ut i en binomisk sannsynlighetsmodell er at vi både får et mer nøyaktig svar og at det egentlig
er enklere.
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Figur 3.10: Hypotesetesting i GeoGebra
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