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Oppsummering av det vi har gjort i statistikk. Obs! Her kan det veere noen feil her og der.
Gi meg beskjed hvis du finner noe som er uklart. Dokumentet vil oppdateres etterhvert med
korreksjoner, sa se pa datoen pa framsida.
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1 Sannsynlighetsfordelinger

1.1 Hva er en sannsynlighetsfordeling?

Vi kan ikke si noe om utfallet av et stokastisk forsgk. Vi vet, som regel, utfallsrommet, men
akkurat hvilket utfall er overlatt til tilfeldighetene. Det vi ofte vet noe om er sannsynligheten
om hvordan utfallene vil fordele seg. Vi vet sannsynlighetsfordelingen.

Et problem vi kjenner fra historien er sannsynligheten for utfallene nar vi kaster to mynter!.
Utfallsrommet vil veere U = {MM, MK, KK}, hvor M star for «mynt» og K for «krony». Vi
kan skrive om slik at vi ser pa antall «kron». Det gir denne tabellen

T 0 1 2

111
4 2 4

Denne tabellen gir sannsynlighetsfordelingen for den stokastiske variabelen X. Vi kan ogsa
tegne dette som et histogram.

0.25

Dette gir oss en grafisk framstilling av sannsynlighetsfordelingen av utfallene. Nar vi na vet
sannsynlighetsfordelingen vil det veere mulig a sla opp i den for a finne sannsynlighetene. Ta-
bellen gir oss en sammenheng mellom = og sannsynligheten slik at P(X = x) = p(x). Sannsyn-

ligheten kan uttrykkes som en funksjon av z. I dette tilfellet har vi at p(0) = i, p(1) = 1 og

1 2
p(2) = 5.
Sannsynlighetsfordelinger kan veere av to typer

diskrete nar den stokastiske variabelen er diskret. Det betyr at variabelen bare kan veere
verdier i en mengde av enkeltelementer. Terningkast og myntkast er eksempler

kontinuerlige nar den stokastiske variabelen er kontinuerlig.

!Dette er kjent som diskusjonen mellom Laplace og d’Alembert



1.2 Uniform fordeling

Kaster vi en ideell terning vil det veaere like sannsynlig hvilken side den lander pa. Nar alle
utfallene er like sannsynlige har vi en uniform sannsynlighetsfordeling. Det samme gjelder
myntkast med en ideell mynt. Erstatter vi utfallene «mynt» og «kron» med 0 og 1 far vi

v 1 2 3 45 6
PX=2) § § 5§ 5 5 &

Tegner vi opp denne sannsynlighetsfordelingen far vi dette histogrammet.

0.17 |- :

Alle sannsynlighetene er like store for alle utfallene. De er uniforme og vi har at P(X = z) =

p(z) = % for alle verdier av x. Legg ogsa merke til at summen av alle sannsynlighetene er lik 1

og tilsvarer arealet i histogrammet.
Forventningsverdi

Hva er forventningsverdien nar vi kaster en terning?” Hvor mange gyne kan vi forvente a fa om
vi kaster terningen mange ganger? Svaret kan vi finne ved a gjennomfgre forsgket og fordele
antall gyne pa antall kast. Vi vet at det er like stor sannsynlighet for at terningen lander pa
alle sidene. Da kan vi finne svaret slik

21
-(1+2+3+4+5+6):€:3.5

Na er det ikke mulig & fa forventningsverdien i noen av kastene, men den forteller oss hvor
mange gyne vi vil fa i gjennomsnitt. Med symboler blir utregningen
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E(X)=p=)Y z-P(X=1x)=35

=1

E(X) star for Ezpected value eller forventningsverdi pa norsk. Summetegnet gir oss en kort
mate & skrive alle summene over. Startverdien for x er x = 1 og sluttverdien z = 6 — akkurat
som i summen over.

Dette kan vi ogsa simulere med et programmering hvor vi kaster mange ganger og finner
gjennomsnittet av resultatene.

Programkode 1.1: Forventningsverdi ved uniform sannsynlighet

Et resultat ble

8,828

1.3 Binomisk fordeling

Et binomisk forsgk, eller Bernoulli-forsgk?, kjennetegnes av to utfall, ssamme sannsynlighet i
hvert forsgk og uavhengighet mellom forsgkene. Et myntkast kan veere et eksempel pa det.

Kaster vi en perfekt mynt seks ganger kan vi finne sannsynligheten antall «kron» pa denne
maten

P(X =z) = (Z) (1= )

hvor n er antall forsgk, x er antall «kron» og p er sannsynligheten for a oppna det. Legg merke
til at vi her har en funksjon som gir oss sannsynlighetene: P(X = z) = p(x).

La oss si at vi kaster mynten seks ganger n = 6 og vi antar at sannsynligheten for & oppna
«kron» er like stor som & oppna «mynt», p = % Da gjgr vi et binomisk forsgk og sannsynlig-
hetsfordelingen vil veere en binomisk fordeling. Na kan vi tegne sannsynlighetsfordelingen ved
a benytte GeoGebra. Figur 1.1 viser resultatet.

GeoGebra gir oss bade et histogram og en tabell for de forskjellige sannsynlighetene. I dette
tilfellet ser vi at verdiene blir symmetriske, men det er ikke alltid tilfelle.

2Oppkalt etter Jacob Bernoulli (1655 - 1705) som var en kjent matematiker fra en hel familie med matema-
tikere. Han er bl. a. kjent for de store talls lov, som han skrev om i boka Ars Conjectandi.
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Figur 1.1: Binomisk sannsynlighetsfordeling med GeoGebra

I dette tilfellet sier vi at sannsynlighetene er binomisk fordelt med n = 6 og p = % Det skrives

ofte kortere som at X er bin (6, %) eller b (6, %)

Binomisk fordeling

I en binomisk forsgksserie vil den stokastiske variabelen X veere binomisk fordelt. Vi
finner sannsynligheten for at X inntreffer & ganger ved

n

P(X = k) = </<;) 1t

X er binomisk fordelt med n og p og kan skrives slik: X ~ bin (n,p) eller X ~ b(n,p)

lop =0.2
0.2 Jop=0.5

lip=0.28
0.1} :
0.1} :
0.0 - 1 :

0 10 20 30 40 50

Forventningsverdi og varians i en binomisk fordeling

Vi kan finne bade gjennomsnitt og standardavvik i sannsynlighetsfordelinger pa samme mate
som vi benytter for relative frekvenser i datamaterialer.



Gjennomsnittet finner vi ved
p=>y z-p(x)
=0

For & regne det ut er det greit a sette opp denne tabellen (den siste kolonna er med til seinere
bruk, sa se pa de forste).

r PX=z2) z-PX=2) (r—p?* PX=1)
0 0.01563 0 0.14063

1 0.09375 0.09375 0.37500

2 0.23438 0.46875 0.23438

3 0.31250 0.93750 0

4 0.23438 0.93750 0.23438

) 0.09375 0.46875 0.37500

6 0.01563 0.09375 0.14063

sum 1 3 1.5

Da har vi at p = 3. Egentlig kunne vi spart oss all denne utregningen for GeoGebra har allerede
funnet det ut for oss. Se figur 1.1. Na er dette resultatet ogsa noe vi kan tenke oss til. I hvert
delforsgk — hver gang vi kaster mynten - er sannsynligheten for a fa «kron», p = % Det er dette
delforsgket vi gjentar seks ganger. Da kan vi forvente at vi far 6 - % = 3 «kron» nar vi kaster
mynten seks ganger. Vi ser at utregningene stemmer med det. A bevise at disse utregningene
gir akkurat det resultatet kan vi ogsa gjore, men vi tar ikke det med her.

Vi kan altsa forvente oss tre «kron» i dette tilfellet. Vi sier at forventningsverdien er tre. Denne
verdien kan vi regne ut for vi kaster mynter eller utfgrer andre stokastiske forsgk. « Gjennom-
snitt» er et ord som viser til noe som har skjedd. Derfor bruker vi heller «forventningsverdi».
Ofte skrives det da som Ezpected value, E(X), i stedet for . I en binomisk fordeling har vi at
forventningsverdien er

Variansen finner vi ved

Var(X) = o? = Z(x —p)?* P(X =1)

Ser vi tilbake pa tabellen ser vi at det i vart tilfelle blir 02 = 1.5. Da har vi at 0 = V1.5 =
1.224744871391589. Det er det samme som GeoGebra fant for oss i gverst til venstre i figur 1.1.

I en binomisk fordeling kan vi vise at variansen blir
Var(X)=0*=n-p-(1—p)
Her kan vi se at det vi fant stemmer ved a regne ut

Ly L3

2 2/ 7 9

Forventningsverdi og varians

Hvis den stokastiske variabelen (X er bin(n,p) har vi at

Var(X) =0*=6




Oppgave 1

Eksperimenter med binomisk fordeling i sannsynlighetskalkulatoren i GeoGebra og se
hvordan sannsynlighetsfordelingene endrer seg.

Python

Y*xpxkxk (1 — p)*xx(n-x)

Programkode 1.2: Binomisk fordeling

Binomisk fordeling
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Eksemplet over kunne veert gjort enklere ved at vi benytter modulen scipy. Her finner
vi funksjonen binom.pmf(k,N,p), den binomiske tetthetsfunksjonen (probability mass
function) som regner ut P(X = k) nar vi utforer N forsgk med sannsynligheten p.




Programkode 1.3 viser hvordan vi kan gjore det. Resultatet blir samme tabell som den
vi fikk i programkode 1.2.

N O T s W N

Programkode 1.3: Binomisk fordeling

1.4 Hypergeometrisk fordeling

Hypergeometrisk forsgk kjennetegnes ved trekking uten tilbakelegging.

Et eksempel er at vi trekker fra ei urne med ti kuler hvor fire er grgnne. La oss si at vi trekker
tre kuler uten a legge tilbake. Da har vi muligheten for a fa ingen, ei, to eller tre grgnne kuler. Vi
definerer den stokastiske variabelen X som «antall grgnne kuler». Sannsynlighetene bestemmes

av en hypergeomtrisk fordeling av sannsynlighetene. Vi har veert innom hypergeometriske forsgk
og kan regne de forskjellige sannsynlighetene ved

() (=)
P(X=g)=/L N7
n
(7
her er n det totale antall kuler, s er antall spesielle og r er antallet i utvalget vi gjor. Sannsyn-
ligheten for a trekke to grenne kuler blir da:

ey G2 G)6)
(7

10 10

3
Denne sannsynligheten, og fordelingen for alle de andre sannsynlighetene, kan vi fa& ved hjelp
av GeoGebra og sannsynlighetskalkulatoren. Figur 1.2 viser fordelingen bade som tabell og

histogram.

Eksemplet gir denne sannsynlighetsfordelingen

r 0 1 3
PX=1x) § 5 i 3%
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105
203
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Figur 1.2: Hypergeometrisk GeoGebra

| Python

7

Det samme er ogsa mulig i Python. Da ma vi importere modulen scipy og benytte
funksjonen hypergeom.pmf(k, n , s, r). Her er k det samme som x i utregninga over.
Programkode 1.4 viser hvordan vi kan fa skrevet ut hele tabellen.

Programkode 1.4: Hypergeometrisk fordeling

Vi ender opp med dette resultatet

0.16666666666666646
0.4999999999999995

0.30000000000000016
0.03333333333333332

Forventningsverdi og varians

Forventningsverdien til en stokastisk variabel er gitt ved

p=Ez) = Zmi.P(X = ;)
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I eksemplet vart far vi

u:E(:E):0-é+1-%+2-%+3-3—10:1—§:1.2
Variansen kan vi finne ved
o? =Var(X) :zn:(xi—,u)z-P(X::m')
i=1
Regner vi ut far vi
02:Var(X):(0—%)2-é—l—(l—1—3)2-%+(2—1—3)2-%+(3—%)2~%:%:0.56

Standardavviket finner vi ved

o =+/Var(X) = v0.56 = 0.74833147735479

Som vi kan se av figur 1.2 har GeoGebra allerede funnet disse verdiene for oss.

I en hypergeometrisk fordeling fins det en annen mate & finne forventningsverdi og varians pa.
Vi har da at

s
=FEX)=r-—
p=EX)=r -
s n-r s ( s>
—Var(X) = 2122
o ar(X) 1T -
Det gir
4 12
=FX)=3-—=—=12
p=BX)=3-95= 1
10 -3 4 4 14
2
o =VarlX) = =731 ( 10) 25
Hypergeometrisk fordeling
Vi har n elementer hvor s er spesielle. Det trekkes et utvalg av r elementer uten til-
bakelegging. La X veere antall spesielle © utvalget. Da er sannsynlighetsfordelingen gitt
ved
o)
x r—z
P(X =2x)=
(X =2) >
r
Forventningsverdi
s
=FEX)=r-—
p=EX)=r —
Varians
n—r s s
o =Var(X) = re— <1——>
n—1 n n




1.5 Normalfordeling

Gjennom historien har vitenskapsmenn oppdaget at malinger i naturen fglger en lovmessighet.
De fordeler seg pa samme mate. Noen verdier er det mange av og de andre fordeler seg pa hver
side av disse. Settes de opp i hyppighetsdiagram vil de fglge en kurve som er ganske symmetrisk
og fin. Vi kaller kurven for en Gauss-kurve, oppkalt etter den store matematikeren, fysikeren
og astronomen Carl Friedrich Gauss (1777 - 1855). Gauss-kurven viser en representasjon av
den den matematiske modellen som kalles Gauss-modellen. Nar sannsynligheter er fordelt pa
samme mate sier vi at vi har en normalfordeling eller en Gaussfordeling.

Vi har sett pa den binomiske fordelinga. Det a regne ut sannsynligheter for store verdier av n
var krevende for i tida. Abraham de Moivre® tok i bruk et nytt vdpen: funksjonsanalyse eller
kalkulus. Han fant at den binomiske fordelinga nar p = 0.5 var omtrent lik en kontinuerlig
tetthetsfunksjon som ser slik ut:

1 _=w? 1

- e 2.52

o -\2T :O'-\/27T‘

INIE
—
8
all
=
SN—
v

e

fz) =

Na ser den kanskje ikke sa enkel ut, her er det mange symboler, men bade e og 7w er konstanter
og vet vi p og o, sa har vi en funksjon med variabelen x. Vi ser at det er en kontinuerlig
sannsynlighetsmodell. Funksjonen gjorde det enklere & gjore beregninger som omtrent tilsvarte
en binomisk fordeling med p = 0.5. I dag har vi andre verktgy som gjgr det enklere a regne
med alle sannsynlighetsfordelinger. Denne funksjonen beskriver normalfordelinga.

Definisjon 1 Normalfordeling

En stokastisk variabel X er normalfordelt med forventningsverdi p og standardavvik o
hvis sannsynlighetstettheten er

1 _(@—p)?
- e 2.52

For a skrive at en stokastisk variabel X er normalfordelt med en forventningsverdi u og
standardavvik o skriver vi: X ~ Normal(u, o) eller bare X ~ N(u,0).

Noen velger ogsé & skrive X ~ Normal(u,c?) eller X ~ N(u,0?). Bare vi passer pa spiller
ikke det noen rolle om det er standardavvik eller variansen som benyttes i skrivematen.

Legg merke til at vi at X er en kontinuerlig variabel og ikke en diskret variabel.

Figur 1.3 viser to grafer med samme p, men forskjellig 0. Her har f; en stor o og fs en liten.

Oppgave 2

Bruk et digitalt verktgy for & tegne grafer som viser normalfordeling. Bade GeoGebra og
Desmos egner seg godt. Eksperimenter med forskjellige verdier av i og o.

Prgver vi med forskjellige forventningsverdier og standardavvik vil vi se at grafene endrer
seg, men bevarer formen som ei klokke. Forventningsverdien flytter grafen langs x-aksen og
standardavviket avgjer hvor hgy og brei den er. Egenskapene kan beskrives som i figur 1.4
hvor vi ser at vi far et toppunkt for p. Grafen er symmetrisk om linja for x = p. Gar vi

3 Abraham de Moivre (1667 - 1754) var en fransk matematiker. Wikipedia: Abraham de Moivre
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f2

S

X

Figur 1.3: Typisk normalfordeling med samme p og forskjellig o

ett standardavvik til hver side for linja finner vi vendepunktene for grafen. Pa figur 1.4 er de
markert med A og C.

W—o K nw+o

Figur 1.4: Egenskaper ved grafen til normalfordeling

1.6 Standardnormalfordeling

Hvis en normalfordeling har forventningsverdi u = 0 og standardavvik ¢ = 1 sier vi at den er
standardnormalfordelt. Tidligere var en standardnormalfordeling god & ha siden det gjorde det
mulig a sla opp i tabeller for a fa utregningene. Har vi allerede en normalfordeling er det ikke
noe problem a gjgre den om til en standardnormalfordeling. Det er bare a regne litt om. Har
vi en stokastisk variabel X som er normalfordelt: X ~ Normal(u, o) kan vi finne en stokastisk
variabel Z som er standardnormalfordelt ved

13



Z vil na vaere standardnormalfordelt med forventningsverdi p = 0 og standardavvik o = 1. Vi
skriver da

Z ~ Normal(0,1)
1.7 Sannsynligheter i normalfordelinga

Ser vi pa arealet under kurven vil det gi oss sannsynlighetene. Normalfordelinga er symmetrisk
og inneholder noen sammenhenger som er interessante. Figur 1.5 viser hvordan sannsynlighetene
fordeler seg ut fra standardavvikene i en standardnormalfordeling.

68.2 %

95.4 %

99.7 %

Frekvens

21 % 2.1 %
 13.6 %  341% 341 %  13.6 %o

—4 -3 —2 —1 0 1 2 3 4
Standardnormalfordeling

Figur 1.5: Sannsynlighet i normalfordelinga

Figur 1.5 viser en standardnormalfordeling, men gjelder for alle normalfordelinger. Her kan
vi se at 95.4 % av arealet under kurven er mellom ett standardavvik under og over forvent-
ningsverdien. Gar vi to standardavvik i hver retning fra forventningsverdien, vil 68.2 % av hele
arealet veere med. Hva betyr det? Vet vi forventningsverdi og standardavvik kan vi si noe om
grensene for at vi at det er 95.4 % eller 68.2 % sannsynlig for at verdiene er med. Et eksempel
kan sikkert klargjore det bedre.

Kroppshgydene for norske menn er normalfordelt med p = 179 cm og o = 6 cm. Vi trekker
ut en tilfeldig norsk mann. Hvilken kroppshgyde kan vi si med 95.4 % sannsynlighet at
denne personen har? Hva med 68.2 % sannsynlighet?

Vi benytter X for kroppshgyden og vet at X ~ N(179,6). Ut fra egenskapene til normalforde-
linga har vi da at grensene blir

sannsynlighet nedre grense @gvre grense
0.954 179 -2-6 =167 179+2-6=191
0.682 179 —-1-6=173 179+1-6 =185

Sannsynligheten er 0.954 for at kroppshgyden er i intervallet [167, 191].
Sannsynligheten er 0.682 for at kroppshgyden er i intervallet [173,185].

Det samme kan vi skrive sann
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P(167 < X < 191) = 0.954
P(173 < X < 185) = 0.682

Vi kan regne ut sannsynlighetene for en stokastisk variabel X som er X ~ N(u,0) ved a
benytte integrasjon

1 b 1(t—p)?
Pla< X <b) = / e (%) at
o-V2rmJ,
Dette integralet ma vi ha hjelp for & fa regna ut siden det ikke kan beregnes eksakt. Heldigvis
har vi digitale verktgy til slikt. Figur 1.6 viser bruk av Desmos og figur 1.7 viser GeoGebra.

+ Ly & «

0-06
0:06

i’ H

PN normaldist(179,6) +

Mean, Standard Deviation

/ Find Cumulative Probability (CDF)
Min: 167 Max: 191

® = 0.954499736104

Figur 1.6: Desmos: Normalfordeling

p=1790=6
150 155 160 165 170 175 180 185 190 195 200
_/~ Normalfordeling v op 179 g 6

] IL [ e <X< 185 )= 0.6827

Figur 1.7: GeoGebra

Spredningsintervall Vi har sett pa hvor sikkert det er at en stokastisk variabel er innafor
at gitt intervall. Da sier vi at vi angir et spredningsintervall. Vi fant at det er 95.4 % sikkert at
X har en verdi i intervallet u + 2 - 0. Arealet avgrensa av disse verdiene utgjor 95.4 % av hele
arealet, slik figur 1.9 viser. @nsker vi & veere 99 % sikre ma vi utvide arealet til p 4 2.58 - 0.
Vil vi veere 99.7 % sikre blir intervallet u + 3 - 0. Vi kan observere at verdien vi multipliserer
standardavviket med avgjer sannsynligheten. Det er en sammenheng mellom disse to verdiene.

Hva blir intervallet om vi gnsker en sannsynligheten pa akkurat 95 % for at kroppshgyden er
i intervallet? Vi vet at intervallet ma veere omtrent [167,191], s vi kan eksperimentere ved a

15



pu=1790=6

150 155 160 165 170 175 180 185 190 195 200

/~ Normalfordeling v op 179 G 6
] T [ P 16724  <x< 19076 )= 095

Figur 1.8: GeoGebra

kutte litt pa det intervallet. Litt eksperimentering gjor at vi kan komme fram til intervallet
[167.24,190.76]. Figur 1.8 viser det.

Da kan vi finne ut hvor langt vi flytter oss til hver side av linja = = p. Vi far 179—167.24 = 11.76
0g 190.76 — 179 = 11.76. Hvor mange standardavvik blir det? Jo, 11.76/6 = 1.96. Denne verdien
vil bli viktig for oss. Det viser seg at dette gjelder generelt.

P(p—196-0< X <pu+196-0) =095

Frekvens

95%

pw—196-0 H w+1.96-0

Figur 1.9: spredningsintervall for 95 % sannsynlighet

Figur 1.9 viser arealet som gir 95 % sannsynlighet. Den delen av totalarealet som ikke er med
utgjer da 5 % og ligger likt fordelt med 2.5 % pa hver side.

Onsker vi et intervall med 99 % sannsynlighet far vi dette intervallet

P(p—2576-0 < X < p+2.576 - 0) = 0.99

Vanligvis benytter vi disse verdiene

16



z Pu—z-0<X<pu+z-0)

1.645 0.9
1.960 0.95
2.326 0.98
2.576 0.99

Disse verdiene kan vi finne ved & se pa standardnormalfordelinga. Kaller vi verdiene for z har
vi dette intervallet

p—z-0<X<u+z-o (1.1)
Vi kan fa alle normalfordelinger standardnormalfordelt ved & sette Z = % Da har vi

X —p
g

— X =0-Z+u

Setter vi det inn i (1.1) far vi

p—z-0<X<pu+z-0
p—z-o<loZ+pu<put+z-o
—2 <7<z

Verdiene vi fant for z ved & eksperimentere kan vi enkelt finne ved regning eller i tabeller. Siden
vi ikke har behov for sa mange kan vi ga ut fra denne tabellen

z P(—2<Z <2)

1.645 0.9

1.960 0.95

2.326 0.98

2.576 0.99
Z
¢b)
>
i
&
=

/(\,
0 o
Arealet o tabell

« Za

0.100 1.282

0.050 1.645

0.025 1.960
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Hvorfor er denne sa viktig?

Normafordelinga har fatt en spesiell plass siden den forekommer sa ofte og i sd& mange sam-
menhenger. Tidligere var det ogsa sann at andre fordelinger var vanskelige & regne pa, men
for normalfordelinga fantes det tabeller som gjorde beregningene mye enklere. Na har vi andre
verktgy som gjgr det enklere & regne med all slags sannsynlighetsfordelinger, men det kan veaere
greit a ta med seg bade binomisk- og hypergeometriske fordelinger vil kunne veere tilnserma
normalfordelt under disse betingelsene:

 binomisk fordeling nar np > 5 og n(1 —p) > 5

 hypergeometrisk nar rN >>n og np > 5ogn(l —p) >5. Daer P = %

Normalfordeling

Normalfordelingsfunksjonen er gitt ved:

1 _(@—w? 1
- e 2.02 =S e

_a-\/27r o- 27'("

Her er p forventningsverdien og o standardavviket til fordelinga.
Hvis X er normalfordelt med u og 0 og kan skrives slik: X ~ N(u,0?) eller X ~ N(u,0)

[SIES
—~
8
Qll
=
~—
S

1.8 Andre fordelinger

Det fins mange sannsynlighetsfordelinger. De som er presentert sa langt er vanligst & ha med i
skolematematikken, men det kan veere greit a veere kjent med noen av de andre ogsa.

1.8.1 Geometrisk fordeling

Den geometriske fordelingen knytter seg til binomiske forsgksserier. La oss si at vi kaster terning
igjen og registrerer om vi far en sekser eller ikke. Det kjenner vi na som et binomisk forsgk, men
na stiller vi et annet spgrsmal. Hva er sannsynligheten for at vi far en sekser i kast nummer x?

Vi kaster terningen og er bare interessert i a finne sannsynligheten for a fa sekser i kast «

kast 1 2 3 4 5 -+ X
sekser Nei Nei Nei Nei Nei --- Ja

Dette kan vi regne ut. Vi far
(1-p-1-p)-1=p)-A=p)-L=p)-—p=(1-—p)* " -p=p-(1—p*"

Dette kan vi skrive som
P(X =z)=p-(1-p)""

Hvor mange ganger ma vi kaste terningen fgr en sekser dukker opp?
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Geometrisk fordeling

X er geomterisk fordelt med sannsynligheten p

PX=z)=p-(1-p)*"

Forventningsverdi og varians
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2 Estimering og konfidensintervall

2.1 Estimering — Hva er det?

Estimering er a prgve a finne en sannsynlig mengde eller stgrrelse for et eller annet. I statistikken
ma vi gjgre noe mer enn a bare tippe. Vi ma forsgke & finne estimatet pa en sa god mate som
mulig. Hvordan vi gjgr det skal vi na se litt pa.

Oppgave 3

Finn eksempler pa estimat og estimeringer som bade du gjor deg og fra nyhetene. Hvordan
har en kommet fram til estimatene?

Punktestimat og intervallestimat

Sperreunderspgkelser er populeert. Et utvalg av personer, respondenter, gir svarene sine og sa vil
de som har laget undersgkelsen kunne telle opp svarene. Det kan veere at 37 % av respondentene
forteller at de skal stemme pa en bestemt kandidat i et valg. Det er da gjort et punktestimat.
Hva det virkelige resultatet blir vet vi ikke for valget er over. Her er noen definisjoner det kan
veere greit a ha med seg.

Definisjon 2 Estimator

En estimator er en stokastisk variabel som kan benyttes for a gi et estimat for den verdien
vi prover a ansla.

Definisjon 3 Punktestimat

Verdien til en estimator kalles for et punktestimat.

For a komme fram til et punktestimat er det av flere grunner ikke mulig a undersgke hva alle
mener. Det kan bli for dyrt, praktisk umulig, eller det tar for lang tid. Forskerne plukker derfor
ut et utvalg av hele populasjonen og undersgker utvalget.

Basert pa utvalget blir det gjort et forsgk pa a beskrive egenskaper ved hele populasjonen: Et
estimat. Her er det viktig & legge merke til at en klar feilkilde kan veere at utvalget ikke er
representativt for hele populasjonen.

Kanskje gnsker den som gjgr en undersgkelse en grundigere vurdering av punktestimatet? Med
statistikken som verktgy er det mulig a si noe om hvor sikkert dette resultatet er. Statistikerne
vil for eksempel kunne si at de er 95 % sikre pa at kandidaten far mellom 35% og 39 % av
stemmene. Da har de gitt et intervallestimat med 95 % sannsynlighet.

Vi har sett pa sansynlighetsmodeller hvor vi har en kjent forventningsverdi og et kjent stan-
dardavvik. Ofte er det sann at vi ikke kjenner disse verdiene og gnsker & finne dem. Da ma vi
estimere dem. I punktestimering anslar vi en verdi. Et konfidensintervall gir et intervall hvor
vi med en viss sikkerhet kan si at verdien ligger.
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Populasjon
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Figur 2.1: Utvalg

En hatt gjor forskjellen

Det kan benyttes forskjellige symboler for estimatorer. En vanlig symbolbruk er & merke med
en hatt.

populasjonen estimator

standardavvik o o
varians o? o
forventingsverdi L il
sannsynlighet P D

Hvor sikre kan vi vaere?

Ved & utfore en estimering finner vi et estimat. Det kan vaere en valgprognose hvor vi finner en
sannsynlighet for at en person skal stemme pa et bestemt parti, eller det kan veere et estimat
for en gjennomsnittslengde i en dyrepopulasjon. Uansett hva det er kan vi ikke vaere helt sikre
pa estimatet vi kommer fram til. Det vi kan si noe om er hvor usikre vi er. Har vi en estimator,
ft, for forventningsverdien, p, i en populasjon vil den ha en sannsynlighetsfordeling. Som regel
kan vi argumentere for at /i er normalfordelt eller tilnserma normalfordelt. Med den antakelsen,
og det vi vet om normalfordeling, kan vi uttale oss om hvor sikre vi kan veere pa estimatet vart.

Standardavviket til estimatoren kaller vi standardfeilen og vi skriver det som SE(ji). Figur 2.2
viser intervallet hvor vi kan si at /i ligger i med 95 % sikkerhet.

Vi kaller dette for et konfidensintervall og kan skrive det som intervallet:
[p—1.96-SE(n) , p+1.96-SE(L)]
Mer generelt
[i—=z-SE(p) , p+z- SE(f)

hvor z er gitt i denne tabellen
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1 —1.96- SE(Q) H 1+ 1.96 - SE(j)

Figur 2.2: Konfidensintervall med 95 % sannsynlighet

z Sannsynlighet

1.645 0.9
1.960 0.95
2.326 0.98
2.576 0.99

Verdiene er gitt ut fra normalfordelingen.

Konfidensintervallet gir oss et intervall hvor vi med en viss sikkerhet kan si at estimatet befinner
seg. Det vil bety at ogsa konfidensintervallet vil veere stokastisk. Gjor vi flere undersgkelser vil
vi kunne finne andre estimat og andre standardfeil slik at konfidensintervallet endrer seg. Figur
2.9 viser flere beregna konfidensintervall og hvordan den ukjente verdien, som skal estimeres,
vil ligge innafor konfidensintervallene i de aller fleste tilfellene.

“‘||H|‘H‘HH|““|‘ ukjent verdi

Figur 2.3: Flere konfidensintervaller
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Konfidensintervall

Hvis vi har en estimator € som er normalfordelt har den konfidensintervallet
0—z-SE®) , 0+z-SE(9)]

Verdien av z bestemmer bredden av konfidensintervallet ved

z Sannsynlighet

1.645 0.9
1.960 0.95
2.326 0.98
2.576 0.99

2.2 Estimering av standardavvik i en populasjon

Som regel kjenner vi ikke standardavvik i en populasjon, men ofte krever videre utforsking at vi
vet noe om spredningen i populasjonen. Da ma vi prgve a finne et estimat for standardavviket
o eller variansen o2. Spgrsmalet blir hvordan vi kan gjgre det. Kan vi ikke undersgke hele
populasjonen blir svaret at vi ma ta noen stikkprgver.

Et eksempel: Kroppshgyder

Vi ser pa et eksempel hvor vi har ei liste med hgydene til 200 gutter pa en videregaende skole.

171174 167 187 174 169 182 180 186 177 178 190 180 176 183 180 169 187 170 181
178 175 181 183 184 179 195 176 176 179 190 165 178 182 179 186 188 170 191 183
179 188 178 177 179 175 186 184 187 174 171 181 171 189 183 174 193 192 181 184
177 194 185 180 173 185 189 189 172 185 180 185 182 173 172 186 177 175 176 184
191 182 172 183 175 184 166 178 176 180 181 188 177 182 168 173 180 181 188 177
182 168 173 182 180 186 177 178 190 180 176 174 167 187 174 169 182 180 186 177
178 171 174 167 187 174 169 182 180 195 176 176 179 190 165 178 182 179 186 188
170 191 183 179 175 186 184 187 174 171 181 171 189 183 174 174 169 182 180 186
177178 171 174 167 187 174 175 176 184 191 182 172 183 175 184 166 178 176 180
181 169 178 194 175 184 166 178 176 180 172 185 164 191 178 176 180 164 179 181

Verdiene er delt i et regneark pa denne adressen : https://bit.ly/3D8UFif og som ei fil her
https://bit.ly/3NhEK5x.

Na kjenner vi hele populasjonen og vi kan finne de statistiske verdiene vi vil. Enten vi gjor det
for hand, eller benytter et verktgy, skal vi fa disse verdiene
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https://drive.google.com/file/d/1Y3Rku2HV9xLkG_eF-tgSosBDsK-sA9Pj/view?usp=sharing

Python

Python kan gjore dette for oss. Jeg har alle hgydene, separert med et semikolon, i ei
fil og leser den inn. Maten jeg leser inn pa gjgr at hgydene legges inn i en matrise, eller
array, sa jeg ma konvertere til den til ei liste.

Etter at vi har fatt hgydene inn i ei liste kan vi benytte kommandoen mean til & finne
gjennomsnittet og kommandoen pstdev til & finne 0. Vi far de samme verdiene som med
andre verktgy.

Programkode 2.1 benytter modulen statistics for a finne de statistiske verdiene. Al-
ternative moduler ma benyttes hvis en benytter versjoner for 3.8.

=~ W N

0 N S Ot

10
11

Programkode 2.1: Statistiske verdier

Gjennomsnitt er: 179.2
Standardavvik er: 6.84324484437025

Da har vi fasiten! Vi kjenner bade p og o i populasjonen. Det er vanligvis verdiene vi er ute
etter a estimere. Na later vi som om vi ikke kjenner noen av dem og forsgker a finne et estimat
for o.

N& kan vi ta noen stikkprgver og for at det ikke skal bli for mye a holde styr pa tar vi ti
stikkprgver med ti verdier i hver. Sa fa i hver stikkprgve, og sa fa stikkprgver, er bare valgt for
at det skal veere mulig & vise utregningene. I praksis bgr vi ta med sa mange som mulig i hver
stikkprgve og gjerne ta sa mange stikkprgver som vi kan.

Et mulig resultat kan du se i tabellen hvor gjennomsnittet i hver stikkprgve er funnet.
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utvalg

—_

174 182 168 188 182 186 180 179 177 184
177172 184 183 172 191 171 183 177 179
180 183 174 194 177 175 184 174 173 195
181 164 176 166 182 178 186 180 174 165
185 180 184 165 176 180 187 181 169 174
166 180 182 175 191 177 181 178 191 179
187 181 183 175 173 176 183 180 184 184
195 184 178 190 178 175 184 174 175 193
191 189 171 181 182 182 180 173 174 182
184 181 176 165 179 167 177 171 178 186

© 00 ~J O T W N

—_
(@)

Vi kan se naermere pa utvalg 1 og finne gjennomsnittshgyde og standardavvik i det.

Gjennomsnittshgyden
% 174 + 182 + 168 + 188 + 182 + 186 + 180 + 179 + 177 + 184 180.0
B 10 T
Standardavviket i utvalg 1 finner vi ved
o2 = > o(xi — X)?
n
(174 —180.0)* + (182 — 180.0)* + ... (177 — 180.0)* 4 (184 — 180.0)?
N 10
_ 314
10

o= \/% = 5.60357029044876 ~ 5.60

Da har vi har et estimat for ¢ i populasjonen. Som vi ser skiller det seg en del fra det vi na vet
er fasiten.

Na kan statistikerne fortelle oss at vi bgr gjgre en liten justering nar vi skal estimere ut fra et
slikt utvalg. Vi bor ikke dele pa n, men justere litt ved a heller dele pa n — 1. Vi prgver det og
bruker s for denne maten a regne pa.

o Y@= X)
n—1
(174 —180.0)% + (182 — 180.0)? + ... (177 — 180.0)* + (184 — 180.0)>
N 9
314
9
314
s=\5 = 5.90668171555645 ~ 5.91

Ofte vil vi finne o,_; brukt for denne verdien.
Med denne justeringen ser vi at svaret kom noe naermere det vi vet er fasiten.

La oss gjore det for alle stikkprgvene og se hva som skjer
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utvalg

S =0p-1 Op

© 00 ~J O Uk Wi+

—_
e}

174 182 168 188 182 186 180 179 177 184
177172 184 183 172 191 171 183 177 179
180 183 174 194 177 175 184 174 173 195
181 164 176 166 182 178 186 180 174 165
185 180 184 165 176 180 187 181 169 174
166 180 182 175 191 177 181 178 191 179
187 181 183 175 173 176 183 180 184 184
195 184 178 190 178 175 184 174 175 193
191 189 171 181 182 182 180 173 174 182
184 181 176 165 179 167 177 171 178 186

snitt

6.84 6.49

I tabellen er det regnet ut

| Python

standardavvik ved a dele pa henholdsvis n — 1 og n. Gjennomsnittet
av alle disse standardavvikene viser at vi far et meget godt estimat. Gjennomsnittet av alle
standardavvikene beregnet med n — 1 gir § = 6.84 og det er jo akkurat det standardavviket
som er i populasjonen. Perfekt estimat! Samtidig ser vi at gjennomsnittet av standardavvikene
beregna pa vanlig mate ikke gir et like godt estimat. Radet fra statistikken ser ut til & veere godt.
Vi ber benytte s for & finne et forventningsrett estimat for standardavviket i poplulasjonen.

15

19

Vi kan la Python gjgre det samme for oss.

Programkode 2.2: Estimering med Python
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Utvalg s sigma
1 5.779 6.092
2 5.621 5.925
3 3.494 3.683
4 8.987 9.473
5 6.655 7.015
6 9.421 9.931
7 6.135 6.467
8 6.715 7.078
9 6.818 7.187

10 5.192 5.473

snitt 6.832 6.482

I denne koden benyttes formatteringer i utskrifta som bare fungerer med Python 3. Det
er bare gjort for & pynte litt og kan godt unngas. Programkoden og fila med hgydene kan
hentes her: Gist

Forventningsrett estimat

Punktestimatorer

Vi har en populasjon med ukjent gjennomsnitt p og ukjent varians o2. Vi gjgr n uavhen-
gige observasjoner X, Xo,---,X,,. Forventningsrette estimatorer for gjennomsnittet og
variansen i populasjonen vil da vaere

n—1

Hvordan kan vi finne standardavvikene uten a regne ut? Alle hjelpemidler har muligheten for
det. Vi kan se pa noen.

Python krever at vi benytter modulen statistics. Da har vi disse kommandoene:

pstdev population standard deviation of data s
stdev standard deviation of data o

Geogebra har disse to variantene for standardavvik Standardavvik[Liste] og
UtvalgStandardavvik[Liste]. Den forste gir oss vanlig standardavvik og den siste det for-
ventningsrette standardavviket.

Regneark kan ogsa benyttes. Her kan det variere, men to vanlige kommandoer er STDAVP
for vanlig standardavvik og STDAVVIKA for det forventningsrette.

R er et programmeringssprak for statistikk. Kommandoen for det forventningsrette standard-
avviket er sd(). Da benyttes n — 1 og vi kan regne om for a fa det vanlige standardavviket pa
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https://gist.github.com/pergost/59d73f600957b9a1e334a60e8557ac27

denne maten:

2.3 Sentralgrenseteoremet

Sentralgrenseteoremet, eller sentralgrensesetningen, er sveert viktig for statistikken. Det fortel-
ler at tar vi flere stikkprgver i en populasjon og observerer en gjennomsnittsverdi, sa vil de
observerte gjennomsnittsverdiene vaere normalfordelt. Kjenner vi standardavviket i populasjon
kan vi ogsa vite standardavviket i den normalfordelingen. Egentlig er dette ganske utrolig, men
det kan bevises. For oss rekker det a se pa et eksempel.

Sentralgrenseteoremet defineres som varianter av de to definisjonene som fglger.

La X veere en stokastisk variabel med forventningsverdi y og standardavviket o. La X
veere gjennomsnittet av X i et utvalg med n elementer. Da er X tilngerma normalfordelt.
Desto stgrre n er, jo bedre tilneerming. X har forventningsverdien pug = p og standard-

g

avviket o5 = T

En populasjon har gjennomsnittsverdi p og varians o2. Vi trekker uendelig mange stikk-
prever fra populasjonen. Hver stikkprgve er pa n uavhengige observasjoner. La X vare
gjennomsnittet i hver av stikkprgvene. Dersom n er tilstrekkelig stor vil X veere tilnserma
normalfordelt X ~ N (,u, %2> og X har forventningsverdien pg = p og standardavviket

_ _
O-X_\/_ﬁ

Hva forteller sentralgrenseteoremet?

Vi tenker oss en stokastisk variabel, X, med en eller annen sannsynlighetsfordeling. Forvent-
ningsverdien kaller vi u og standardavvik o.

X kan veere lengden av sild, massen til vagehval eller hva du vil. Hvordan fordelingen av X er
spiller mindre rolle.

Vi tar et tilfeldig utvalg av populasjonen og finner gjennomsnittet X. Dette gjentar vi flere
ganger. Alle de X vi finner vil da veere normalfordelt med forventningsverdi y 5 og standard-
avvik o 5. Her blir det en del symboler, men husk at indeksene som er brukt viser at dette er
forventningsverdien og standardavviket til X. Det er gjort for & ikke blande disse med de andre.
I hver stikkprgve er det n elementer.

Vi kan illustrere sentralgrenseteoremet som i figur 2.4.

Vi tar noen stikkprgver fra populasjonen og henter ut verdiene X;, Xo,--- , X,,. X er gjennom-
snittet av verdiene. Gjentar vi det samme flere ganger vil vi fa flere X. Sentralgrenseteoremet

forteller oss da at X ~ N <u, %2) Det gir oss disse sammenhengene
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Figur 2.4: Stikkprgver fra en populasjon

=
)
Il

Ju
o

Jn

Q
i
Il

Dette gjelder nesten uansett hvilken fordeling det er i populasjonen. Kaller vi fordelinga i
populasjonen for p og fordelinga av X for ¢ har vi at

q er normalfordelt hvis p er en normalfordelt

q er tilngermet en normalfordelt hvis p er

symmetrisk

ikke har for lange haler

n > 30

Simulering av sentralgrenseteoremet

At sentralgrenseteoremet stemmer kan bevises, men det ligger utafor det vi skal ta for oss. Det
vi kan gjgre er a se pa et tilfelle der vi simulerer og ser at vi far de resultatene som forventes.

Fisk i et vann Vi tenker oss et vann med et antall fisk og at massen ! til fiskene varierer
mellom 1 g og 1 kg. En slik populasjon kan vi simulere med Python. Vi kan ogsa tegne et
histogram som viser fordelingen. Programkode 2.3 viser hvordan vi lager 500 fiskemasser og
legger de i ei liste. Sa tegner vi et histogram.

= (0,1000))

masse er det som populeert kalles vekta
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Programkode 2.3: Fiskemasser i et vann

Histogrammet vil endre seg hver gang vi kjgrer programmet, men figur 2.5 viser et resultatet.

Histogram masse

16 -

14 -

12 -

10 -

Frekvens
0]

0 200 400 600 800 1000
Masse

Figur 2.5: Histogram som viser fiskemassene

Vi kan se at massene er ganske jevnt, og tilfeldig, fordelt mellom 1 g og 1000 g. For a finne
gjennomsnittsmasse og standardavvik i populasjonen kan vi legge til to kommandoer i pro-
grammet vart, slik som i programkode 2.4. Det krever at vi importerer modulen statistics
med kommandoen import statistics as st.

NNQJUIE N

Programkode 2.4: Statistiske data i populasjonen

Det kan gi dette resultatet

Statistiske data hele populasjonen
Gjennomsnitt er : 496.574
Standardavvik er : 280.0366128276801

Kommandoen pstdev star for population standard deviation of data og gir den vanlige maten
a regne ut standardavvik pa.

Na skal vi ta noen stikkprgver. Vi kan ta stikkprgver fra populasjonen vi har fatt laget ved a
legge til koden i programkode 2.5.
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Programkode 2.5: Vi tar stikkprever

Da far vi gjennomsnittet av hver stikkprgve lagt inn i lista stikkprover. Na kan vi tegne et
histogram av verdiene i den lista og fa noe som likner pa figur 2.6.

Histogram masser Histogram masser
600 -
8-
500 -
6- 400 -
%) (%]
C o
[ (]
k7 2300 -
(9] (]
£ 4- =
200 -
5-
100 -
0- ! i g D i i 0- ' 0 g g ! !
200 300 400 500 600 700 800 200 300 400 500 600 700 800
Masse Masse
(a) 50 stikkprgver med 25 i hver (b) 5000 stikkprgver med 50 i hver

Figur 2.6: Fordelingen av gjennomsnittsverdiene i stikkprgvene

I figure 2.6a ble det kanskje ikke helt normalfordelt, men det er ikke langt unna. Her hadde jeg
tatt 50 stikkprgver med 25 i hver. Vi kan i alle fall se at fordelingen likner pa en normalfordeling
og er en helt annen fordeling enn den i populasjonen. Qker vi antall stikkprgver til 5000 og
antallet i hver stikkprgve til 50, blir resultatet slik som i figur 2.6b. Na begynner det & likne en
normalfordeling.

Dette viser sentralgrenseteoremet. I utgangspunktet har vi en nesten uniform fordeling av mas-
sene med p = 497 og o = 280. Ved a ta stikkprgver fra denne populasjonen viser simuleringen
at vi far en X som ser normalfordelt ut Vi har sett sentralgrenseteoremet simulert!

Programkode 2.6 viser et helt program for simulering av sentralgrenseteoremet. Det er noe
utvidet og tegner ogsa opp en gauss-kurve over gjennomsnittsmassene i stikkprgvene. Setter vi
verdiene slik som i programkoden, vil et typisk resultat av programmet vaere histogrammene i
figur 2.7. Her kan vi se fordelingen av fiskemassene i populasjonen og i stikkprgvene. Samtidig er
det vist en gauss-kurve. Som vi kan se stemmer den godt overens med fordelingen i stikkprgvene.

Programmet skrev sa ut dette

Statistiske data hele populasjonen
Gjennomsnitt er : 538.81

Standardavvik er : 290.21298713186496
Statistiske data for stikkpregvene
Gjennomsnitt er : 538.71728
Standardavvik er : 38.29254436834408
Beregna standardavvik: 41.04231423786919

\.

Denne simuleringen viser at verdiene i populasjonen ble
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Histogram masse i populasjonen Histogram masser stikkprever
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Figur 2.7: Histogram

= 538.8
o = 290.2

Sentralgrenseteoremet for teller at X skal veere normalfordelt med

g = [ = 538.8
o 290.2

Oy = — = ——=41.04
VRV

Nér vi beregne ps og standardavvik o, i de stikkprgvene som er tatt (indeksen s er der for a
vise at dette er i stikkprgvene) far vi

[1s = 538.7
o, = 38.2

Det er ikke sa langt unna de verdiene som er beregna.

I statistikken benytter vi sentralgrenseteoremet i flere sammenhenger. At vi vet at stikkprgve-
gjennomsnittene er normaltfordelt gjor at vi kan fortelle noe om hvor sikker en stikkprgve er.
For & gjgre det ma vi vite noe om populasjonen. Det er to problem: Vi ma kjenne standardavvi-
ket i populasjonen for & vite hvordan stikkprgvene er normalfordelt og vi ma ha ganske mange
i hver stikkprgve. Hvis standardavviket i populasjonen er ukjent, og det er det vanligvis, ma vi
estimere det.
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Hele programmet litt utvidet

Her er ei lenke til programkoden: programmet pa gist.

S U= W N -

© 00

( o'l =9 )t
*Np.exp (= (x-m)*xx2/(2*s%*2))

o
—_

Y O = W N

( )
(200,800,500)

(0]

(1,2,1)

D= O D

= (0,1000))

2
2
2
2
2
2
27
2
2
3
3
3
3¢

= (200,800))

(

Programkode 2.6: Simulering av sentralgrenseteoret



https://gist.github.com/pergost/f0c2eb2257660277cbaf4369e88c10c4

2.4 Punktestimering av gjennomsnitt i en populasjon

En undersgkelse av en fiskepopulasjon

Vi kan ta utgangspunkt i fiskene vi allerede har sett pa og ser pa hvordan vi ville brukt noe
slikt i en praktisk situasjon hvor vi gnsker a undersgke hvordan vekta fordeler seg hos fjellgrret
i fjellvannet Bratjern. De fiskene som er i vannet vet vi ikke s& mye om. Den sikreste metoden
vil veere a plukke ut hver eneste fisk og legge den pa vekta. Det vil ikke veere mulig for oss! Da
har vi behov for en lur metode. Vi tar en stikkprgve ved & sette ut et garn. Stikkprgven gnsker
vi skal veere sa representativ for alle fiskene som er i vannet som mulig. Det ma vi prgve a tenke
pa nar vi setter ut garnet. Det vil ogsa veere lurt a gjenta garnfangsten noen ganger.

Alle fiskene som er i vannet kaller vi populasjonen og stikkprgven vil veere et utvalg.

I populasjonen sier vi at massene i populasjonen vil ha forventningsverdien u og standardavviket
o

fiskepopulasjon

e >

stikkprove

22
Nl

<

-

X — gjennomsnittsvekt
U5 — forventningsverdi

0 — standardavvik

p— forventningsverdi

o — standardavvik

Hvordan kan vi ga fram for & kunne si noe om gjennomsnittsmassen i hele populasjonen? Vi
kan ikke veie alle fiskene, sa da blir lgsningen a ta en stikkprgve.

En stikkprgve Vi fanger n fisker fra vannet, legger alle pa vekta og finner massen til hver av
fiskene i stikkprgven. Vi benytter variabelen X for massen til en tilfeldig valgt fisk, og vi finner

X17X27X37“' aXn

Na kan vi finne gjennomsnittsmassen i stikkprgven

_Z:'L:lXi_X1+X2+X3_|_..._|_Xn
n n

X

Vi mé altsa anta at stikkprgven gir et godt bilde pa hele populasjonen. I sa fall vil gjennom-
snittsmassen veere en estimator for u. For a skille de to kaller vi estimatoren for i og har

p=npg=X
Etter & ha regnet ut den har vi et estimat for forventningsverdien i hele populasjonen.
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Simulering med Python

Vi lar igjen teknologien hjelpe oss for a lage en populasjon med grret i et fjellvann. I vannet
vart er det 500 grreter som veier mellom 1 g og 1 kg. Sa tar vi stikkprgver i «vannet vart» og
finner gjennomsnittet. Programkode 2.7 er den samme som vi har sett pa tidligere og den viser
en mate a gjgre det pa.

Programkode 2.7: Stikkprgver

Denne gjennomfgringen ga resultatene

Statistiske data hele populasjonen
Gjennomsnitt er : 501.472
Standardavvik er : 283.14324504744945
Statistiske data for stikkpregvene
Gjennomsnitt er : 501.1896

Her har vi tatt stikkprgver ved hjelp av kommandoen sample fra modulen random. Simuleringen
viser at vi far estimatet
i = pz = 501.19

Vi sitter med fasiten som er p = 501.47 og kan si at det var ikke s& aller verst — seerlig nar vi
tenker pa at dette er verdier som varierer mellom 1 g og 1 kg.

2.5 Estimatorer for en populasjon

Fra for av har sitt sett hvordan vi kan estimere standardavviket i populasjonen. Vi tar med det
vi fant der og har disse punktestimatorene for populasjonen
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Punktestimatorer for ;; og o>

Vi har en populasjon med gjennomsnitt ;1 og varians o2 hvor disse verdiene er ukjente.
Vi gjgr n uavhengige observasjoner fra populasjonen Xy, Xo, -+, X,,.
Forventningsrette estimatorer vil da veere

n—1

Spersmalet na er om hvor sikre vi kan vaere pa at vi har kommet fram til riktig verdi. For &
avgjore det ma vi innom noe som heter konfidensintervall

Konfidensintervall for u

Vi kan ikke veere helt sikre pa estimatene vi kommer fram til, men vi kan si noe om hvor sikre
vi er. Vi finner et intervall hvor vi kan uttale oss om sannsynligheten. La oss si at vi gnsker a
veere 95 % sikre

95 % sannsynlig

Vi vil finne et intervall slik at

PX-k<pu<X+k) =09

Sentralgrenseteoremet forteller at gjennomsnittsverdiene i stikkprgvene vil vaere normalfordelt
med p og og = \/Lﬁ Fra normalfordelingen vet vi at 95 % av alle verdiene vil ligge mellom 1.96
standardavvik stgrre og mindre enn forventningsverdien. Det gir at

o

_ o _
P(X =196 - << X +1.96-
( Jn SRS AT NG

) = 0.95

Det gir dette intervallet

— g — g
X —-196- — X +1.96 - —
[ N + ﬁ]

La oss ta fiskene som et eksempel igjen. Vi tar vi bare en stikkprgver med 25 fisker og far
X = 560.58. Jukser vi litt og gar ut fra at vi vet standardavviket i populasjonen har vi at det
er 0 = 283.14 g. Da kan vi finne et intervall hvor vi er 95 % sikre pa at estimatet vart ligger.

Intervallet blir

_ o — o
X —-196-— , X +1.96-—]
vn vn
283.14 283.14
[560.58 — 1.96 - 560.58 + 1.96 - ]

V25 V25
[449.60 , 671.57]
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Ved hjelp av sentralgrenseteoremet og det vi vet om normalfordeling har vi na kommet fram
til at vi kan veere 95 % sikre pa at gjennomsnittsmassen til fiskene i populasjonen vil ligge i
det intervallet.

Konfidensintervall

Et konfidensintervall for pu basert pa n uavhengige observasjonene er gitt ved

Hvis vi kjenner o

_ g = g
Hvis vi ikke kjenner R )
_ o = g

X—z — X C—

X =272y X427

Verdien for z kan vi hente fra det vi vet om normalfordelingen.

z P(—z<Z <2)

1.645 0.9
1.960 0.95
2.326 0.98
2.576 0.99

Onsker vi et 95 % konfidensintervall er det bare a bytte ut z med 1.96

Eksempel: Hgyder
Vi ser pa hgydene til guttene igjen

171 174 167 187 174 169 182 180 186 177 178 190 180 176 183 180 169 187 170 181
178 175 181 183 184 179 195 176 176 179 190 165 178 182 179 186 188 170 191 183
179 188 178 177 179 175 186 184 187 174 171 181 171 189 183 174 193 192 181 184
177 194 185 180 173 185 189 189 172 185 180 185 182 173 172 186 177 175 176 184
191 182 172 183 175 184 166 178 176 180 181 188 177 182 168 173 180 181 188 177
182 168 173 182 180 186 177 178 190 180 176 174 167 187 174 169 182 180 186 177
178 171 174 167 187 174 169 182 180 195 176 176 179 190 165 178 182 179 186 188
170 191 183 179 175 186 184 187 174 171 181 171 189 183 174 174 169 182 180 186
177178 171 174 167 187 174 175 176 184 191 182 172 183 175 184 166 178 176 180
181 169 178 194 175 184 166 178 176 180 172 185 164 191 178 176 180 164 179 181

I denne populasjonen hadde vi

pw=179.2
o = 47.07
o= 6.86

Na kan vi prgve a estimere disse verdiene. Vi glemmer dem et gyeblikk og ser pa dette eksemplet
pa en oppgave.
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Finn estimat for u og o ved a ta en stikkprgve fra alle kroppshgydene.

Vi starter med & ta en stikkprgve pa 50 tilfeldige hgyder.

194 185 180 173 185 188 179 180 172 187
167 187 174 169 182 194 176 181 185 174
174 167 187 174 175 170 177 178 177 195
182179 186 188 170 181 185 190 180 182
176 176 179 190 165 169 183 176 182 165

Ut fra stikkprgven far vi

Sett opp et 95 % konfidensintervall for forventningsverdien.

Da har vi estimert bade p og o og kan ut fra det finne et 95 % konfidensintervall.

Vi setter z = 1.96, bruker estimatene og regner ut

A~

(X —z- % , X +z- %]
7.61 7.61
[179.4 —1.96- —= | 179.4+ 1.96 - ——=]
V50 V50
[177.3 , 1815

GeoGebra kan gjgre den jobben for oss ved at vi benytter sannsynlighetskalkulatoren pa
den maten som figur 2.8 viser.

Standardfeil

I forbindelse med konfidensintervall introduseres ofte uttrykket standardfeil. Det har vi allerede
benyttet i utregningene vare. Standardfeil, eller pa engelsk Standard Error, SE, defineres slik
- s

SE(X)=—

(%)==

hvor s er det forventningsrette standardavviket i utvalget (der vi delte pa (n—1)). Vi har brukt

det uten a vite hva det heter. Siden ordet dukker opp innimellom kan det veaere greit & kjenne

til det. Legger merke til at GeoGebra regner det ut for oss. I figur 2.8 kan vi se at det star

SF = 1.0762. I den norske versjonen av GeoGebra benyttes SF for SE. Legg merke til at det
er det samme som % = 1.076216520965925.
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Fordeling  Statistikk

Z-estimat av et gjennomsnitt v

Konfidensnivd 0.95

Utvalg
Gjennomsnitt 179.4
o 7.61

S

Z-estimat av et gjennomsnitt

Gjennomsnitt 179.4
[} 7.61
Resultat SF 1.0762
50
Nedre grense 177.2907
@vre grense 181.5093
Intervall 179.4 + 2.1093

Figur 2.8: Konfidensintervall med GeoGebra

Oppgaver med lgsning

Oppgave 4

Vi gnsker a finne gjennomsnittshgyden for alle guttene som gar siste aret pa videregaende
skole i en by. Standardavviket for hgyden pa gutter ved sesjon er 7 cm. Vi antar at det
gjelder for disse guttene ogsa. 100 gutter plukkes ut i en stikkprgve og vi finner at
gjennomsnittshgyden er 180.7 cm

Finn et konfidensintervall for gjennomsnittshgyden med konfidensniva 0.95

Lgsningsforslag
Vi setter X for hgyden til en tilfeldig valgt gutt og antar at X er normalfordelt N (u, 7%)

X er gjennomsnittshgyden til guttene i stikkprgven pa n = 100 tilfeldig valgte gutter.
Sentralgrenseteoremet sier at X er normalfordelt N (pu, JlLﬁ) = N(u,0.7). Da har vi

P(X—-19 -0 <pu<X+19-0%)=0.95
P(180.7 —1.96 - 0.7 < pu < 180.7 4+ 1.96 - 0.7) = 0.95
P(179.3 < 11 < 182.1) = 0.95

Konfidensintervallet
[179.3,182.1]

Husk at dette er et 95 % konfidensintervall for forventningsverdien, u, for alle hgydene.

Vi kan fa det samme svaret med GeoGebra
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Fordeling [SEREIAS

Z-estimat av et gjennomsnitt <]

Konfidensnivd 0.95

Utvalg
Gjennomsnitt 180.7
o 7
N 100|

Resultat

Z-estimat av et gjennomsnitt

Gjennomsnitt 180.7
o 7
SF 0.7
N 100
Nedre grense 179.328
(@vre grense 182.072
Intervall 180.7 + 1.372

2.6 Punktestimering for sannsynligheter

Vi skal na se pa hvordan vi kan estimere sannsynligheter i binomiske sannsynlighetsfordelinger.

En binomisk sannsynlighetsfordeling far vi nar det utfgres binomiske forsgksserier. Da har vi
sett at sannsynligheten kan beregnes ved

Pls=k)= (1) s

Ofte kjenner vi ikke p, men vi gnsker & finne et estimat, p. Na skal vi se mer pa hvordan vi kan
gjore det og hvordan vi kan uttale oss om hvor godt dette estimatet er. For det ma se litt mer
pa forventningsverdi og varians.

Forventningsverdi og varians til p

Nar vi skal estimere sannsynligheten p vil vi observere det binomiske forsgket og finne hvor
mange ganger suksess-utfallet inntreffer. Utfgrer vi forsgket n ganger og finner at det skjer X

ganger har vi
X

p="
n

Vi vet ogsa at X er binomisk fordelt og at forventningsverdien og variansen i en binomisk
sannsynlighetsfordeling er

Det gjor at vi kan regne ut det samme for estimatoren
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E(ﬁ)=E<%) Z%-E(X):%.np:p
Var(p) = Var (%) = % -Var(X) = %.np(l —p) = p (1n_ p)

Her er det satt inn det vi har for p og utledet. Uten at vi gar inn pa det er det greit a legge
X 1

merke til at Var (—) = — - Var(X).
n n

Legg ogsa merke til at dette er en forventningsrett varians som avtar desto flere vi velger. Det

kan vi se av uttrykket hvor vi dividerer med n. Store verdier av n gir mindre varians. Vi kan
fa den sa ngyaktig vi gnsker.

Vi ender opp dette resultatet

Forventningsverdi og varians for p

Hvis p er en estimator for en sannsynlighet i en binomisk sannsynlighetsfordeling har vi
at

Et eksempel: Valgprognose

Et eksempel kan vise dette og da er en spgrreundersgkelse naerliggende. Slikt utfgres pa et
utvalg for & si noe om en hel populasjon.

Eksempel 4

I en gallupundersgkelse undersgkes det hvor mange som vil stemme Arbeiderpartiet ved
neste valg. 1500 personer er plukket ut og av dem svarer 447 personer at de vil stemme
pa Arbeiderpartiet.

Estimer oppslutningen Arbeiderpartiet vil fa ved neste valg og dreft usikkerheten.

Noen har gjort en undersgkelse for oss og vi kan finne et estimat for sannsynligheten for at en
tilfeldig valgt person skal stemme pa Arbeiderpartiet ved neste valg. Ut fra eksemplet er vart

beste estimat for sannsynligheten

447
5= L 02
D= 1500 = 0298

Undersgkelsen gir oss et estimat for at 29.8 % av stemmene vil ga til Arbeiderpartiet.

Na skjgnner vi at det er vanskelig & spa oppslutningen i det endelige valget. De som ble spurt
kan endre oppfatning og alle de som ikke ble spurt kan ha helt andre syn pa saken. Det viktige
er at det er gjort et representativt utvalg nar de 1500 respondentene ble plukket ut.

Vi gjgr ogsa en forutsetning om at det & spgrre noen om de vil stemme pa Arbeiderpartiet er
et binomisk forsgk. Det kan diskuteres og det er viktig a veere klar over alle forutsetninger vi

gjar.
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Vi far holde oss til dette eksemplet nar vi skal uttale oss om usikkerheten ved estimatet. Vi vil
finne et konfidensintervall for estimatet.

Konfidensintervall for p

Vi fant et estimat
X

p==
n

Vi gnsker a finne et konfidensintervall som kan si noe om estimatet vi kom fram til. Vi vil fram

til noen verdier hvor vi kan si at vi er f. eks. 95 % sikre pa at sannsynligheten vil ligge. Figur

2.9 illustrerer det.

3>

a
\
!

b
1
0 p—h p+h 1

Figur 2.9: Et konfidensintervall for p

For a finne et konfidensintervall ma vi gjgre en antakelse om at p er normalfordelt. En binomisk
fordeling kan jo nesten veere det!

Vi har sett at variansen til p er
p(1 —p)

Var(p) = "

Na kjenner vi ikke p i hgyre side av dette uttrykket, men vi har funnet en estimator for p som
er p. Bruker vi den far vi
p(1l —p)

Var(p) ~ -

Det er variansen. Standardavviket, som er rota av variansen, har fatt et eget navn: standardfeilen

Standardfeilen til p

Standardfeilen er standardavviket til en estimator for en binomisk sannsynlighet er gitt
ved
p(1 - p)

SE(p) = 1/

Konfidensintervallet for p er

hvor
~ X ~ pA 1 pA

Det er verdien av z som avgjer bredden pa intervallet. Figur 2.10 minner oss pa hvordan
sannsynlighetene fordelte seg i normalfordelingen.

De mest brukte verdiene for z fant vi i denne tabellen
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0.95

= —1.96 2 =1.96

Figur 2.10: Normalfordeling

z konfidensintervall

1.65 90 %
1.96 95 %
2.58 99 %

Konfidensintervallet i eksemplet vart forteller noe om hvor sikre vi kan veere pa estimatet
vi fant. Vi kom fram til at
p = 0.298

Na gnsker vi & finne et 95% konfidensintervall for den sanne stemmeandelen Arbeiderpartiet

vil fa ved neste valg.
SE(p) — p(l—p) \/0.298(1 —0.298) _ o 11500
=Ny = 1500 e

I et 95% konfidensintervall er z = 1.96 og intervallet blir

Standardfeilen

Klys = (p—1.96-SE(p) , p—+ 1.96-SE(p))
= (0.298 — 1.96 - 0.012,0.298 + 1.96 - 0.012) = (0.275, 0.321)

Ut fra det vi har funnet kan vi si at vi kan veere 95 % sikre pa at stemmeandelen vil veere
mellom 27.5 % og 32.1 %.

Her har vi funnet det ved regning. GeoGebra kan gjgre den jobben for oss. I figure 2.11 ser vi
at vi far de samme svarene nar vi velger at vi vil ha et Z-estimat av en andel. De 447 personene
som svarte at de ville stemme pa Arbeiderpartiet ma vi skrive inn som antall treff i det totale
antallet som er N. Vi ma ogsa si fra om at vi gnsker et konfidensniva som er 0.95.

GeoGebra gir oss den nedre- og den gvre grensa i intervallet. I tillegg ser vi ogsa at vi har fatt
regna ut standardfeilen, SF, som er den samme som vi fant tidligere.
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Z-estimat av en andel v

Konfidensnivd 0.95

Utvalg
Treff 447

N 1500

Resultat

Z-estimat av en andel

Treff 447

N 1500

SF 0.0118

Nedre grense 0.2749

Jvre grense 0.3211
Intervall 0.298 + 0.0231

Figur 2.11: Konfidensintervallet med GeoGebra

Kan vi anta et dette er et binomisk forsgk? Den antakelsen krever at det er samme
sannsynlighet hver gang for & plukke ut en person som stemmer pa Arbeiderpartiet. Det
betyr i sa fall at vi velger ut personer med tilbakelegging! I en praktisk situasjon ville vi
vel ikke risikert & spgrre samme person to ganger? I sa fall vil spgrreundersgkelsen var
veere et hypergeometrisk forsgk.

For en hypergeoemtrisk situasjon kan det vises at:

Var(p) ~

Sl 3=
=
|
3

I en binomisk situasjon har vi sett at

(15
Var(ﬁ) ~ u

n
Det som skiller disse to beregningene er verdien av %:’f

La oss ga ut fra at det er 5 millioner stemmeberettige i Norge. Da har vi dette regnestykket

N —n 5000000 — 1500
= = 0.99970019994004
N -1 5000000 — 1

Med alle andre feilkilder ser vi at denne verdien ikke vil gjgre noe stort utslag. Uansett
om vi velger & se det som en binomisk eller en hypergeometrisk situasjon vil konfidensin-
tervallet bli omtrent det samme hvis n er liten i forhold til V.

Flere eksempler

Vi kan se pa en typisk oppgave i neste eksempel.
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Vi skal finne sannsynligheten p for at ei fyrstikkeske lander pa ei av de «storste» sidene.
La X veere at eska lander pa «stor side»

Sa utfgrer vi et forsgk hvor vi kaster eska 500 ganger og finner at den lander med den
«storey» sida opp 263 ganger

Finn et estimat for p og et intervall som med 99 prosent sannsynlighet inneholder p

Her far vi vite at
X =263 n = 500

Det gir

= — =0.526
500

(1—p)  [0.526(1 —0.526
SE() = 1/ 1% _ \/ (500 ) _ 0.02033

I et 99% konfidensintervall er z = 2.58 og intervallet blir

. X 263
b= —
n

Standardfeilen

Klgg = (p—2.58-SE(p) , p+2.58 SE(p))
= (0.526 — 2.58 - 0.022 , 0.526 + 2.58 - 0.022)
= (0.469 , 0.583)

a D b
| |
\ \

0.469 0.583

09 ————
Klgy = (0.469 , 0.583)

Bruker vi GeoGebra far vi resultatet i figur 2.12.

Konklusjon: Ut fra eksperimentet kan vi med 99 % sannsynlighet si at sannsynligheten for at
fyrstikkeska lander med «stor side» ned er mellom 0.469 og 0.583.

Eksempel 6

Vi kaster en mynt hundre ganger og far 64 kron. Er det noe rart med denne mynten?

Ut fra eksperimentet finner vi et estimat for sannsynligheten for & fa «kron» med denne mynten.

. X 64
p=—

=— =0.64
n 100 0.0

For 4 finne et konfidensintervall for estimatet ma vi finne standardfeilen

) 5(1 — p 0.64(1 — 0.64
SE(p)Z\/p( - p):\/ (100 ):0.048
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Z-estimat av en andel v

Konfidensnivd 0.99

Utvalg
Treff 263

N 500

Resultat

Z-estimat av en andel

Treff 263

N 500

SF 0.0223

Nedre grense 0.4685

Jvre grense 0.5835
Intervall 0.526 = 0.0575

Figur 2.12: Konfidensintervallet med GeoGebra

Da kan vi sette opp et 95 % konfidensintervall

(p—2-SE(p) , p+z-SE(p))
(0.64—z-0.048 |, 0.64+ z-0.048)

Velger vi et 95 % konfidensintervall blir z = 1.96 og vi far

(0.54592 . 0.73408)

Vi kan finne dette konfidensintervallet med GeoGebra ogsa. Velg Z-estimat av andel og skriv
inn konfidensniva. Resultatet vises i figur 2.13.

I et 99% konfidensintervall er z = 2.58 og intervallet blir

(0.51616 , 0.76384)

Ingen av konfidensintervallene omfatter sannsynligheten for a fa «kron» med en ideell mynt,
som er p = 0.5. Her ma det vaere noe rart!
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Fordeling  Statistikk

Z-estimat av en andel v

Konfidensniva 0.95

Utvalg
Treff 64

N

Z-estimat av en andel

Treff 64
N 100
Resultat SF 0.048
Nedre grense 0.5459
@vre grense 0.7341
Intervall 0.64 + 0.0941

Figur 2.13: Konfidensintervallet med GeoGebra
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3 Hypotesetesting

3.1 Hypotesetesting

En hypotese er en ubekrefta antakelse — noe vi tror er sant. I vitenskaplig arbeid gnsker vi a
finne ut mer om denne antakelsen. Hvor sikker kan vi veere pa at den stemmer? For a avgjgre
det ma vi teste hypotesen.

Definisjon 4 Hypotese

En statistisk hypotese er en antakelse eller pastand om en eller flere populasjoner som
kan enten veere sanne eller usanne.

Nar vi kommer med en hypotese vil det alltid kunne formuleres en alternativ hypotese, som
er den motsatte. Pastar jeg at «jorda er rundy, sa vil den vil den alternative hypotesen veere:
«jorda er ikke rund». Vi vil kalle de to hypotesene for

Hy : Nullhypotese
H; : Alternativ hypotese

I hypotesetesting vil det veere Hy, den alternative hypotesen vi gnsker a teste. Det gjgr vi med
utgangspunkt i at Hy, nullhypotesen, stemmer. I likhet med grunnleggende prinsipp i rettssaler
antar vi at den tiltalte er uskyldig inntil det motsatte er bevist. I hypotesetestingen blir det at
vi ma ha tilstrekkelig med bevis for lande pa den alternative hypotesen. En utfordring er hva
som er tilstrekkelig. I hypotesetestingen ma vi gjgre noen valg for det ogsa. Vi vil derfor aldri
kunne fullstendig bekrefte eller avkrefte hypotesen var, men vi kan si noe om hvor sannsynlig
den er.

Vanligvis kan vi ikke undersgke en hel populasjon. Det kan veere flere grunner til det. Vi ma
gjore et utvalg og basere oss pa det vi kan finne ut om utvalget. Det betyr at det vil veere et
estimat vi undersgker.

Eksempel: Klatretau

Vi tenker oss en produsent av klatretau som sier at tauene vil tale en belastning pa 2500 kg.
Vi plukker ut 49 tau og undersgker hvor stor belastning de taler fgr de ryker. Vi finner ut at de
i gjennomsnitt taler 2400 kg og at standardavviket er 350 kg. Kan vi med det si at pastanden
til produsenten er feil?

Vi vet ikke noe om alle tauene. Bare om utvalget vi har undersgkt. Hvordan skal vi ga fram
for & komme til en konklusjon basert pa en statistisk undersgkelse?

Vi har altsa 49 tau i utvalget. Populasjonen, alle klatretauene, har en gjennomsnittlig brudd-
grense, p. Den er oppgitt til & veere 2500 kg og vi kan anta at den er normalfordelt. Den
gjennomsnittlige bruddgrensen i utvalget er X = 2400 kg og standardavviket i utvalget er
s = 350 kg.

Na skal vi sette opp hypotesene. Vi kaller den ene for nullhypotesen og den andre for alternativ
hypotese. En vanlig mate & skrive det pa er slik
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Hy :pp = 2500 Produsenten oppgir korrekt belastningsevne

Hy :pp < 2500  Belastningsevnen er mindre enn det som er oppgitt

Da har vi satt opp de to hypoteser som vi vil undersgke. Figur 3.8 viser situasjonen. Produsenten
har oppgitt © = 2500. Vi har gjort et utvalg og funnet X = 2400. Det er mindre enn det
oppgitte, men er det innafor en normal variasjon?

X = 2400 p = 2500

Figur 3.1: Typisk normalfordeling

Sentralgrenseteoremet gir at X er normalfordelt med py = p = 2500. Standardavviket ma vi
estimere siden det ikke er oppgitt. Vi kom fram til at s = 350. Da har vi at standardfeilen er

350
og = —— =22~ 50

Vo V49

Det gir at X ~ N(2500,50). Hva er da sannsynligheten for & fi resultatet i utvalget? Vi ma
finne
P(X < 2400)

Desmos eller GeoGebra kan gi oss svaret. Figur 3.9 viser hvordan vi kan bruke Desmos

Sannsynligheten blir )
P(X <2400) = 0.02275

Ut fra beregningene vare er verdien vi har funnet ved & undersgke utvalget ikke sa veldig
sannsynlig gitt at p = 2500. Som regel setter vi ei grense pa 5 %, men den kan vi velge som vi
vil. Her ser vi at det bare er 2.23 % sannsynlig at nullhypotesen stemmer. Det gjor at vi forkaster
nullhypotesen. Vi tror ikke at det stemmer det produsenten oppgir. Vi tror at bruddevnen er
mindre enn det. Legg merke til at vi ikke kan bevise det, bare sannsynliggjore at det er tilfelle.

GeoGebra har en egen kalkulator for hypotesetesting. I dette tilfellet vi vi velge Z-test av et
gjennomsnitt. Skriver vi inn verdiene vi har far vi resultatet i figur 3.10. Resultatet oppgir en
P-verdi vi kjenner igjen. Den er den samme som sannsynligheten vi fant tidligere. Her finner
vi ogsa standardfeilen vi regna ut. GeoGebra bruker SF for standardfeilen. I kalkulatoren har
vi skrevet inn nullhypotesen og at den alternative hypotesen er verdier mindre enn det.
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£ normaldist(2500,50) ‘ b
Mean, Standard Deviation | e
/ Find Cumulative Probability (CDF) jo-008 ‘ !
Min: —« Max: 2400
@ = 0.0227501319482 |
. 0:004 /

:0:002

»

2300 2400 2500 2600

Figur 3.2: Sannsynligheten med Desmos

Fordeling  Statistikk

Z-test av et gjennomsnitt v

Nullhypotese p= 2500
Alternativ hypotese @ < > #
Utvalg
Gjennomsnitt 2400
o 350
N 49

Z-test av et gjennomsnitt

Gjennomsnitt 2400

o 350
Resultat SF 50
N 49
A -2
P 0.0227501319

Figur 3.3: Hypotesetesting med GeoGebra

3.2 Feiltyper

Nar vi forkaster en nullhypotesen kan vi naturligvis gjore en feil. 1 sa fall gjor vi en forkast-
ningsfeil, ofte kalt en feil av type 1. Vi kan ogsa godta nullhypotesen om den ikke stemmer. Da
gjor vi en godtakingsfeil, som ogsa kalles feil av type 2. Det hele kan summeres opp i tabellen
under.

Hy er sann H; er sann

beholder H korrekt godtakingsfeil
forkaster Hy forkastningsfeil korrekt

I eksemplet med klatretauet fant vi at tauene i utvalget talte 2400 kg i gjennomsnitt. Vi
matte vurdere denne verdien mot produsentens oppgitte bruddstyrke pa 2500 kg. Vi fant at
sannsynligheten for at et utvalg med det antall vi valgte skulle tale bare 2400 kg var godt under
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5 %. Vi valgte a forkaste nullhypotesen, men vi kan ikke veere helt sikre. Det kan hende vi gjor en
forkastningsfeil. Grensa vi satte pa 5 % gjor at sannsynligheten for & gjgre en forkastningsfeil er
nettopp 5 %. Hvis denne feiltypen var den eneste bekymringen var kunne vi satt grensa lavere.
Hadde vi valgt den til 2 %, ville vi, sa vidt, ikke kunne forkast nullhypotesen. Da oppstar et
annet problem: Muligheten for en godtakingsfeil ville lettere oppsta.

En analogi til denne problematikken er rgykvarslere. Rgykvarslere kan veere irriterende. Den
begynner a ule om en apner steikovnen eller svir maten. Den tror det er brann uten at det
er det. I var terminologi forkaster den nullhypotesen om at det ikke brenner. Den gjgr en
forkastningsfeil. En enkel lgsning pa problemet er a fjerne batteriene. Ulinga i tide og utide
stopper, men na oppstar problemet om at det kan skje en godtakingsfeil: Alarmen gar ikke om
det brenner. Her er det et dilemma. En hypersensitiv rgykvarsler gjgr aldri godtakingsfeil, men
ofte forkastningsfeil. I statistikken ma vi finne en balanse ved a finne et passende signifikansniva.
En god justering av rgykvarsleren som unngar begge typer feil i stgrst mulig grad.

3.3 Signifikansniva

I eksemplet vart bestemte vi oss for a forkaste nullhypotesen siden sannsynligheten var sa lav.
Vi satte et signifikansniva pa 5 %. Det skriver vi som

a=0.05

Definisjon 5 Signifikansniva

Signifikansniva a er hvor stor sannsynligheten for forkastningsfeil vi er villig til & aksep-
tere

Vi kan skrive det som

«a = P(forkaste Hy nar Hy er riktig) = P(forkaste Hy | Hy) = P(forkastningsfeil | Hy)

Maten a skrive det pa er kanskje ikke helt korrekt siden dette egentlig ikke er betinga sannsyn-
lighet og Hj er ikke en hending. Meningen kommer fram.

I eksemplet vart kan vi markere o som et areal under normalfordelingskurven. Figur 3.4 viser
det. Dette omradet kalles en kritisk region. I eksemplet satte vi den alternative hypotesen til a
vaere Hy : p < 2500. Det gjor at den kritiske regionen havner til venstre. I andre tilfeller kunne
det veert omradet lengst til hgyre. Det skjer nar vi utfgrer ensidige hypotesetester.

Noen ganger gnsker vi & gjore tester som er dobbelsidige. Figur 3.5 viser det.

Som en introduksjon til hypotesetesting vil vi holde oss til ensidige tester, men tankegangen
vil veere den samme for andre typer hypotesetesting.

3.4 Hypotesestest av gjennomsnitt
Eksemplet med klatretau viser en hypotesetest av et gjennomsnitt vi fant i et utvalg. I dette

eksemplet visste vi heller ikke standardavviket i populasjonen. Egentlig vil det vaere problema-
tisk siden vi fgrst ma finne et estimat for standardavviket. I statistikken vil vi da gjgre noen
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X = 2400 4 = 2500

Figur 3.4: Signifikansniva

(S}

1%

Figur 3.5: Dobbelsidig

justeringer i testen. Det kan vi se pa seinere og heller fortsette med et eksempel hvor vi tester
en gjennomsnittsverdi i et utvalg med oppgitt standardavvik.

Les forst eksemplet og tenk pa hvordan vi kan ga fram.

En bedrift produserer esker med sjokolade. Sjokoladeeskene skal ha ei normalfordelt vekt

pa 35 hg. Standardavviket er oppgitt til 3 hg. Bedriften har mistanke om at vekta er
lavere enn 35 hg og tar en stikkprgve pa ti esker. Resultatet er

35 30 32 37 29 31 37 32 31 36
Hva kan vi si om bedriftens mistanke? Stemmer den?

Vi starter med & setter opp disse hypotesene

Hy:p=35 Sjokoladeeskene er 35 hg med gitte avvik
Hy:p< 35 Sjokoladeeskene veier mindre enn 35 hg
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Gjennomsnittet i stikkprgven gir

354+30+32+374+20+31+37+32+31+36
10 N

X = 33

Vi ser at X er mindre enn det som er oppgitt, men er denne forskjellen signifikant? Det kan vi
si noe om ved hypotesetesting. Fgr vi gar videre bestemmer vi oss for a sette signifikansniva til
5 %. Vi far ogsa oppgitt at vekta er normalfordelt.

Sentralgrenseteoremet forteller at utvalget er normalfordelt med X ~ N(p, \/ia) Da har vi at
standardfeilen er

o 3
Oy = — = —— = (.949
X7 n V10

Vi kan finne sannsynligheten for at vi kan f& X = 33 med et verktgy. Figur 3.6 viser hvordan
vi kan benytte Desmos.

+ L & K
-

normaldist (35,0.949)

Mean, Standard Deviation

+/ Find Cumulative Probability (CDF)
Min: —« Max: 33

= 0.0175379292421

Figur 3.6: Sannsynligheten med Desmos

Sannsynligheten for at vi fir en gjennomsnittsverdi pd4 X = 33 i en stikkprgve er 1.75 %.
Vi har valgt et siginifikansniva pa 5 %, sa konklusjonen blir at vi forkaster nullhypotesen.
Sannsynligheten for en forkastningsfeil blir 1.75 %.

Figur 3.7 viser hvordan vi kan benytte GeoGebra ved a utfgre en Z-test av et gjennomsnitt
i sannsynlighetskalkulatoren. Vi fyllet inn opplysningene og GeoGebra regner ut.

Z-test av et gjennomsnitt v

Nullhypotese p= 35

Alternativhypotese @ < O > O =

Utvalg
Gjennomsnitt 33
o 3
N 10 ]

Resultat

Z-test av et gjennomsnitt

Gjennomsnitt 33

o 3

SF 0.9487
N 10

z -2.1082
P 0.0175

Figur 3.7: Hypotesetest med GeoGebra
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Legg merke til at vi ma skrive inn standardavviket i populasjonen og at GeoGebra regner ut
standardfeilen SF = o5 = \/Lﬁ = \/ifo = 0.949

P-verdien forteller oss sannsynligheten for at gjennomsnittet i utvalget, X, vil veere 33, eller
mindre, gitt at nullhypotesen stemmer. At vi ogsa inkluderer sannsynligheten for at gjennom-
snittet kan veere mindre vil gke sannsynligheten for at det inntreffer. Det vil veere til stgtte for
nullhypotesen og minke sannsynligheten for forkastningsfeil.

3.5 Hypotesetest av sannsynlighet

Vi skal ogsa se pa hypotesetesting av sannsynlighet, eller andeler.

Eksempel 8

Etter & ha veert pa kasino far James mistanke om at terningene som ble brukt var laget
slik at de ga seksere for ofte. En slik manipulering kan bli gjort ved a flytte tyngdepunktet.
James vil ha hjelp til & undersgke om det er tilfelle.

Hvordan kan vi konkludere med at terningene er fikset eller ikke? Hvis den ikke er fikset kan

vi anta at sannsynligheten for & fa en sekser er %.

Vi setter opp to hypoteser

Hy, Nullhypotesen Terningen er ikke manipulert p =
H; Alternativ hypotese Terningen er manipulert D>

D= =

Vi vil undersgke om vi kan forkaste nullhypotesen. Det kan vi gjgre om vi greier a skaffe oss
terningen. Da kan vi kaste den og sjekke resultatet. Vi far tak i terningen og kaster den 100
ganger. Resultatet blir 26 seksere. Er det for mange for en ideell terning?

A kaste terning er et binomisk forsgk. Forventningsverdien i en binomisk fordeling kjenner vi.
Den forteller at vi kan forvente oss a fa
1

E(X)=n-p=100- £ = 16.67

Resultatet er langt over det. Det neste vi kan gjgre er a finne ut mer om sannsynligheten. For

a veere pa den sikre sida finner vi sannsynligheten for a fa 26 eller flere seksere

P(X > 26)

Heldigvis vet vi at dette er et binomisk forsgk og regne ut sannsynligheten. Vi gjor det med
GeoGebra og sannsynlighetskalkulatoren. Se figur 3.8.

Vi far at
P(X >26)=0.0119

Sannsynligheten for & fa 26, eller flere, seksere pa 100 kast er altsa 0.0119 eller 1.19%. Det er
ikke veldig sannsynlig, men er det sapass liten sannsynlighet at vi kan forkaste nullhypotesen
var? Vi finner ikke et klart svar pa det, men vi kan si noe om hvor sikre vi gnsker a veere. Vi
ma bestemme et signifikansniva.

La oss si at vi setter det til 5%. Det betyr at P(péasta juks | han jukser ikke) < 0.05. Vi ma
altsa finne ut om

1
P<X226|p:6>§0.05
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Vi har funnet at

u = 16.6667 o = 3.7268

_/~ Binomisk fordeling ~ n 100 p 166667

1 001 P( 26 <X ) = 00119

Figur 3.8: Sannsynlighetene i GeoGebra

1
P<X226|p:6> =0.0119

Da har vi at sannsynligheten er mindre enn signifikansnivaet og at vi forkaster nullhypotesen

pa det grunnlaget.

Vi ser pa et eksempel til 1.

Eksempel 9

parti.

Et meningsmalingsinstitutt gjennomfgrer en spgrreundersgkelse for et bestemt politisk

I undersgkelsen blir 1500 tilfeldig valgte personer spurt om de ville ha stemt pa partiet
dersom det var valg.

I undersgkelsen svarer 321 personer at de ville ha stemt pa partiet. Ved forrige valg stemte
19,8 % av velgerne pa partiet.

Bruk det du har leert i statistikk, til a vurdere om partiet har hatt framgang siden forrige
valg. Begrunn resonnementet ditt med beregninger.

Vi lar X veere antall personer av de 1500 personene som ville stemt pa partiet. Dette er et
binomisk forsgk og X er binomisk fordelt med p = 0.198 og n = 1500.

Hypotesene blir

HOZ
Hli

p =0.198 partiet har ikke hatt framgang siden forrige valg
p > 0.198 partiet har hatt framgang siden forrige valg

!Eksemplet er henta fra eksamen i S2 hgsten 2009
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Andel som sier de vil stemme pa partiet:
321
—— =0.214
1500
I undersgkelsen er det altsa 21.4 % som sier at de vil stemme pa partiet. Vi ma finne ut om det

skiller seg signifikant fra resultatet ved forrige valg. Det gjor vi ved a teste hypotesene vare.

Vi velger et signifikansniva pa 5 % og setter a = 0.05. Da vil sannsynligheten for & forkaste Hy
pa feil grunnlag vaere 5 %.

Na blir spgrsmalet: Hva er sannsynligheten for at minst 321 personer i et utvalg pa 1500 sier at
de vil stemme pa partiet gitt at 19.8 % prosent av befolkningen virkelig stemmer pa partiet?

Vi velger a betrakte dette som et binomisk forsgk hvor vi spgr om en person stemmer pa partiet
eller ikke. Det gjentar vi 1500 ganger.

Sannsynligheten kan vi regne ut

b 1500 T 1500—=z
P(X>321)=) = L) +0.1987 (1-0.198) ~ 0.065
r=1

Fordeling  Statistikk

p =297 0 =15.4335

100 200 300 400 500 600 700

Binomisk fordeling ~ n 1500 p 0.198
10X
p( 321 <X)= 0.065

Figur 3.9: Sannsynligheten i GeoGebra

For a forkaste nullhypotesen har vi stilt dette kravet
P(X >321) | p=0.198) < 0.05

Resultat ble
P(X > 321) =~ 0.065

Kravet var at denne sannsynligheten skulle vaere mindre enn 0.05 for & forkaste nullhypotesen.
Vi har ikke grunnlag for a si at partiet har gatt fram siden forrige valg. Vi beholder nullhypotesen
med det valgte signifikansnivaet.

Det fins en kalkulator i GeoGebra som kan benyttes for hypotesetesting av andel. Figur 3.10
viser hvordan vi kan skrive inn nullhypotesen og alternativ hypotese for a fa ut en P-verdi. Vi
ma velge Z-test av andel og GeoGebra benytter en tilnserma normalfordeling for a regne ut.
Det gjgr at vi ikke far ngyaktig samme sannsynlighet som ved utregning. Fordelen med & regne
ut i en binomisk sannsynlighetsmodell er at vi bade far et mer ngyaktig svar og at det egentlig
er enklere.
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Fordeling = Statistikk

Z-test av en andel

Nullhypotese p= 0.198
Alternativ hypotese < o >
Utvalg
Treff 321
N 1500

Z-test av en andel

Treff 321

Resultat N 1500
Z 1.5551
P 0.06

Figur 3.10: Hypotesetesting i GeoGebra
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