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Her er litt om sannsynlighetsregning.

Teksten er skrevet med LATEX.
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1 Sannsynlighetsregning

1.1 Hva og hvorfor?

Hva?
Vi får høre at det er sannsynlig at et eller annet kommer til å skje. Sannsynligheten for å bli
truffet av en meteoritt skal være 1 til 1700 000 000. Sannsynligheten for å dø av røyking blant
røykere er 50 %. Statistisk sett er sjansen for å bli truffet av lynet 1

23000
.

Hva er så sannsynlighet? Hva forteller opplysningene over? I sannsynlighetsregninga skal vi
finne en verdi for hvor sannsynlig noe er. Det kan vi oppgi som «1 til 1700 000 000» eller
«50%» eller « 1

23000
». Alt dette er verdier som forteller hvor sannsynlig det er at noe skjer. I

sannsynlighetsregninga skal denne verdien være mellom 0 og 1. Alle verdiene over kan vi skrive
om til en slik verdi. Ellers i dagliglivet omgås vi sannsynlighet uten å direkte tallfeste. Tenk
bare på alle gangene du benytter ord som «umulig», «mulig», «helt sikkert», «fifty-fifty» osv.
I nesten hver setning hvor disse inngår er det sannsynlighet et tema som ligger i bakgrunnen.

Hvorfor?
Hvorfor skulle vi være interesserte i å finne en sannsynlighet? Det er flere grunner til det. Her
er noen eksempler.

Forretningsvirksomhet For den som driver butikk er det viktig å vite noe om sannsynlighe-
ten for å få solgt noe eller sannsynligheten for hva som vi skje i et marked. Tenk bare på
vurderingene en aksjemegler må ta.

Forsikring All forsikring baserer seg på å vite noe om sannsynligheten for at et eller annet
skjer. Ut fra det kan forsikringspremien settes

Investering Investeringsanalyse er sannsynlighetsregning

Spill Spiller du Lotto? Tipper? Sannsynligheten vil avgjøre om du vinner noe. Sannsynligvis
gjør du ikke det.

Risikoanalyse Når risiko vurderes er det stort sett basert på sannsynlighet.

Værmelding Bare se på yr.no eller liknende tjenester. Der oppgir de til og med sannsynlig-
heten for at været blir som de melder.

1.2 Hvordan kan vi finne sannsynlighet?
Det er i hovedsak to typer sannsynlighet: empirisk og teoretisk. Empiri er basert på erfaring.
Tenk at vi kaster et pappbeger og at vi observerer hvordan det lander. Enten vil det lande pent
med bunnen ned, på sida eller opp-ned. Før vi kaster er det vanskelig å tallfeste sannsynlig-
hetene. Kaster vi dette pappbegeret tusen ganger og ser på forholdene mellom antall ganger
det lander på de forskjellige måtene, kan vi begynne å uttale oss om sannsynligheten. Vi har
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gjort en erfaring om kan tallfeste sannsynligheten. Da har vi funnet en empirisk sannsynlighet
gjennom det som kalles de store talls lov.

Bytter vi ut pappbegeret med en mynt har vi et annet utgangspunkt. Ut fra de fysiske forut-
setningene til mynten kan vi si noe om sannsynligheten for at den skal lande med mynt eller
kron opp. Hvis mynten ikke skiller seg for mye ut fra vanlige mynter vil vi kunne si at det er
like stor sannsynlighet for begge og at det ikke er mulig at den blir stående på høykant. Da
kan vi tallfeste sannsynligheten til å være 0.5. Vi har funnet en teoretisk sannsynlighet. Det
utelukker ikke at vi også kan finne denne sannsynligheten empirisk. Det er myntens symmetri,
eller geometri, som avgjør konklusjonen vår. Av den grunn sier vi at vi benytter en geometrisk
eller symmetrisk modell for å finne sannsynligheten.

Hva om vi trekker et tilfeldig kort fra en kortstokk og skal finne sannsynligheten for å trekke
en kløver? Da er det rimelig å anta at sannsynligheten for det vil være 1

4
. Vi kan begrunne

det med at en firedel av kortstokken inneholder kløver-kort. Her er det ikke geometrien, eller
symmetrien som avgjør, men forholdet mellom de gunstige, kløver, og resten av kortene. Vi
benytter en uniform modell.

I tillegg har vi også den subjektive sannsynlighet – en sannsynlighet basert på oppfatning. At
det etter min oppfatning 73 prosent sannsynlighet for at Rosenborg vil vinne neste kamp er et
eksempel på det.

I sannsynlighetsregning holder vi oss til empirisk og teoretisk sannsynlighet.

1.3 Et stokastisk forsøk
Kast med pappbeger eller mynt kaller vi stokastiske forsøk. Vi vet ikke helt hva det vil ende
med: Det er tilfeldig.

I matematikken har du møtt matematiske modeller som funksjoner. De beskriver sammenhen-
gen mellom to størrelser. Et eksempel er at sammenhengen mellom volumet av ei eske, V , og
sida,x, i grunnflata er gitt ved:

V (x) = x2(120− 2x)

Her er det ikke rom for tvil. Hvis sida er 40 cm, vil volumet være

V (40) = 402(120− 2 · 40) = 64000

Vi kaller en slik modell for deterministisk. Det er bare ett eneste resultat når vi vet en innverdi.
Slik er det ikke i stokastiske forsøk som beskrives av stokastiske modeller. Vi aner ikke hva som
kommer til å skje når vi kaster en terning eller trekker et tilfeldig kort fra en kortstokk. Alle er
eksempler på stokastiske forsøk. Sjøl om vi ikke kan si akkurat hva som vil skje, kan vi si noe
om hva som er mulig kan skje. Vi kan også gjenta forsøkene flere ganger.
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Definisjon 1 Stokastisk forsøk

I et stokastisk forsøk kan vi
1. ikke forutsi hva resultatet av forsøket blir
2. gjenta forsøket flere ganger under samme forhold
3. beskrive de mulige utfallene av forsøket

1.4 Representasjon av sannsynlighet

Som et areal
Vi kan framstille sannsynlighet som et areal. Bruker vi bokstaven A som en erstatning for at
noe skal skje, at du skal få en meteoritt i hodet eller vinne i Lotto, kan det gule arealet under
vise hvor sannsynlig det er.

Tenk deg at dette er et åpent område og at det regner jevnt fordelt. Hvor stor del av de totale
regndråpene vil falle på den gule delen? Svaret blir det samme som sannsynligheten for at A
skal skje.

1.5 Noen ord og uttrykk

Utfall
Et utfall er et resultat av et stokastisk (tilfeldig) forsøk. Kaster vi tegnestift har vi utfallene
«spiss opp» eller «spiss ned». Kaster vi en terning er eksempler på utfall: «firer», «ener», osv.

Definisjon 2 Utfall

Et utfall er ett av de enkelte resultatene et stokastisk forsøk kan få

Utfallsrom
Et utfallsrom er alle mulige utfall et forsøk kan ha. Ser vi på det tilfeldige forsøket å kaste en
ideell terning med seks sider er utfallsrommet at terningen ender med en, to, tre, fire, fem eller
seks øyne opp. Slik:

Med symboler kan vi skrive:

U= {1,2,3,4,5,6}

Inne i krøllparentesene står elementene, alle de enkelte delene, som utgjør mengden. Kaster vi
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en tegnestift er utfallsrommet

U= {«spiss opp», «spiss ned»}

Legg merke til at vi må ha med alle utfallene i utfallsrommet.

Definisjon 3 Utfallsrom

Utfallsrommet er mengden av alle utfallene ved et stokastisk forsøk

Hendinger
Det benyttes flere ord som betyr det samme. Mens noen kaller det en begivenhet, bruker andre
hendelse, eller hending. Alle ordene betyr det samme. Uttrykk som «minst fire» og «to mynt
på rad» kaller vi hendinger. Vi bruker store bokstaver som symboler for hendinger. Bokstavene
kan vi velge sjøl slik disse eksemplene viser.

M − minst fire i et terningkast
B − trekke en knekt fra en kortstokk

Disse hendingene blir da
M = {4, 5, 6}

B = {J
r , J

♠ , J
♣ , J
q}

En hending kan omfatte ingen, ett eller flere av utfallene i utfallsrommet.

Definisjon 4 Hending

En hending er en delmengde av utfallsrommet

Fortsetter vi med eksemplet vårt kan vi definere denne hendingen:

A - hendingen spiss opp

Vi vil også få behov for å skrive det motsatte av at A inntreffer. Det kalles den komplementære
hendinga og leses som «ikke A». Vi skriver det slik

Ā - hendingen ikke spiss opp

I tilfellet med tegnestiften kan vi bruke symbolene når vi tegner opp de to hendigene.

ĀA
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Disjunkte utfall
Disjunkte utfall er utfall som utelukker hverandre. Et eksempel er om vi kaster en mynt. De
to utfallene kron og mynt kan ikke inntreffe samtidig. De utelukker hverandre og er derfor
disjunkte.

Avhengige eller uavhengige hendinger
Hendinger kan enten være avhengige av hverandre eller så er de uavhengige. Kaster vi en
terning, tegnestift eller en mynt er utfallene i hvert kast uavhengige av hverandre. Får vi en
sekser i et terningkast er det akkurat like sannsynlig å få en sekser neste gang. Uansett hva vi
innbiller oss så brukes ikke sekserne opp. Slik er det ikke alltid. Se bare på hva som skjer når
vi trekker fra ei urne.

Vi trekker kuler fra urna uten å legge tilbake. Etter å ha trukket ei kule vil neste utfall være
påvirket av det forrige. Trekker vi ei svart kule blant de fire som er i urna, vil sannsynligheten
for å trekke svart neste gang være noe annet enn tidligere. De to hendingene er avhengige av
hverandre.

1.6 Symboler
I sannsynlighetsregning får vi behov for å skrive «sannsynligheten for» gjentatte ganger. Da
benytter vi symbolet P som er en forkortelse av probability. Et annet symbol en også kan støte
på er Pr.

Definerer vi hendingen

G - å få en gutt ved en fødsel

kan vi nå skrive at

P (G) = 0.514

Det leser vi som «sannsynligheten for å få en gutt ved en fødsel er 0.514. Denne sannsynligheten
er henta fra SSB og artikkelen: Blir det gutt eller jente?

1.7 Sannsynlighetsmodeller
Når vi angir sannsynlighetene for alle utfallene for et stokastisk forsøk gir vi en sannsynlighets-
modell for forsøket. For en slik sannsynlighetsmodell stilles det visse krav.
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Den russiske matematikeren Kolmogorov1 (1934) har gitt betingelsene for en sannsynlighets-
modell som aksiomer.

Definisjon 5

(i) Sannsynligheten for et utfall er fra og med 0 til og med 1
(ii) Summen av sannsynlighetene til alle utfallene i utfallsrommet er lik 1
(iii) Sannsynligheten til en hending er lik summen av sannsynlighetene til utfallene som

utgjør begivenheten
(iv) Sannsynligheten for en begivenhet som ikke kan skje, den umulige begivenheten ∅,

skal være lik 0

At summen av sannsynlighetene skal være 1 har vi vært innom tidligere da vi tegnet figuren
under.

ĀA

Hele arealet er 1. Det betyr at sannsynligheten for komplementære hendinger skal være like 1.

Teorem 1

For en hendelse A og komplementærhendelsen Ā gjelder

P (A) + P (Ā) = 1

Av teorem 1 følger det at A∩Ā = ∅. Kaller vi hele utfallsrommet for U har vi også at A∪Ā = U
og at P (U) = 1

1Andrej Nikolajevitsj Kolmogorov (1903 – 1987) kjent russisk matematiker
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En mer matematisk definisjon av sannsynlighetsmodell

Definisjon 6 Sannsynlighetsmodell

La funksjonen p ha utfallsrommet U = {u1, u2, ......., un} som definisjonsmengde og la
verdiene p(u1), p(u2), ...., p(un) være slik at

• 0 ≤ p(u) ≤ 1 for alle utfall i U
• p(u1) + p(u2) + ....+ p(un) = 1

• Hvis A er en begivenhet, så er: p(A) =
∑
u∈A

p(u)

• p(∅) = 0

Vi kaller funksjonen p for en sannsynlighetsfunksjon og verdien p(u) for sannsynligheten
for utfallet u.
Vi sier at U sammen med p utgjør en sannsynlighetsmodell for forsøket

Uniform sannsynlighet
Kaster vi en ideell terning vil sannsynligheten for at den lander på ei gitt side være lik 1

6
.

Sannsynligheten gjelder for alle sider og er like stor: sannsynligheten er uniform

Definisjon 7 Uniform sannsynlighetsmodell

I en uniform sannsynlighetsmodell er alle enkeltutfallene like sannsynlige. Hvis utfalls-
rommet er U = {u1, u2, . . . , un} betyr det at

P (u1) = P (u2) = · · · = P (un)

Egentlig er dette en diskret uniform sannsynlighetsmodell siden den bare gjelder for enkeltut-
fallene og ikke i et kontinuerlige område.

Teorem 2

I en uniform sansynlighetsmodell med n mulige utfall er

P (u1) = P (u2) = · · · = P (un) =
1

n

Definisjon 8

Hvis A er en delmengde av utfallsrommet U definerer vi

n(A) = antall elementer i mengden A

Legg merke til at n er en funksjon som gir antallet som utverdi.
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Et mye brukt forhold

Teorem 3

I en uniform sannsynlighetsmodell med m mulige utfall er

P (A) =
n(A)

m

Skriver vi om det over på en mer generell form kommer vi fram til denne brøken for uniform
sannsynlighet

P ( at noen skal skje) =antall gunstige for at det skjer
antall mulige

Sannsynlighet som forholdet mellom antall gunstige og antall mulige er sentral i sannsynlig-
hetsregninga.
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2 Illustrasjon av utfallsrom

2.1 Venndiagram
En måte å illustrere utfallsrom på er å tegne venndiagram. De er oppkalt etter en engelsk
matematiker som het John Venn (1843-1923). Venndiagram forteller ikke noe om sannsynlighet,
men viser sammenhengen mellom hendinger på en fin måte.

Vi ser på et eksempel: I en klasse med 30 elever ble det gjennomført en undersøkelse om hvor
mange elever som liker saftis og hvor mange elever som liker fløteis. I undersøkelsen svarte 22
elever at de likte fløteis, 19 svarte at de likte pæreis, mens tre elever svarte at de ikke likte
noen av istypene. Det er en enkel undersøkelse, men antall i hver kategori kan være vanskeig å
illustrere.

Legger vi sammen alle antallene i undersøkelsen: 22 + 19 + 3 får vi 44. Det er langt flere elever
enn det er i klassen, så det regnestykket må være feil. Problemet er at vi regner med elevene
som både liker fløte- og pæreis to ganger. Det kan vi illustrere i et venndiagram.

30

22 19

8 14 5

3

I venndiagrammet kan vi få fram hvor mange som liker begge de to istypene. Vi tegner sirkler
for å vise mengden av alle fløteislikere. Så tegner vi en sirkel for alle pæreislikerne. De to
sirklene må overlappe hverandre siden mange liker begge deler. Et venndiagram viser helheten
og hvordan antall fordeler seg.

2.2 Union og snitt
For å illustrere union og snitt er det vanlig å bruke venndiagram. De er oppkalt etter en engelsk
matematiker som het John Venn (1843-1923). Venndiagram forteller ikke noe om sannsynlighet,
men viser sammenhengen mellom hendinger på en fin måte. La oss se på et eksempel. Vi kaster
den samme terningen som så mange ganger før. Da kan vi få disse hendingene

A− antall øyne er et oddetall
B − antall øyne er mindre enn fem

Skriver vi ned elementene i utfallene i de to hendingene får vi
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A =

B =

Eller skrevet matematisk med elementer

A = {1, 3, 5}
B = {1, 2, 3, 4}

Union
Tidligere var Norge i en union med Sverige. De to landene var slått sammen til ett land. Det
er nettopp det en union er: En sammenslåing av to mengder.

En union kan vi vise i et venndiagram på denne måten

A B

A ∪B

Venndiagrammet minner også litt om Norge og Sverige?

Hva blir unionen mellom de to hendingene A og B?

Bruker vi de matematiske symbolene kan vi skrive:
A ∪ B = {1, 3, 5} ∪ {1, 2, 3, 4} = {1, 2, 3, 4, 5}

∪ er det matematiske symbolet for union

«Eller» er et stikkord når det gjelder union siden unionen vil være alle elementene som er med
i mengden A eller i mengden B.

Snitt
Et snitt er det som er felles for to mengder. I et venndiagram kan vi framstille et snitt slik

A B

A ∩B
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Nå kan vi skrive snittet av de to mengdene A og B

A ∩B = {1, 3, 5} ∩ {1, 2, 3, 4} = {1, 3}

Bare tallet 1 og 3 er felles for de to.

∩ er det matematiske symbolet for snitt

«og» er et stikkord siden snittet består av de elementene som fins i både den ene og den andre
mengden.

Noen andre eksempler
Alt annet enn snittet av A og B kan illustreres slik

A B

A ∩B

I logikken kan A ∩ B også skrives som A xor B. På norsk er også neller brukt for xor

Venndiagrammet som viser mengde A, men ikke mengde B blir da slik

A B

A− B

2.3 Krysstabell
Vi kan starte med et eksempel hvor det er gjennomført en spørreundersøkelse

Eksempel 1

Det ble gjennomført en spørreundersøkelse blant elevene som deltar i et matematikkkurs.
Det ble spurt om kjønn og om egenevaluering alltid ble levert. Til sammen ble 120 elever
spurt. 42 av dem svarte at de alltid skrev egenvurdering. 61 av elevene var gutter. 29 av
jentene svarte at de alltid leverte egenevaluering.

Vi ønsker å framstille dette resultatet og alle opplysningene vi har på en oversiktlig måte. Da
er en krysstabell et nyttig verktøy. Opplysningene vi får i eksemplet er
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120− summen av alle elevene
61− antall gutter
29− antall jenter som alltid leverte egenevaluering
42− antall elever som alltid leverte egenevaluering

Opplysningene gjør at vi kan sette opp en krysstabell og legge til alle verdiene som mangler.

Gutter Jenter Sum
Har alltid levert 13 29 42
Har ikke levert 48 30 78

Sum 61 59 120

I tabellen er de manglende verdiene markert med denne fargen.

En slik framstilling gjør at vi finne betinga sannsynlighet for alle mulige hendinger.
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3 Empirisk sannsynlighet

3.1 Introduksjon
For å finne en empirisk sannsynlighet må vi gjenta et stokastisk forsøk mange ganger og så se
på den relative frekvensen av utfallene.

Vi kan ta et eksempel som er gjennomført med noen elever. De ble delt i åtte grupper og hver
gruppe kastet en tegnestift to hundre ganger. For hvert kast noterte de om tegnestiften landet
med spissen opp eller spissen ned. Her er resultatet:

A B C D E F G H Sum
opp 123 107 120 125 105 126 120 126 952
ned 77 93 80 75 95 74 80 74 648

Nå kan vi regne ut sannsynligheten for at denne tegnestiften skal lande med spissen opp ved å
se på forholdet antall ganger den lander med spissen opp og antall ganger den ble kastet:

952

952 + 648
= 0.595

Hvor nøyaktig vi kan tallfeste denne sannsynligheten er et annet spørsmål, men vi kan runde
av til 0.60.

Vi har nå funnet sannsynligheten som en relativ frekvens:

Sannsynligheten for spiss opp =Antall ganger med spissen opp
Totalt antall kast

Det er viktig at dette gjelder for den samme type tegnestift som ble benyttet i dette forsøket.
Vi kan tenke oss at vi ville fått et annet resultat om tegnestiften var annerledes utformet.

3.2 De store talls lov
Forsøket illustrer de store talls lov – et svært viktig grunnlag for sannsynlighetsregningen.

Teorem 4 Store talls lov

Ved økende antall forsøk hvor utfallene er uavhengige vil den relative frekvensen til hen-
dingen A gå mot sannsynligheten for A

fn(A)

n
→ P (A) når x → ∞
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3.3 Simuleringer
Går vi til ordboka finner vi denne definisjonen

simulere simulere v2 (fra latin; beslektet med simili-)
1 forestille seg, late som
2 etterligne et (konstruert) hendelsesforløp (ved hjelp av datamaskin)

Her gjelder den siste definisjonen. Vi etterlikner et fenomen. Ofte kan det være strevsomt å
gjennomføre forsøk som krever gjentatte kast eller annen aktivitet. De må gjentas mange ganger
før vi kan være sikre på resultatet. Da kan det være greit å simulere omtrent det samme. Gjør
vi det er det viktig å huske at vi ikke utfører forsøket. Det blir bare simulert ved hjelp at en
algoritme genererer tilfeldige tall.

I GeoGebra kan vi simulere et terningkast ved å be om et tilfeldig heltall, fra og med en og til
og med seks, ved kommandoen

TilfeldigMellom[1,6]

På den måten kan vi simulere et kast med en ideell terning.

Regneark inneholder samme muligheter for simuleringer.

En del programvare, og noen kalkulatorer, har muligheten for å definere rekursive formler. Et
eksempel er programvaren TI-Nspire hvor det er mulig å definere rekursive formler. Legger vi
inn denne kommandoen:

u1(n)=u1(n-1)+randInt(0,10)

betyr det at u1n skal være lik det forrige leddet u1n−1 addert med et tilfeldig tall mellom null
og ti. Lager vi en ny rekursiv formel

u2(n)=((u1(n-1))/(n-1))

kan det gi oss den relative frekvensen.
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En programvare som benyttes mye i statistikk er R. Programvaren kan være krevende å benytte,
men gir gode muligheter.

Simuleringer kan vi også gjennomføre ved programmering i Python. I dette kompendiet kommer
vi til å benytte Python.

3.4 Simulering med Python
Når vi skal simulere stokastiske forsøk med Python vil vi få bruk for tilfeldig genererte tall.
Da må vi importere en modul som inneholder algoritmer som gjør det mulig. Modulen random
har to funksjoner som genererer «tilfeldige tall» eller pseudo-tilfeldige tall. Når vi må være litt
forsiktig med å kalle dem helt tilfeldige tall skyldes det at de en generert ved en algoritme. Det
fins flere måter å gjøre det på og i noen tilfeller, særlig på enkle kalkulatorer, kan en oppleve at
det de samme tallene som gjentar seg. I Python er det nok mer avansert, men samtidig viktig
å være klar over at vi nettopp simulerer. Vi kaster ikke en terning eller en mynt, men vi får ei
datamaskin til å generere pseudo-tilfeldige tall.

La oss se på en programkode som kaster en terning 100 ganger.
1 from random import randint #Importerer modulen random
2
3 for i in range(100): #gjentar det som er rykket inn under 100 ganger
4 kast = randint(1,6) #genererer et tall fra og med 1 til og med 6
5 print(kast)

Programkode 3.1: Terningkast

Programkode 3.1 består av ei for-sløyfe hvor det som er rykket inn under gjentas flere ganger.
Variabelen i holder styr på antall ganger. Det står at den skal være i området (range) fra og med
null og opp til 100. For hver gjentakelse, eller iterasjon, i sløyfa økes i med én. Kommandoen
randint(1,6) genererer et tilfeldig heltall fra og med 1 til og med 6. Denne verdien tilordnes
til variabelen kast. Til slutt skrives verdien til variabelen ut til skjermen.
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Tilfeldige tall?

Datamaskina kan verken kaste terninger eller mynter. For å generere et tilfeldig tall
utføres en kode med en algoritme. Algoritmen som benyttes i dette tilfellet kalles The
Mersenne Twister. Du kan lese mer her: Mersenne Twister. Navnet kommer fra Mersenne-
primtall som er 219937−1. Denne verdien er lengden på den lengste perioden, antall tall
før det hele begynner å gjenta seg. Tilfeldige tall fra en slik algoritme kalles derfor
pseudotilfeldige tall siden de ikke egentlig er helt tilfeldige. Det er teorien – for våre
simuleringer gjør disse verdiene jobben. Algoritmen tar utgangspunkt i en startverdi.
Den kan vi spesifisere, men om vi ikke gjør det hentes dem fra operativsystemet. Da
er det som regel klokka som benyttes. Hvis vi vet denne startverdien kan vi også fin-
ne ut hvilke tall som genereres. Les mer om modulen random i dokumentasjonen htt-
ps://docs.python.org/2/library/random.html

Vi kan utvide programmet til å finne sannsynligheten for å få en sekser når vi kaster en terning
flere ganger.

1 from random import randint
2 s = 0 # antall seksere
3
4 for i in range(1000):
5 terning = randint(1,6)
6 if terning == 6:
7 s = s + 1
8 r = s / (i+1)
9

10 print(r)

Programkode 3.2: Simulering av terningkast

I programkode 3.2 teller vi opp antall seksere. En hvis-setning gjør det: if terning == 6:.
Hvis det tilfeldige tallet er lik 6, så skal vi øke telleren med 1. For hver gjentakelse regnes den
relative frekvensen ut. Etter at for-sløyfa er gjennomført, skrives den relative frekvensen ut.

I mitt tilfelle ble resultatet

0.172

Vi observerer at det ikke er langt unna den antatte sannsynligheten for en ideell terning 1
6
≈

0.166666 · · ·

Det hadde vært fint å fått illustrert dette grafisk også. Vi kan utvide programmet vårt for å få
til det.

1 # Store talls lov: Terningkast
2 # Relativ frekvens for å få en sekser
3 from random import randint
4 import matplotlib.pyplot as plt
5 s = 0 # antall seksere
6 xverdier = []
7 rverdier = []
8 for i in range(1000):
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9 terning = randint(1,6)
10 if terning == 6:
11 s = s + 1
12 r = s / (i+1)
13 xverdier.append(i+1)
14 rverdier.append(r)
15
16 plt.style.use("seaborn-darkgrid")
17 plt.xlabel("Antall kast")
18 plt.ylabel("Relativ frekvens")
19 plt.title("Store talls lov")
20 plt.plot(xverdier,rverdier)
21 plt.show()
22 print(r)

Programkode 3.3: Grafisk framstilling

Kort forklart må vi importere en modul som kan vise grafikk og vi må benytte lister. Figur
3.1 viser resultatet når jeg kjørte programmet. Hver oppmerksom på at slike simuleringer gir
forskjellig resultat for hver gang.

Figur 3.1: Relativ frekvens seksere
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4 Teoretisk sannsynlighet
4.1 Introduksjon
Vi skal stort sett se på teoretisk sannsynlighet. En teoretisk sannsynlighet kan vi finne ved
teoretiske betraktninger: Vi prøver å gjøre noen antakelser for så å finne en sannsynlighet
for at noe skal inntreffe. Dette er en annen innfallsvinkel enn den empiriske, hvor vi utfører
stokastiske forsøk for å finne ut en sannsynlighet.

Et mye brukt forhold
Skriver vi om det over på en mer generell form kommer vi fram til denne brøken for sannsyn-
lighet

P ( at noen skal skje) =antall gunstige for at det skjer
antall mulige

Sannsynlighet som forholdet mellom antall gunstige og antall mulige er sentral i sannsynlig-
hetsregninga.

Et eksempel på hvordan vi kan beregne en sannsynlighet er å trekke et kort fra en godt stokka
kortstokk. La oss si at vi ønsker å finne sannsynligheten for å trekke et ess fra kortstokken.
Totalt er det 52 kort i kortstokken. Kortene som vil være gunstige for oss er

A
r

rA

r

A
♠

♠A

♠

A
♣

♣A

♣

A
q

qA

q

Det er fire kort. Vi definerer hendingen

A - trekke et ess

Sannsynligheten blir nå

P (A) =
4

52
=

1

13

4.2 Enten den ene eller den andre
I sannsynlighetsregninga er det noen situasjoner som går igjen. Noen situasjoner kan stille flere
krav. Slike situasjoner kan vi stort sett dele i to: «enten eller» eller «både og». Vi starter med
å se på den første.

Vi kaster en terning
Et enkelt eksempel et terningkast. Vi kaster en ideell terning og skal finne sannsynligheten for
at vi enten får fire eller fem.
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Utfallrommet for forsøket er da:

Vi definerer hendingene

A− terningen lander med fire øyne opp
B − terningen lander med fem øyne opp

Da kan vi benytte symbolene til å skrive sannsynligheten for at vi enten får fire eller fem.

P (A ∪ B)

Tenker vi oss sannsynlighetene som arealer kommer vi fram til denne figuren.

1
6

1
6

1
6

1
6

1
6

1
6

Dette kunne vi også tegnet som et sektordiagram

Hvor stor areal utgjør det som er gunstig for hendingen A∪B? Jo, det må bli det gule arealet:
1
6
+ 1

6
= 2

6
= 1

3

En annen måte å finne det på er å se på utfallrommet og hva som er gunstig for utfallet. Teller
vi opp finner vi at to av totalt seks hendinger er gunstige: 2

6
= 1

3

Da har vi at
P (A ∪B) =

1

3

Vi ser at resulatet blir akkurat det samme!

Kast med to terninger
Vi vil benytte kast med to terninger som et eksempel framover. Tenker vi oss at vi har to
terninger, en hvit og en svart, og kaster disse vil utfallsrommet være:
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La oss se på et eksempel: Hva er sannsynligheten for at terningene enten har summen tre eller
6?

Vi definerer hendingene

A− summen av øynenen er tre
B − summen av øynene er seks

Vi skal finne P (A ∪ B)

La oss først se på utfallene og telle antall mulige og antall gunstige. Her er de som gir summen
tre:

Her er de gunstige for å få seks:

Teller vi opp ser vi at vi har sju gunstige utfall. Totalt er det 36 mulige utfall. Sannsynligheten
blir da:

P (A ∪ B) =
7

36

La oss finne sannsynligheten ved å tenke se på sannsynlighetene P (A) og P (B).

P (A) =
2

36

P (B) =
5

36

Hva blir summen av de to? Jo, 2
36
+ 5

36
= 7

36
Legg merke til at de to hendingene ikke hadde noe

felles utfall. Utfallene er disjunkte.
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Teorem 5

For to disjunkte hendelser A og B gjelder

P (A ∪B) = P (A) + P (B)

Hva om de to hendingene har felles utfall?

Vi kaster to terninger igjen og definerer disse to hendingene:

C − den hvite lander med 1 opp
D − den svarte lander med 1 opp

Her er utfallene som er gunstige for C

Her er utfallene som er gunstige for D

Et utfall er felles for C og D

Hvis vi skriver ned sannsynlighetene får vi

P (C) =
6

36

P (D) =
6

36

P (C ∩D) =
1

36

Når vi nå skal finne sannsynligheten for P (C ∪D) må vi passe på at vi ikke tar med et utfall
flere ganger. Teller vi opp de gunstige utfallene får vi 11. Vi har at P (C ∪D) = 11

36

Det samme finner vi slik

P (C ∪D) = 6
36

+ 6
36

− 1
36

= 11
36

Vi må trekke fra sannsynligheten for det felles utfallet P (C ∪D) = 11
36

.

Det gir oss addisjonsregelen for to utfall, A og B, som ikke er disjunkte
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Teorem 6

For to ikke disjunkte utfall A og B har vi at

P (A ∪ B) = P (A) + P (B)− P (A ∩ B)

Python

Simulering med Python
Python kan benyttes for å simulere terningkast. Med kommandoen randint(1,6) får
vi generert et tilfeldig tall i mengden {1, 2, 3, 4, 5, 6}. Kommandoen er ikke innebygd i
Python, så vi må hente den inn fra et bibliotek som heter random. Det gjør vi med linja
from random import randint. Det gir oss muligheten til å generere pseudo-tilfeldige
tall. Ved å lage ei for-løkke kan vi gjenta «kastene» og telle opp resultatet for hver gang.

Ved simuleringer er det igjen viktig å være klar over at vi ikke kaster en terning, men
lar teknologien prøve å etterlikne et terningkast. Her er hvordan vi kan gjøre det med
Python-kode:

1 from random import randint
2
3 ant_kast = 1000
4 teller_1 = 0
5 teller_2 = 0
6 teller_3 = 0
7
8 for i in range (ant_kast):
9 terning_1 = randint(1,6)

10 terning_2 = randint(1,6)
11 if terning_1 == 1:
12 teller_1 = teller_1 + 1
13 if terning_2 == 1:
14 teller_2 = teller_2 + 1
15 if terning_1 == 1 or terning_2 == 1:
16 teller_3 = teller_3 + 1
17
18 print("Sannsynlighet for at terning 1 blir 1: ", teller_1/ant_kast)
19 print("Sannsynlighet for at terning 2 blir 1: ", teller_2/ant_kast)
20 print("Sannsynlighet for at en av terningene blir 1: ", teller_3/

ant_kast)

Programkode 4.1: Kast med to terninger

I programkode 4.1 telles det opp hvor mange ganger vi får 1 når vi «kaster» 1000 ganger.
Resultatet skrives ut. I ett tilfelle ble dette resultatet:
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Sannsynlighet for at terning 1 blir 1:  0.169
Sannsynlighet for at terning 2 blir 1:  0.153
Sannsynlighet for at en av terningene blir 1: 0.298

Her 11
36

≈ 0.305556. Det er ikke langt unna resultatet av simuleringen.

4.3 Både og
I de tilfellene vi har sett på tidligere fant vi sannsynligheten når enten det ene, eller det andre,
kriteriet måtte oppfylles. Vi kunne addere sannsynlighetene. Nå skal vi se på situasjoner hvor
det stilles to krav og begge må oppfylles. La oss finne sannsynligheten for å få to seksere på rad
når vi kaster en ideell terning. Her er det to krav: vi må få sekser på første kast og på andre
kast. Desto fler krav som stilles, desto mindre blir sannsynligheten. Vi definerer hendingene

S − terningen lander med sekser opp
S̄ − terningen lander ikke med sekser opp

Ut fra geometrien til terningen kan vi anta at P (S) = 1
6
. Kaster vi bare en gang har vi tidligere

framstilte det som 1
6

av et kvadrat. Sannsynligheten representeres som en del av et areal.

1
6

Med et tilleggskrav vil denne sannsynligheten reduseres. Vi skal kaste terningen en gang til og
må få det med i arealmodellen vår. Sannsynligheten for at vi skal få en sekser til vil være 1

6
av

den forrige. Det kan vi framstille i denne figuren.
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1
6

1
6

En slik arealmodell har sine begrensninger. Hva om vi kaster en gang til og skal finne sann-
synligheten for tre seksere på rad? Vi kan kanskje representere det med en kube, men det
viser at mer komplekse stokastiske forsøk ikke kan representeres med areal. Sånn er det ofte
med arealmodeller, men for enkle situasjoner kan de bidra til å forklare hvorfor produktet av
delsannsynlighetene blir framgangsmåten for å finne sannsynligheten.

Valgtrær kan være lure
I et valgtre, eller et sannsynlighetstre, tegner vi opp hva vi skal gjøre og alle mulige utfall. I
tillegg skriver vi på sannsynlighetene. Her er et eksempel for de to terningkastene hvor det er
benyttet en indeks for å markere rekkefølgen på sekserene

1. kast

2. kast

P (S̄1 ∩ S̄2) =
5
6
· 5
6

S̄
2

5
6

P (S̄1 ∩ S2) =
5
6
· 1
6S2

1
6

S̄
1

5
6

2. kast

P (S1 ∩ S̄2) =
1
6
· 5
6

S̄
5
6

P (S1 ∩ S2) =
1
6
· 1
6S

1
6

S1

1
6

For å finne sannsynligheten for å få to sekser på rad må vi først få en sekser på første kast, så
må vi få en sekser på andre kast. På veien gjennom valgtreet minker sannsynligheten for hvert
steg. Valgtreet kan også bidra til å forklare at vi må multiplisere de to sannsynlighetene for å
finne svaret. Vi kan skrive det som

P (S1 ∩ S2) =
1

6
· 1
6

Vi kan også simulere det samme med regneark eller programmering og vise at de teoretiske
beregningene stemmer.
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Python

1 from random import randint
2 teller = 0
3 antall = 10000
4 for i in range(antall):
5 kast = randint(1,6) #første kast
6 if kast == 6:
7 kast = randint(1,6) #andre kast
8 if kast == 6:
9 teller = teller + 1

10
11 print("Realtiv freksvens: ", teller/antall)

Programkode 4.2: Simulering av to kast med terning

Etter å ha kjørt programmet fikk jeg

Realtiv freksvens:  0.0268

Et resultat som er svært nært 1
36

≈ 0.0277 og som viser at den teoretiske sannsynligheten
stemmer meget godt overens med den simulerte modellen.

Et tilsvarende forsøk vil være å kaste to terninger en gang. Tenk litt på det...det blir det samme!

Betinga sannsynlighet
I de tidligere eksemplene har hvert forsøk vært uavhengig av det andre: Å få en sekser på ett
kast er ikke avhengig av hva vi fikk på forrige kast. Det er ikke alltid tilfelle. La oss se på et
nytt eksempel.

Vi trekker kuler fra ei urne hvor det er 6 hvite og 4 svarte. Vi trekker uten å legge tilbake
kulene. Hva er sannsynligheten for å trekke først ei hvit kule og så ei svart?

Vi definerer hendingene

H1 − trekker ei hvit kule i første trekkingen
S2 − trekker ei svart kule i andre trekkingen

28



Nå kan vi skrive sannsynligheten vi skal finne som:

P (H1 ∩ S2)

Siden vi ikke legger tilbake kulene vi trekker vil utfallet av det første trekket påvirke sannsyn-
ligheten for det andre.

Sannsynligheten for å trekke ei hvit kule ved første trekk finner vi ved antall gunstige delt på
antall mulige. Det gir:

P (H1) =
6

10

Sannsynligheten for å trekke ei svart kule i andre trekk når vi vet at det er trukket ei hvit kule
først er:

P (S2 | H1) =
4

9

Legg merke til skrivemåten. Tegnet | leser vi som «gitt at». Denne sannsynligheten er betinga
av hva som skjedde i forrige trekk

Begge kravene må tilfredstilles og vi må finne produktet av de to sannsynlighetene

P (H1 ∩ S2) = P (H1) · P (S2 | H1) =
6

10
· 4
9

Da har vi funnet svaret P (H1 ∩ S2) =
6
10

· 4
9
= 4

15

Vi kan tegne et valgtre. Treet gir svar på denne oppgaven og alle andre varianter av de to
trekkene. Ut fra de hendingene vi allerede har definert får vi:

H2 − trekker ei hvit kule i andre trekkingen
S1 − trekker ei svart kule i første trekkingen

Valgtreet

1. trekk

2. trekk

P (S1 ∩ S2) =
4
10

· 3
9

S
2 |S

1

3
9

P (S1 ∩H2) =
4
10

· 6
9H2|S1

6
9

S
1

4
10

2. trekk

P (H1 ∩ S2) =
6
10

· 4
9

S
2 |H

1
4
9

P (H1 ∩H2) =
6
10

· 5
9H2|H1

5
9

H1

6
10
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Kan du lese hva sannsynligheten for å trekke ei svart kule i første trekk og så ei svart i andre?
Svaret må bli P (S1 ∩ S2) =

4
10

· 3
9
= 2

15
.

Produktsetningen
Vi lar A og B igjen være to hendinger. Da kan vi skrive produktsetningen som

Teorem 7 Den generelle produktsetningen

P (A ∩B) = P (A) · P (B | A)

Hvis hendingene er uavhengige vil P (B) = P (B | A) og vi har:

Teorem 8

For to uavhengige hendinger, A og B, gjelder

P (A ∩B) = P (A) · P (B)

En del eksempler på sannsyn Ikke binomisk og hypergeoemtrisk

4.4 Bayes teorem

Thomas Bayes
Mannen som har gitt navnet til den setningen vi skal se på er engelskmannen Thomas Bayes
(1702 - 1761). Han var både matematiker, statistiker og prest. Nå diskuteres det i hvor stor
grad han fortjener å ha navnet sitt foreviget i denne setningen. Han skrev den aldri slik vi nå
kjenner den i alle fall. Det han gjorde var en del eksperimenter og tanker knytta til det den
moderne varianten av setningen beskriver.

Figur 4.1: Thomas Bayes

La oss se nærmere på det. Ut fra produktsetningen (teorem 7) for avhengige hendinger har vi
at

P (A ∩B) = P (A) · P (B | A)
P (B ∩ A) = P (B) · P (A | B)

Nå har vi også at P (A ∩ B) = P (B ∩ A) og det betyr at
P (A) · P (B | A) = P (B) · P (A | B)
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Det gir oss en sammenheng mellom de to betinga sannsynlighetene.

Litt omformulert får vi setningen som er oppkalt etter Thomas Bayes.

Teorem 9 Bayes’ teorem

P (A | B) =
P (A) · P (B | A)

P (B)

Dette teoremet er nyttig i mange sammenhenger hvor det kan være enkelt å bestemme P (B | A)
og vi ønsker å finne P (A | B).

Vi kan se på det med et eksempel.

Et eksempel
En dag kjenner du deg syk. Det er ondt i hodet, halsen kjennes sår og nesen er tett. Fra
statistikken får vi opplyst at 90 prosent av alle som har influensa har akkurat de samme
symptomene som du nå har.

Videre kan vi lese at fem prosent av hele befolkningen vil få influensa dette året. Vi får også
opplyst at 20 prosent vil ha disse symptomene i løpet av året.

Spørsmålet er nå om hvor sannsynlig det er at du har fått influensa. I utgangspunktet virker
det ganske så sannsynlig - 90 prosent har jo disse symptomene! Det er her Bayes kommer inn
og forandrer litt på hva vi intuitivt opplever som sannsynlig.

Vi starter med å tegne et Venn-diagram hvor vi starter med hele populasjonen. Så kan vi tegne
en sirkel som markerer de fem prosentene som vil få influensa. Vi markerer også alle som vil ha
symptomene. Det gir en oversikt over opplysningene.

hele populasjonen

I ∩ S

S

20% av populasjonen
I5% av populasjonen

Før vi går videre definerer vi disse hendingene

I − har influensa
S − har symptomene
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Ut fra det vi allerede vet har vi disse sannsynlighetene

P (I) = 0.05

P (S) = 0.2

P (S | I) = 0.9

Vi ønsker nå å finne sannsynligheten for at du har influensa når du har disse symptomene:
P (I | S)

Her er det at teoremet til Bayes kan være til hjelp. Litt omskrevet med hendingene vi definerte
har vi at

P (I | S) = P (I) · P (S | I)
P (S)

Sannsynlighetene kjenner vi og kan sette inn

P (I | S) = P (I) · P (S | I)
P (S)

=
0.05 · 0.9

0.2
= 0.225

Ut fra opplysningene i eksemplet vårt har vi nå funnet ut at sannsynligheten bare er 0.225 for
at du skal ha influensa. Det er en sannsynlighet det kan være vanskelig å tenke seg til eller se
ut fra opplysningene.

Paradokset med falske positive
«The False Positive Paradox» oppstår ved all form for testing hvor testen ikke er helt sikker.
Er det en minste mulighet for feiltesting vil det være noen som tester positivt uten å være det.
Testes mange vil denne andelen bli større. Et argument mot massetesting av hele populasjonen
er derfor å unngå for mange falske positive.

Vi kan ta for oss en tenkt test som skal avgjøre om en person har en sykdom. Eksempler på
slike tester kan være både mammografi, prostatakreft, koronavirus eller andre sykdommer.

Vi starter med å definerer disse hendingene

S − har sykdommen
T − tester positivt
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La oss også gå ut fra at én prosent av alle har sykdommen. På fagspråket heter dette prevalens.
Det betyr at 99 prosent ikke har den. I hele populasjonen har vi da disse sannsynlighetene

P (S) = 0.01

P (S̄) = 0.99

I medisinske tester forteller sensitiviteten hvor god testen er til å oppdage sykdommen og er
definert som sannsynligheten for at prøven er positiv gitt at den som testes har sykdommen.
For en hurtigtest for koronavirus er det typisk 80 prosent, så vi kan gå ut fra den verdien i
eksemplet vårt.

Testens spesifisitet er sannsynligheten for at testen er negativ gitt av den som testes ikke har
sykdommen. La oss gå ut fra at spesifisiteten er 90 prosent. Det betyr at P (T̄ | S̄) = 0.9 og at
P (T | S̄) = 0.1.

Da har vi

P (T | S) = 0.8

P (T | S̄) = 0.1

Hva blir sannsynligheten for å ha sykdommen ved positiv test? Her er det Bayes kommer til
hjelp igjen.

P (S | T ) = P (S) · P (T | S)
P (T )

Nå må vi finne ut sannsynligheten for å teste positivt. Det kan enten skje for de som har
sykdommen eller for de som ikke har den. Sannsynligheten for de som ikke har den er

P (S̄) · P (T | S̄) = 0.99 · 0.1 = 0.099

Sannsynligheten for å teste positivt blant de som har sykdommen er

P (S) · P (T | S) = 0.01 · 0.8 = 0.008

Det gir
P (T ) = P (S̄) · P (T | S̄) + P (S) · P (T | S) = 0.099 + 0.008 = 0.107

Nå kan sette inn i formelen og regne ut

P (S | T ) = P (S) · P (T | S)
P (T )

=
0.01 · 0.8
0.107

= 0.07477

Sannsynligheten for å ha sykdommen gitt en positiv test er altså bare 0.07477 eller 7.477
prosent. Med de antatte verdiene ser vi at en overvekt med falske positive gjør sannsynligheten
liten.
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Vi kan illustrere det samme med denne figuren hvor både teller og nevner kommer fram.

Hele po-
pulasjonen

Har ikke
sykdommen
P (S̄) = 0.99

Fordeling

Har sykdommen
P (S) = 0.01

P (T | S) = 0.8 P (T | S̄) = 0.096
Begge grupper testes.
Testen er ikke helt sikker.

0.01 · 0.8 0.99 · 0, 096

Ved å benytte algebra er det mulig å eksperimentere. Vi kaller

p− prevalens
k − klinisk sensitivitet
s− spesifisitet

Da får vi

P (S | T ) = p · k
p · k + (1− p) · (1− s)

Det gir muligheten for eksperimentering ved å legge inn i et regneark
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Vi kan undersøke verdiene. Benytter vi det Folkehelseinstituttet oppgir for hurtigtester:

Gitt en god hurtigtest med klinisk sensitivitet på 80 % og spesifisitet på 99,96 %.

kan vi komme fram til samme tabell som de oppgir på sidene sine:

Prevalens i befolkningen
som testes

30 % 5 % 1 % 0.1 % 0.01 %

Sannsynlighet for at et po-
sitivt svar er sant (positiv
prediktiv verdi)

99,9 % 99,1 % 95,3 % 66,7 % 16,7 %

https://www.fhi.no/nettpub/coronavirus/testing/antigen-hurtigtester/

Legg merke til hvordan sannsynligheten endres med prevalens.
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5 Kombinatorikk
5.1 Kombinatorikk
Kombinatorikk er en egen del av matematikken som tar for seg kombinasjoner og opptellinger.

Oppdagelsen av DNA-molekylet1 er en av de store vitenskaplige gjennombruddene i vår tid.
DNA (deoksiribonukleinsyre) inneholder arvematerialet vårt og har fått stor betydning for
identifikasjon av individer. Molekylet består blant annet av fire baser: Adenin (A), guanin (G),
thymin (T) og cytosin (C). Menneskets genetiske kode er bygd opp av omtrent seks milliarder
av disse basene som en lineær sekvens. Tenker vi oss en sekvens med to baser fins det disse
variantene

AA GG TT CC
AG GA TA CA
AT GT TC CG
AC GC TG CT

For hver plassering er det fire baser det kan velges blant. Det gir 42 = 16 mulige kombinasjoner.
Med en sekvens på tre baser vil det være 43 = 64 muligheter. Når vi vet at hele sekvensen er
på seks milliarder baser vil det kunne gi 46 000 000 000 mulige kombinasjoner. Nå vil ikke alle disse
kombinasjonene kan forekomme i et menneske. Mindre enn én prosent av den genetiske koden
er individuell. Alle mennesker er nesten genetisk like.

Eksemplet viser hvordan kombinatorikk kan benyttes for å finne mulige kombinasjoner. I sann-
synlighetsregning må vi ofte finne antall gunstige, og antall mulige, kombinasjoner. Da får vi
bruk for kombinatorikken.

5.2 Multiplikasjonsprinsippet
La oss se på denne oppgaven:

Oppgave 1

Karoline skal på syforening og har plukket ut tre overdeler og to skjørt og ei bukse. Hvor
mange antrekk kan hun velge å ha på seg?

For å finne svaret har vi flere representasjoner som kan benyttes. Vi kan tegne en multiplika-
sjonstabell slik figur 5.1 viser. Da setter vi opp alle de ulike alternativene i rader og kolonner.

11953 av James Watson og Francis Crick. De to fikk Nobelprisen i fysiologi og medisin i 1962
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I hver rute finner vi kombinasjonene. En slik tabell er en god representasjon når vi har to
mengder med elementer som skal kombineres.

Figur 5.1: Multiplikasjonstabell

Alle de kombinasjonene som oppstår kan også kalles det kartesiske produkt. Den matematiske
definisjonen er slik:

Definisjon 9 Kartesiske produkt

La A og B være to mengder. Da vil A × B være mengden av alle kombinasjoner av
elementer i de to mengdene. A× B kalles det kartesiske produktet av de to mengdene.

Det dukker opp i forskjellige sammenhenger i både matematikk og informatikk, så det kan være
greit å vite hva det heter. Vi kan se det i multiplikasjonstabellen vi satte opp hvor hver rute
viser kombinasjonene.

Tar vi utgangspunkt i to mengder A og B hvor A = {a, b, c} og B = {d, e, f}, vil altså det
kartesiske produktet være alle kombinasjoner av elementene. Vi kan skrive det slik:

a b c
d (a,d) (b,d) (c,d)
e (a,e) (b,e) (c,e)
f (a,f) (b,f) (c,f)

En annen representasjon er å tegne et trediagram. I figur 5.2 ser vi først et valg for alle toppene,
og så kan vi se valgene for hver topp.

Figur 5.2: Trediagram

For de to mengdene A = {a, b, c} og B = {d, e, f} vil vi kunne tegne et trediagram ved å starte
med alle elementene i den ene mengden og så tegne alle elementene i den andre ut fra de første.

Disse representasjonene viser at det totale antall antrekk Karoline kan ha på seg er ni. Vi kan
multiplisere antall elementer i hver av de to mengdene som skal kombineres med hverandre.
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c

f

e

d

b

f

e

d

a

f

e

d

Figur 5.3: Trediagram

Det kalles multiplikasjonsprinsippet

Teorem 10 Multiplikasjonsprinsippet

Ved et sammensatt utvalg blir det totale antall kombinasjoner lik produktet av antallet
i hvert delvalg.

Python

Vi kan se på hvordan vi kan skrive ut et kartesisk produkt av to mengder med Python.
To for-sløyfer hjelper oss med det. Elementene i mengdene er lagt inn i lister og alle
kombinasjoner blir skrevet ut i programkode 5.1.

1 A = ["a", "b", "c"]
2 B = ["d", "e", "f"]
3 # Kartesisk produkt
4 for i in A:
5 for j in B:
6 print(i + ", " + j)

Programkode 5.1: Kartesisk produkt

Resultatet av dette programmet blir
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a, d
a, e
a, f
b, d
b, e
b, f
c, d
c, e
c, f

5.3 Vi trekker kuler fra ei urne
Vi skal se på forskjellige utvalg framover og vi skal prøve å knytte alle situasjonene til at vi
trekker kuler fra ei urne. I praksis vil vi finne kombinasjoner av personer, koder, lottotrekninger,
tipping og mye annet rart. Uansett vil det være mulig å trekke en analogi til det å trekke lapper
eller kuler fra ei urne. Vårt utgangspunkt er derfor at vi trekker kuler fra ei urne. I urna er det
ei gul, ei blå og ei rød kule. Figuren under viser urne med kulene.

Når vi trekker fra ei urne kan vi gjøre det på to forskjellige måter. Vi kan enten legge tilbake kula
vi trekker eller ikke. Det kaller vi med og uten tilbakelegging. En annen ting er at rekkefølgen
for hva vi trekker kan spille en rolle eller ikke. Det kaller vi ordna eller uordna utvalg. La oss
se litt mer på det. Vi har altså tre kuler vi kan trekke.

Vi skal trekke ut to kuler. Det gjør vi ved å trekke ei kule og så trekke ei ny kule.

5.4 Ordna utvalg med tilbakelegging
Vi starter med å tilfellet hvor vi trekker ei kule, observerer resultatet, legger kula tilbake og
trekker ei ny kule. Nå er vi også opptatt av rekkefølgen kulene trekkes i. Det betyr at trekker
vi ei rød kule først og så ei blå, så er det et annet resultat enn om de ble trukket i omvendt
rekkefølge.

Før du gå videre kan du tenke på hvilke resultat dette forsøket kan få.

Et spesielt tilfelle
Rekkefølgen spiller nå en rolle og vi legger tilbake kula vi trekker. Da kan vi ende opp med
disse kombinasjonene
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Hver gang vi trekker kan vi velge mellom tre kuler. Trekker vi to kuler vil antall kombinasjoner
bli 3 · 3 = 9.

Hvis det var 10 kuler med nummer fra 1 til 10 og vi skulle trekke tre ganger ville vi kunne få

10 · 10 · 10 = 1000 kombinasjoner.

Et generelt tilfelle
I det generelle tilfellet vil vi ha n kuler i urna og så trekke et utvalg på r. For hver kule kan vi
velge mellom n. Da vil antall kombinasjoner være

n · n · n · · ·n︸ ︷︷ ︸
r ganger

= nr

Et ordna utvalg med tilbakelegging
Trekker vi et utvalg på r elementer fra n elementer er antall kombinasjon for ordna utvalg
med tilbakelegging

nr

La oss se på et eksempel.

Eksempel 2

Et eksempel på et ordna utvalg med tilbakelegging er når vi tenker oss at vi ønsker å
sette opp ei tipperekke ved å trekke en lapp fra en boks. I den har vi tre lapper, en med
H, en med B og en med U på. Vi trekker, noterer på kupongen og legger tilbake lappen.
Et slikt ordna utvalg med tilbakelegging gir ei tilfeldig tipperekke.

Her ser vi at rekkefølgen spiller rolle, fordi hver lapp er resultatet på en spesiell kamp.
Vi må legge tilbake lappen vi trekker hver gang siden flere kamper kan få samme resultat.

Vi kan dele dette opp i flere trinn. For hvert trinn har vi tre muligheter. Trekker vi 12
kamper har vi da

312

mulige utvalg.

Python

Kombinasjonene kan programmeres som to nøsta for-sløyfer. En annen måte er å impor-
tere modulen itertools og benytte kommandoen product. Navnet kjenner vi igjen fra
kryssprodukt. Vi kan si fra om hvor mange vi velger med repeat. Programkode 5.2 viser
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hvordan.
1 import itertools as it
2 kuler = [1,2,3]
3
4 om = it.product(kuler,repeat=2)
5
6 for i in list(om):
7 print (i)

Programkode 5.2: Ordna utvalg med tilbakelegging

Vi får da denne utskrifta

(1, 1)
(1, 2)
(1, 3)
(2, 1)
(2, 2)
(2, 3)
(3, 1)
(3, 2)
(3, 3)

5.5 Ordna utvalg uten tilbakelegging
Vi forandrer litt på situasjonen og trekker kulene uten å legge tilbake. Den første kula vi trakk
beholder vi og så trekker vi ei ny kule. Et praktisk eksempel kan være at vi skal trekke kuler
hvor sifrene skal danne et tresifra tall hvor ingen av sifrene skal gjentas. Da kan vi tenke oss at
vi trekker ei kule og noterer oss nummeret, så trekker vi neste kule uten å legge tilbake kula.
Da får vi et ordna utvalg uten tilbakelegging.

0

1

2

3

4

5

6
7

8 9

Her har vi ti kuler og trekker tre kuler. Hvor mange kombinasjoner kan vi få? Først kan vi velge
blant ti kuler. Neste gang er det bare ni igjen. Antall kombinasjoner blir da

10 · 9 · 8 = 720

Et spesielt tilfelle
Går vi tilbake til å trekke fra urna med ei blå, ei rød og ei gul kule kan vi trea du trakk.
Hvor mange kombinasjoner kan vi da trekke disse kombinasjonene av et ordna utvalg uten
tilbakelegging
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I figuren er to og to kuler plassert sammen og alle kombinasjonene er vist. Siden vi ikke har lagt
tilbake etter hver trekning er dette et utvalg uten tilbakelegging. Siden rekkefølgen på kulene
avgjørende kaller vi dette et ordna utvalg.

Vi kan finne antall kombinasjoner på samme måte: 3 · 2 = 6. Ved første trekk kan vi trekke en
av tre forskjellige kuler. I andre trekk kan vi velge mellom to.

Et generelt tilfelle
I det generelle tilfellet er det n kuler i urna og vi trekker ut r kuler. Hvor mange kombinasjoner
blir det da? Tankegangen blir den samme som i det spesielle tilfellet og vi kan skrive uttrykket
slik

n · (n− 1) · (n− 2) · · · (n− r + 1)︸ ︷︷ ︸
r faktorer

På akkurat samme måte som i det spesielle tilfellet skal r faktorer multipliseres sammen. Vi
følger multiplikasjonsprinsipet. Når første kule skal plukkes er det n mulige som kan velges.
Den legges ikke tilbake. Da er det n − 1 mulige kuler. Slik fortsetter vi helt til vi kommer til
faktor nummer r, som vil være n− r + 1.

Nå er det vanlig å skrive om det på denne måten:

n · (n− 1) · (n− 2) · · · (n− r + 1) · (n− r) · · · 3 · 2 · 1
(n− r) · · · 3 · 2 · 1

Legg merke til at brøken kan forkortes slik at vi får uttrykket vi startet med. Grunnen til det
er at vi kan skrive uttrykket kortere hvis vi benytter fakultet. I matematikken har vi innført
en skrivemåte for produktet av alle hele tall fra 1 til n og det er n!. Det leser vi som n fakultet.
Med det mener vi:

n! = 1 · 2 · 3 · · · · · (n− 1) · n

når n ∈ N

Definisjon 10 Fakultet

La n ∈ N . Da vil n fakultet skrives som

n! = 1 · 2 · 3 · · · · · (n− 1) · n

Det gjør at vi kan skrive antall kombinasjoner for ordna utvalg uten tilbakelegging som

n!

(n− r)!

Andre skrivemåter for det uttrykket er n(r) (= n i r-faktoriell) eller nPr
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Et ordna utvalg uten tilbakelegging
Trekker vi et utvalg på r elementer fra n elementer er antall kombinasjon for ordna utvalg
uten tilbakelegging

nPr =
n!

(n− r)!

Benyttes digitale verktøy er kommandoen nPr(n,r) (kan variere litt, men et eller annet med
nPr). Bokstaven P kommer fra ordet permutasjon

Definisjon 11 Permutasjon

En permutasjon er ei ordna rekkefølge av elementer

Da kan vi også kalle det ordna utvalget for antall k-permutasjoner, eller ordninger, av en
r-mengde.

Her er noen eksempler på ordna utvalg med tilbakelegging

Eksempel 3

The Beatles besto av fire musikere: George, Ringo, Paul og John. To skal skrive en sang
sammen. Den første som trekkes skriver melodien og den neste skriver teksten. Hvor
mange slike par kan bandet danne?

I dette tilfellet spiller rekkefølgen en rolle og vi trekker uten tilbakelegging. Antall par
kan vi finne ved

n!

(n− r)!
=

4!

(4− 2)!

=
4 · 3 · 2 · 1

2 · 1
= 12

Python

Vi kan finne permutasjoner med Python, men det krever at vi importerer en modul som
heter itertools. Programkode 5.3 viser hvordan vi kan få skrevet ut permutasjonene.

1 import itertools as it
2 beatles = ["Ringo", "George", "Paul", "John"]
3 par = it.permutations(beatles,2)
4 for i in list(par):
5 print (i)

Programkode 5.3: Permutasjoner av The Beatles

Her er det kommandoen par = it.permutations(beatles,2) som trekker ut to elemen-
ter fra lista beatles og legger de i variabelen par. Resulatet blir da
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('Ringo', 'George')
('Ringo', 'Paul')
('Ringo', 'John')
('George', 'Ringo')
('George', 'Paul')
('George', 'John')
('Paul', 'Ringo')
('Paul', 'George')
('Paul', 'John')
('John', 'Ringo')
('John', 'George')
('John', 'Paul')

Hvis det er ønskelig med en litt penere utskrift kan utskrifta endres til print (i[0] +
" og "+ i[1]).

Eksempel 4

På langrennslaget er det seks langrennsløpere. Nå skal det tas ut et stafettlag. Det skal
være fire på stafettlaget. På hvor mange måter kan det gjøres hvis det trekkes vilkårlig?

Vi tenker oss at vi skriver navnene på n = 6 lapper. Så trekker vi ut r = 4 lapper.
Rekkefølgen spiller en stor rolle siden det er forskjell på å bli trukket ut til første eller
siste etappe. Hver løper kan trekkes ut bare en gang.

n!

(n− r)!
=

6!

(6− 4)!

=
6 · 5 · 4 · 3 · 2 · 1

2 · 1
= 360

Benytter vi den andre skrivemåten kan vi skrive

n(r) = 6(4) = 6 · 5 · 4 · 3 = 360

Python

For å finne antall r- permutasjoner av en r-mengde må vi definere en egen funksjon som
gjør det. For å kunne regne ut fakultet uten for mye egen programmering importerer vi
modulen math.

1 import math as m
2 n = 6
3 r = 4
4
5 def nPr(n,r):
6 perm = int(m.factorial(n)/m.factorial(n - r))
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7 return perm
8
9 print("Antall ordna utvalg uten tilbakelegging er ", nPr(n,r))

Programkode 5.4: Egendefinert nPr

GeoGebra kan også benyttes. Da må vi velge CAS-modulen og benytte kommandoen nPr

Figur 5.4: GeoGebra

5.6 Uordna utvalg uten tilbakelegging
En annen variant er å trekke uten å legge tilbake hver kule. Samtidig er vi bare opptatt av
resultatet: rekkefølgen kulene trekkes i spiller ingen rolle. Vi sier da at utvalget er uordna. Om
vi rekker først ei rød og så ei blå kuler, eller omvendt – resultatet er at vi sitter igjen med ei
rød og ei blå.

Et spesielt tilfelle
Da er situasjonen at vi trekker ei og ei kule uten å legge tilbake. Hvor mange kombinasjoner
av to kuler vil vi kunne få hvis rekkefølgen på kulene ikke spiller noen rolle?

Se på kulene i forrige figur. Hvis rekkefølgen ikke spiller noen rolle er det ikke forskjell på disse
to kombinasjonene:

Begge inneholder ei gul og ei blå kule. Går vi gjennom alle kombinasjonene i den forrige figuren
ender vi opp med disse:

Antallet kan vi finne ved å se på et ordna utvalg og se på hvor mange som inneholder de samme
to kulene. To kuler kan vi arrangere på to forskjellige måter. Antallet i et uordna utvalg blir
derfor halvparten av det antallet vi hadde i forrige eksempel.

Hva om det var 10 kuler med nummer fra 1 til 10 og vi skulle trekke tre ganger? Da ville vi
kunne få 10 · 9 · 8 = 720 ordna kombinasjoner.

I et uordna utvalg spiller ikke rekkefølgen noen rolle. De tre kulene vi trekker kan vi arrangere
på 3! = 6 forskjellige måter. Vi har da:

6 · antall uordna utvalg = antall ordna utvalg.

Noe som gir oss svaret 720
6

= 120 kombinasjoner.
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Et generelt tilfelle
Antall kombinasjoner når det er n kuler og vi trekker ut r. Da følger vi samme resonnement
som over:

r! · antall uordna utvalg = antall ordna utvalg

r! ·N =
n!

(n− r)!
=⇒ N =

n!

r!(n− r)!

Denne brøken har vi en egen skrivemåte for. Vi skriver den slik

n!

r!(n− r)!
=

(
n

r

)
Den kalles binomialkoeffisienten.

En annen måte å skrive det samme er nCr{n}{r}.

Et uordna utvalg uten tilbakelegging
Trekker vi et utvalg på r elementer fra n elementer er antall kombinasjon for uordna
utvalg uten tilbakelegging (

n

r

)
=

n!

r!(n− r)!

På kalkiser og datamaskiner finner vi binomialkoeffisienten ved å bruke nCr(n,k)

Eksempel 5

Et eksempel på et uordna uten tilbakelegging er om vi trekker 13 kort fra en kortstokk.
Hvor mange hender (kombinasjoner av de fem kortene) kan vi da få?

Kortstokken er allerede n = 52 lapper som allerede er ferdig påskrevet. Rekkefølgen spiller
ingen rolle siden det er den samme handa uansett hvordan du stiller den opp. Hvert kort
kan bare trekkes en gang.
Antall kombinasjoner finner vi slik

(
n

r

)
=

(
52

13

)
=

52 · 51 · 50 · ... · 40
13 · 12 · 11 · · · 1

= 635 013 559 600

Med slik store tall er det enkleste å regne ut med kommandoen nCr(n,k).

GeoGebra kan hjelpe oss. Igjen er det CAS-modulen vi må bruke
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Figur 5.5: GeoGebra

Eksempel 6

To av medlemmene i The Beatles må dele rom. Hvilke par kan vi danne?

Python

Python har heller ikke en innebygd kommando for å finne kombinasjonene ved et slikt
utvalg, men vi kan importere modulen itertools, som gir denne muligheten. Da får vi
tilgang til kommandoen combinations. I programkode 5.6 skrives også navnene ut hver
for seg.

1 import itertools as it
2 beatles = ["Ringo", "George", "Paul", "John"]
3 par = it.combinations(beatles,2)
4 #print(par)
5 for i in list(par):
6 print (i[0] + " og " + i[1])

Programkode 5.5: Uordna utvalg uten tilbakelegging

Ringo og George
Ringo og Paul
Ringo og John
George og Paul
George og John
Paul og John

5.7 Uordna utvalg med tilbakelegging
Det siste utvalget vi kan gjøre er et uordna utvalg med tilbakelegging. Ofte utelates dette, f.eks.
i kombinatorikken i den videregående skolen.

Et spesielt tilfelle
Igjen trekker vi fra den samme urna som tidligere. Vi legger tilbake og rekkefølgen spiller
ingen rolle. Da kan vi ta utgangspunkt i det ordna utvalget med tilbakelegging. Vi så at antall
kombinasjoner, når rekkefølgen hadde betydning, var ni. Når vi ser bort fra rekkefølgen minker
antallet med tre.
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Et generelt tilfelle
Generelt kan antall kombinasjoner for et uordna utvalg med tilbakelegging formuleres slik

Et uordna utvalg med tilbakelegging
Trekker vi et utvalg på r elementer fra n elementer er antall kombinasjon for uordna
utvalg med tilbakelegging (

n+ r − 1

r

)

Noen eksempler
Her er noen eksempler som viser situasjoner med uordna utvalg med tilbakelegging og hvordan
vi kan finne antall kombinasjoner.

Eksempel 7

Hvor mange utfall kan vi få ved å kaste to terninger når vi ikke tar hensyn til rekkefølgen?
For oss som har spilt yatzy er vi vant med å ikke tenke på rekkefølgen.

Vi har med andre ord tilbakelegging siden vi kan få samme resultat neste gang vi kaster
en terning.

(
n+ r − 1

r

)
=

(
6 + 2− 1

2

)
=

(
7

2

)
=

7 · 6
2 · 1

= 21

Eksempel 8

En kiosk selger bananer, epler og appelsiner. Du skal kjøpe fire frukter. Hvor mange
kombinasjoner kan du kjøpe?(

n+ r − 1

r

)
=

(
3 + 4− 1

4

)
=

(
6

4

)
= 15

Eksempel 9

Det skal trekkes ut to fra The Beatles som skal intervjues i to aviser. Hvem kan få de to
jobbene?
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Python

Python kan også finne disse kombinasjonene med kommandoen:
combinations_with_replacement. Programkode 5.6 viser bruken av kommandoen.

1 import itertools as it
2 beatles = ["Ringo", "George", "Paul", "John"]
3
4 um = it.combinations_with_replacement(beatles,2)
5
6 for i in list(um):
7 print (i[0] + " og " + i[1])

Programkode 5.6: Uordna utvalg med tilbkelegging

Resultatet når vi kjører dette programmet blir

Ringo og Ringo
Ringo og George
Ringo og Paul
Ringo og John
George og George
George og Paul
George og John
Paul og Paul
Paul og John
John og John

5.8 En oppsummering
Et utvalg er noe vi velger ut. I disse eksemplene har vi gjort det ved å trekke fra ei urne. Vi
har nå trukket både med og uten tilbakelegging og vi har sett på ordna og uordna utvalg. Hvis
vi trekker ut r elementer fra en mengde med n elementer, har vi fire hovedtilfeller. De kan vi
summere opp i denne tabellen.

Antall kombinasjoner

Gjør vi et utvalg av r enheter fra en mengde n vil antall kombinasjoner være

Med tilbakelegging Uten tilbakelegging

Ordna nr n!

(n− r)!

Uordna
(
n+ r − 1

r

) (
n

r

)
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5.9 Oppgaver
I oppgavene er det gitt noen situasjoner som kan omskrives til urnemodellen. Analyser situa-
sjonen ved å stille spørsmålene

• Er det med eller uten tilbakelegging?

• Spiller rekkefølgen noen rolle?

Prøv å løs oppgavene uten å se på løsningen.

Oppgave 2

Melodikonkurranse
Til en melodikonkurranse er det plukket ut 20 melodier. Hvor mange resultatlister med
10 melodier er det mulig å lage?

I slike oppgaver er det være lurt å finne ut om det er med tilbakelegging eller ikke og om
rekkefølgen spiller noen rolle.

Med tilbakelegging Uten tilbakelegging
Ordna □ ⊠
Uordna □ □

Her finner vi at det er et ordna utvalg uten tilbakelegging (OUT). Da kan vi benytte

n(r) =
n!

(n− r)!

Her er n = 20 og r = 10

20(10) =
20!

10!
= 670442572800

Bruker vi et digitalt verktøy er kommandoene ofte Pnr() eller nPr(). I GeoGebra vil vi finne
svaret ved nPr(20,10)

Oppgave 3

Middag
Du skal ut å spise middag sammen med vennene dine. Til sammen blir dere 12 personer.
Dit dere kommer kan dere velge mellom hamburgere, kylling og pizza. Hver bestiller en
rett. Hvor mange ulike bestillinger kan dere gjøre?

Hver av middagsgjestene kan velge mellom tre retter. For at hver person skal få det som blir
bestilt spiller rekkefølgen en rolle. Det er en forutsetning vi kan ta som kanskje ikke gjelder i
virkeligheten.

Med tilbakelegging Uten tilbakelegging
Ordna ⊠ □
Uordna □ □

Dette er et ordna utvalg med tilbakelegging (OMT) og vi finner svaret med

nr
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Her er n = 3 og r = 12
312 = 531441

Oppgave 4

Kodelås
En kodelås har seks taster som hver kan plasseres i fire forskjellige stillinger. Vi kaller
disse stillingene 1, 2, 3 og 4. Hvor mange tallkoder kan en lage til denne kodelåsen?

Her spiller rekkefølgen av sifrene en avgjørende rolle og vi bruker ikke opp tallene.

Med tilbakelegging Uten tilbakelegging
Ordna ⊠ □
Uordna □ □

Dette er et ordna utvalg med tilbakelegging (OMT) og vi finner svaret med

nr

Her er n = 4 og r = 6
46 = 4096

Oppgave 5

Elevråd
I en klasse er det 12 jenter og 10 gutter. Det skal velges tre representanter til elevrådet.
Representantene skal bestå av 2 jenter og 1 gutt. Hvor mange ulike utvalg kan dannes?

En representant kan ikke velges to ganger, så her er det ikke tilbakelegging. Så lenge det er
snakk om et utvalg spiller heller ikke rekkefølgen noen rolle.

Med tilbakelegging Uten tilbakelegging
Ordna □ □
Uordna □ ⊠

Da er det et uordna utvalg uten tilbakelegging (UUT) hvor vi kan finne antallet ved(
n

r

)

Antall kombinasjoner for jentevalg er:
(
12

2

)
= 66

Antall kombinasjoner for guttevalg er:
(
10

1

)
= 10

Disse kan igjen kombineres og vi finnet totalt antall kombinasjoner ved produktet av de to.

Antall mulige utvalg er 660
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Oppgave 6

Vaktmesteren
En vaktmester har to kartonger med 12 lyspærer i hver kartong. I kartong A er tre av
pærene defekte, mens to av pærene i kartong B ikke fungerer. Vaktmesteren henter to
pærer.
Hva er sannsynligheten for at begge pærene er defekte når:

a) han trekker en lyspære fra hver kartong
b) han trekker begge lyspærene fra kartong A
c) han tilfeldig velger en av kartongene og tar to pærer fra den kartongen

Ved å trekke fra en kartong for så å finne ut om han sitter igjen med defekte pærer spiller ikke
rekkefølgen noen rolle. Vi har heller ikke tilbakelegging.

Med tilbakelegging Uten tilbakelegging
Ordna □ □
Uordna □ ⊠

Dette er et uordna utvalg uten tilbakelegging hvor vi finner kombinasjonene med(
n

r

)
Her definerer vi to hendinger

A− trekker ei defekt pære fra kartong A
B − trekker ei defekt pære fra kartong B

Hva er sannsynligheten for at begge pærene er defekte når han trekker en lyspære
fra hver kartong?

P (A) =
3

12
=

1

4

P (B) =
2

12
=

1

6

P (A ∩ B) = P (A) · P (B) =
1

4
· 1
6
=

1

24
≈ 0.041667

Hva er sannsynligheten for at begge pærene er defekte når han trekker begge
lyspærene fra kartong A?

P (trekke to defekte pærer fra A) =
gunstige
mulige =

(
3
2

)(
12
2

) =
1

22
= 0.045455

Svaret kunne vi også funnet på en annen måte. Vi skal trekke to ganger og vi kan finne
sannsynligheten for hvert trekk

P (trekke to defekte pærer fra A) =
3

12
· 2

11
=

1

22
= 0.045455

52



Hva er sannsynligheten for at begge pærene er defekte når han tilfeldig velger en
av kartongene og tar to pærer fra den kartongen?

P (trekke to defekte pærer fra B) = gunstige
mulige =

1(
12
2

) =
1

66

Vi regner med at det er lik sannsynlighet mellom valgene av kartong A eller B. Da kan vi finne
svaret som

1

2
· 1

22
+

1

2
· 1

66
=

1

33
= 0.030303

Egentlig kunne vi brukt Bayes teorem

P (trekke to defekte pærer) = P (2 pærer | kasse A) · P (kasse A) + P (2 pærer | kasse B) · P (kasse B)

=

(
3
2

)(
9
0

)(
12
2

) · 1
2
+

(
2
2

)(
10
0

)(
12
2

) · 1
2
=

1

33
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6 Binomisk forsøk
6.1 Hva er et binomisk forsøk?
Ordet binomisk kommer fra latin og betyr opprinnelig «å ha to navn». Seinere, på 1600-tallet,
endra betydningen seg til å bety «å bestå av to deler». Det er i den betydningen ordet brukes
her. Et binomisk forsøk er et forsøk hvor vi kan ha to utfall. Ofte kaller vi det en suksess eller
en fiasko. Videre er det et forsøk hvor sannsynligheten for å få disse utfallene er det samme
hver gang. Alle delforsøkene skal også være uavhengige av hverandre.

La oss se på noen eksempler.

6.2 Et ektepar bestemmer seg for å få 6 barn
Dette er kanskje ikke et eksempel henta fra virkeligheten. Her er det vel snakk om en pseudo-
virkelighet? Uansett vil eksemplet illustrere et binomisk forsøk eller en binomisk forsøksserie.
Situasjonen er at en mann og ei dame bestemmer seg for å starte en familie. De gir seg ikke før
de har fått seks barn.

Hva er sannsynligheten for at de får to gutter og fire jenter?

Dette tilfredsstiller kravene til å kalles et binomisk forsøk. De gjentar forsøket seks ganger.
Det er to utfall: gutt eller jente. Det er samme sannsynlighet hver gang. Delforsøkene er ikke
avhengige siden kjønnet ved en fødsel ikke påvirker neste 1.

Sannsynligheten for å få en gutt er statistisk 0.513. Vi gir den sannsynligheten navnet p og
skriver: p = 0.513. Sannsynligheten for å få ei jente blir da: (1− p) = 1− 0.513 = 0.487

Vi definerer disse hendingene

G− de får en gutt
J − de får ei jente

Hvis oppgaven hadde vært å finne sannsynligheten for at de fikk en gutt, en gutt og så fire
jenter kunne vi regne ut det som

P (GGJJJJ) = 0.513 · 0.513 · 0.487 · 0.487 · 0.487 · 0.487 = 0.014803

Her viser rekkefølgen på bokstavene til rekkefølgen på hendingene. To gutter og fire jenter kan
de få ved flere kombinasjoner. Her er en tabell som viser alle kombinasjonene.

GGJJJJ JGGJJJ JJGGJJ JJJGGJ JJJJGG
GJGJJJ JGJGJJ JJGJGJ JJJGJG
GJJGJJ JGJJGJ JJGJJG
GJJJGJ JGJJJG
GJJJJG

1Dette kan diskuteres og at det er langt fra sikkert at det stemmer, men la ikke det forstyrre eksemplet. Her
er vi ute etter å forstå binomiske forsøk.
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Til sammen er det 15 kombinasjoner. Sannsynligheten for hver av de 15 er 0.014803 Sannsyn-
ligheten for å få to gutter og fire jenter blir da

15 · 0.014803 = 0.22205

Kanskje vi kan komme fram til en mer generell løsning? Det som ga litt problemer var å komme
fram til at det var 15 kombinasjoner?. En annen måte å spørre på er: Hvor mange måter kan vi
velge ut to gutter blant seks barn hvor resten er jenter. Vi kan spørre oss om hvilken type utvalg
er dette? Er det tilbakelegging? Nei, trekker vi en gutt er det bare en igjen. Spiller rekkefølgen
noen rolle? Nei, det er likegyldig bare vi får trukket to gutter. Da har vi et uordna utvalg uten
tilbakelegging. Antall kombinasjoner blir da

(
6

2

)
= 15

La oss gå over til å betrakte dette som en binomisk forøksserie. Med det mener vi at vi gjentar
et forøk med to utfall flere ganger. Binomisk betyr altså at vi har to utfall: Suksess eller fiasko.
Her er det gutt eller jente, så det passer ikke så godt med suksess og fiasko, men ofte benyttes
de to begrepene.

Bruker vi symboler kan vi skrive utregningen vi gjorde slik:

P (G) · P (G) · P (J) · P (J) · P (J) · P (J) = P (G)2 · P (J)4 = p2 · (1− p)4

Den samme sannsynlighet gjelder for kombinasjonen GJGJJJ

P (G) · P (J) · P (G) · P (J) · P (J) · P (J) = P (G)2 · P (J)4 = p2 · (1− p)4

Slik kan vi fortsette, men vi vet nå at vi må gjøre det for alle 15 kombinasjoner. Det kan vi
skrive som

(
6

2

)
· p2 · (1− p)4

6.3 Tegnestifter
La oss se på et annet eksempel. Vi kaster en tegnestift fire ganger, sannsynligheten for at den
lander med stiften opp kaller vi igjen p.

Vi har nå to hendinger:

S − tegnestiften lander med stiften opp
S̄ − tegnestiften lander med stiften ned

En oppgave kan være å finne ut sannsynligheten for at ingen, 1, 2, 3 eller 4 kast hvor stiften
lander med spissen opp. I tabellen er de forskjellige kombinasjonene satt opp og sannsynligheten
for hver av dem er regnet ut.
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hendinger antall suksess sannsynlighet
S̄S̄S̄S̄ 0 (1− p)4

S̄S̄S̄S 1 p(1− p)3

S̄S̄SS̄ 1 p(1− p)3

S̄SS̄S̄ 1 p(1− p)3

SS̄S̄S̄ 1 p(1− p)3

S̄S̄SS 2 p2(1− p)2

S̄SS̄S 2 p2(1− p)2

SS̄S̄S 2 p2(1− p)2

S̄SSS̄ 2 p2(1− p)2

SS̄SS̄ 2 p2(1− p)2

SSS̄S̄ 2 p2(1− p)2

S̄SSS 3 p3(1− p)
SS̄SS 3 p3(1− p)
SSS̄S 3 p3(1− p)
SSSS̄ 3 p3(1− p)
SSSS 4 p4

Hvis vi skriver sannsynlighetene som P (S = antall) , kan vi sette opp disse utregningene

P (S = 0) = (1− p)4

P (S = 1) = 4p(1− p)3

P (S = 2) = 6p2(1− p)2

P (S = 3) = 4p3(1− p)

P (S = 4) = p4

Dette kan vi sette sammen til

P (S = k) =

(
4

k

)
· pk · (1− p)4−k, der k = 0, 1, 2, 3, 4

6.4 Et generelt binomisk forsøk
Da kan vi trekke en generell konklusjon for alle binomiske forsøk.
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Binomisk forsøk

Et binomisk forsøk gjenkjenne ved at det
• har to utfall
• identiske forsøk med samme sannsynlighet hver gang
• delforsøkene er uavhengige

Et binomisk forsøk gjentas n ganger. Alle disse forsøkene har et binomisk utfallsrom
U = {S, F}. Utfallet er enten en suksess eller en fiasko. Sannsynlighetene er P (S) = p og
P (F ) = 1− p.
Da kan vi finne sannsynligheten for at S inntreffer k ganger ved

P (S = k) =

(
n

k

)
· pk · (1− p)n−k

Lar vi X være antall suksesser i en binomisk forsøksserie sier vi at X er binomisk fordelt. Det
kan vi skrive som at X er bin(n; p)-fordelt.

6.5 Andre eksempler på binomiske forøksserier
Noen eksempler på binomiske forsøk er disse

• Vi kaster en mynt n ganger og registrerer hvor mange «kron» vi får

• En sår n frø og registrerer hvor mange som spirer etter ei viss tid.

• En kvalitetskontroll av n artikler hvor en registrerer hvor mange som er defekte.

6.6 Eksempel: Straffespark
Vi kan se på et eksempel litt grundigere. Først kan du prøve det som en oppgave

Oppgave 7

Anta at ved en straffesparkkonkurranse i fotball er sannsynligheten p = 0.7 for at en
spiller scorer mål. Anta også at sannsynligheten er den samme for hvert eneste spark.
Spilleren tar fem straffespark. Hva er sannsynligheten for at hun

a. scorer alle fem gangene
b. bommer alle fem gangene
c. scorer minst tre mål

Vi tar for oss denne oppgaven som et eksempel og finner løsningene. Med de forutsetningene
som er gitt i oppgaven er dette et binomisk forsøk. To utfall, samme sannsynlighet hver gang
og forsøkene er uavhengige. Forsøket gjentas fem ganger og da har vi at

P (X = x) =

(
n

x

)
· px · (1− p)n−x =

(
5

x

)
· 0.7x · (1− 0.7)5−x

a) Spilleren tar fem straffespark. Hva er sannsynligheten for at hun scorer alle fem
gangene
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Denne oppgaven kunne vi løst ganske enkelt. Her er det bare en kombinasjon og sannsynligheten
vil bli 0.75 = 0.16807. Benytter vi hele formelen får vi

P (X = 5) =

(
5

5

)
· 0.75 · (1− 0.7)5−5 = 0.16807

Svar: Sannsynligheten for at hun scorer alle fem gangene er 0.1681

b) Hun bommer alle fem gangene

Her er det også bare en kombinasjon og svaret blir 0.35 = 0.00243. Det samme kommer vi fram
til om vi benytter formelen

P (X = 0) =

(
5

0

)
· 0.70 · (1− 0.7)5−0 = 0.35 = 0.00243

Sannsynligheten for at hun bommer alle fem gangene er 0.0024

c) Hun scorer minst tre mål

For å score minst tre mål er det tre muligheter. Enten blir det tre, fire eller fem mål. Vi har
allerede funnet sannsynligheten for det siste alternativet. Da må vi bare finne de vi mangler

P (X = 3) =

(
5

3

)
· 0.73 · (1− 0.7)5−3 = 0.3087

P (X = 4) =

(
5

4

)
· 0.74 · (1− 0.7)5−4 = 0.36015

Da kan vi legge sammen sannsynlighetene og får

P (X ≥ 3) = P (X = 3) + P (X = 4) + P (X = 5)

= 0.3087 + 0.36015 + 0.16807

= 0.83692

Her går det greit å regne ut, men ofte kan slike oppgaver gi lange utregninger. Da er det greit
å ha et verktøy. I GeoGebra kunne vi løst hele denne oppgaven slik
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Svar: Sannsynligheten for at hun scorer minst tre mål er 0.8369

Python

Vi kan få gjort det samme med Python også. For å gjøre det bør vi lage to funksjoner. Den
ene finner binomialkoeffisienten og den andre regner ut den binomiske sannsynligheten.
Ved å lage ei for-sløyfe kan vi summere opp sannsynlighetene. Programkode 6.1 viser en
måte å gjøre det på.

1 import math as m
2
3 def binomial(a,b):
4 bin = m.factorial(a)//(m.factorial(b)*m.factorial(a-b))
5 return bin
6
7 def binomisk(n, p, x):
8 bin = binomial(n, x)*p**x*(1 - p)**(n-x)
9 return bin

10
11 p = 0.7
12 n = 5
13 sum = 0
14 for i in range(3,6):
15 sum = sum + binomisk(n,p,i)
16
17 print( sum)

Programkode 6.1: Straffespark

For slike utregninger er det også mulig å bruke ferdige moduler for å slippe å lage funk-
sjoner på egen hånd. I programkode 6.2 er det benyttet en modul som heter scipy.stats
hvor vi finner to nyttige funksjoner. binom.cdf finner den kumulative binomiske sann-
synligheten. For å løse oppgaven vår må vi da finne den komplementære sannsynligheten.
Det kan vi også gjøre med funksjonen binom.sf. De to svarene som skrives ut er helt
like.

1 import scipy.stats as st
2
3 p = 0.7
4 n = 5
5 sum_1 = 1 - st.binom.cdf(2,n,p)
6 sum_2 = st.binom.sf(2,n,p)
7
8 print(sum_1, sum_2)

Programkode 6.2: Straffespark

I noen tilfeller kan vi også simulere stokastiske forsøk for å finne en sannsynlighet. Det kan vi
gjøre med forskjellige verktøy som regneark. Programmering egner seg også.
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Python

Vi kan prøve å simulere det samme med Python.
1 import random as rd
2 ant_maal = [0,0,0,0,0,0]
3 ant_forsok = 100000
4 for i in range (0,ant_forsok):
5 maal = 0
6 for i in range(0,5):
7 t = rd.random()
8 if t < 0.7:
9 maal = maal + 1

10 ant_maal[maal] = ant_maal[maal] + 1
11
12 print(ant_maal)

Programkode 6.3: Straffespark

I mitt tilfelle ble dette skrevet ut

[239, 2855, 13266, 30834, 35989, 16817]

Setter vi dette opp i en tabell og regner ut sannsynlighetene får vi

Mål Antall P (X)

0 239 0.00239
1 2855 0.02855
2 13266 0.13266
3 30834 0.30834
4 35989 0.35989
5 16817 0.16817

Det manuelle arbeidet kunne vi naturligvis unngått ved å la Python regne ut det samme
for oss. Hekter vi på ei for-sløyfe kan vi få skrevet ut det samme.

1 for i in range(5):
2 print("Sannsynligheten for ", i , "mål er: ",ant_maal[i]/

ant_forsok)

Programkode 6.4: for-sløyfe

6.7 Newton-Pepys problem
Wikipedia

I 1693 skrev Samuel Pepys til Isaac Newton og lurte på hva som var mest sannsynlig av

• A: Seks ideelle terninger kastes og en får minst en sekser

• B: 12 ideelle terninger kastes og en får minst to seksere
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• C: 18 idelle terninger kastes og en får minst tre seksere

Pepys mente sjøl at C måtte ha høyest sannsynlighet, men Newton ga som svar at A var mest
sannsynlig.

Nå vet vi at det kan regnes ut på denne måten

P (A) = 1−
(
5

6

)6

=
31031

46656
≈ 0.6651

P (B) = 1−
1∑

x=0

(
12

x

)
·
(
1

6

)x

·
(
5

6

)12−x

=
1346704211

2176782336
≈ 0.6187

P (C) = 1−
2∑

x=0

(
18

x

)
·
(
1

6

)x

·
(
5

6

)18−x

=
15166600495229

25389989167104
≈ 0.5973

Python

Skal vi gjøre dette med Python må vi importere modulen scipy.stats. Da har vi en
kommando tilgjengelig for å finne den kumulative binomiske sannsynligheten: binom.cdf.
Programkode 6.5 gjør akkurat det samme som i utregningene over.

1 import scipy.stats as st
2
3 for i in range(1,4):
4 n = 6*i
5 p = 1- st.binom.cdf(i-1,n,1/6)
6 print("Sannsynligheten for å få minst ",i, " seksere med ", n, "

ideelle terninger er ", p)

Programkode 6.5: Newton-Pepys med Python

Svaret blir det samme

Sannsynligheten for å få minst  1  seksere med  6 ideelle terninger er  
0.6651020233196159

Sannsynligheten for å få minst  2  seksere med  12 ideelle terninger er  
0.6186673737323085

Sannsynligheten for å få minst  3  seksere med  18 ideelle terninger er  
0.5973456859477229

Newton hadde ikke hjelp av teknologien, men konklusjonen hans kan vi se holder mål.
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7 Hypergeometrisk forsøk
7.1 Hypergeometrisk forsøk
Mens det i et binomisk forsøk er samme sannsynlighet for alle delforsøkene, skal vi nå se på en
annen måte å gjøre et utvalg på. Fortsatt kan vi holde oss til urnemodellen. Der tenker vi oss
at det er n kuler og at noen av disse kulene er spesielle. Trekker vi ei spesiell kule kan vi kalle
det en suksess og trekker vi ikke ei slik kule så er det en fiasko. Også her er det bare to utfall
U = {S, F}. Til forskjell fra det binomiske legger vi ikke tilbake kula mellom hvert trekk i et
hypergeometrisk forsøk.

7.2 Et klassisk eksempel

Vi kan tenke oss at vi har ei urne med ti kuler hvor fire er svarte og seks er hvite. La oss si at
vi skal trekke ut tre kuler. Hva er da sannsynligheten for å få ei svart kule og to hvite?

Sannsynligheten for å trekke ei svart kule først og så to hvite er

4

10
· 6
9
· 5
8
=

1

6

Sannsynligheten for å trekke ei hvit kule først, så ei svart og så ei hvite er

6

10
· 4
9
· 5
8
=

1

6

Den siste muligheten er å trekke to hvite kuler først og så ei svart til slutt

6

10
· 5
9
· 4
8
=

1

6

Da kan vi finne sannsynligheten for å trekke ei svart og to hvite kuler

1

6
+

1

6
+

1

6
=

1

2

Vi kan se at hvis oppgaven blir litt mer komplisert, vil det bli ganske lange utregninger og i
tillegg mange kombinasjoner. Da kan det være enklere å finne gunstige og mulige kombinasjoner.
I vårt tilfelle kan vi starte med å se på hvor mange gunstige kombinasjoner det blir. Hvor mange
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måter kan vi trekke den ene svarte kula? I urna er det fire svarte og da kan vi trekke den på
fire måter. Her er det enkelt å se, men skulle vi regne ut det kunne vi skrive

(
4

1

)
= 4

Hvor mange måter kan vi trekke ut to hvite fra urna. Vi følger samme resonnement og finner

(
6

2

)
= 15

Så var det antall muligheter for å trekke tre kuler fra urna med ti kuler

(
10

3

)
= 120

Nå kan vi finne sannsynligheten for å trekke ei svart og to hvite kuler

4 · 15
120

=
1

2

Hele utregninga blir da

(
4

1

)
·
(
6

2

)
(
10

3

) =
1

2

Svaret blir det samme, men nå har vi heller sett på antall kombinasjoner. Eksemplet viser et
hypergeometrisk utvalg. I ei urne er det et visst antall kuler. Vi sier at noen er spesielle. I
vårt eksempel ser vi på at det de svarte kulene. Vi skal trekke et visst antall kuler og finne
sannsynligheten for at noen av de er spesielle. Kaller vi antall spesielle kuler i urna for s og
antallet i utvalget vi gjør for r, ønsket vi å finne sannsynligheten for at antall spesielle kuler i
utvalget var x = 1. I vårt tilfelle er da

n = 10 r = 3
s = 4 x = 1

Vi skulle finne sannsynligheten for dette resultatet

antall trukket antall igjen sum
S 1 3 4
F 2 4 6

sum 3 7 10

7.3 Et generelt utvalg
Et hypergeometrisk utvalg kjennetegnes ved at vi velger ut r elementer fra n elementer. Meng-
den n inneholder s spesielle elementer. Vi ønsker å finne sannsynligheten for at det er x spesielle
i utvalget vi gjør. Da kan vi skrive det som
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antall trukket antall igjen sum
S x s− x s
F r − x n+ x− r − s n− s

sum r n− r n

Det generelle uttrykket for hvor mange utvalg kan vi gjøre for å oppnå x spesielle blir da

(
s

x

)
·
(
n− s

r − x

)
(
s

x

)
er antall måter vi kan velge x spesielle av s(

n− s

r − x

)
er antall måter vi kan velge r − x vanlige fra n− s vanlige

Sannsynligheten for å velge x av de spesielle:

P (X = x) =

(
s

x

)
·
(
n− s

r − x

)
(
n

r

)
Hypergeometrisk sannsynlighetsfordeling

Et hypergeometrisk utvalg kjennetegnes ved at vi velger ut r elementer fra n elementer.
Mengden n inneholder s spesielle elementer. Sannsynligheten for at et utvalg inneholder
x spesielle er da

P (X = x) =

(
s

x

)
·
(
n− s

r − x

)
(
n

r

)
En hypergeometrisk sannsynlighetsmodell kjennetegnes ved at det er avhengighet mellom
trekningene siden vi trekker uten tilbakelegging

Legg merke til at hvis n er veldig stor så vil sannsynligheten holder seg omtrent konstant
uansett. Da vil et et hypergeometrisk forsøk være tilnærma lik et binomisk.

7.4 Et eksempel
Her er et eksempel på en typisk oppgave hvor vi har et hypergeometrisk utvalg. I eksemplet er
oppgaven generalisert. Variabelen x vil kunne variere mellom 0 og 5.

Eksempel 10

En klasse har n = 28 elever hvorav s = 10 er jenter. Vi trekker ut r = 5 elever som skal
være med på en tur. Hva er sannsynligheten for at 3 av disse er jenter?

64



Legg merke til at dette er en typisk hypergeometrisk sannsynlighetsmodell: Avhengighet mellom
trekninger – vi trekker uten tilbakelegging!

Det er ikke en binomisk modell hvor vi har uavhengighet mellom trekninger – vi trekker da
med tilbakelegging. For å finne svaret kan vi benytte formelen

P (X = x) =

(
s

x

)(
n− s

r − x

)
(
n

r

)
Da får vi at sannsynligheten for å trekke tre jenter blir

P (X = 3) =

(
10

3

)(
28− 10

5− 3

)
(
28

5

) =
17

91
= 0.1886813

Ved hjelp av en kalkulator, eller programvare, kan vi benytte kommandoen nCr(n,r), eller en
liknende syntaks. Her er et eksempel gjort med TI-Nspire.

GeoGebra har en sannsynlighetskalkulator vi kan benytte ved å hypergeometrisk fordeling
og lese av i tabellen. Figur 7.1 viser tabellen og en grafisk framstilling. Leser vi av i tabellen
for k = 3 får vi samme svar.

Figur 7.1: Sannsynlighetskalkulatoren i GeoGebra

Legg merke til at tabellen inneholder alle sannsynlighetene for

P (X = x) =

(
s

x

)(
n− s

r − x

)
(
n

r

) =

(
10

x

)(
28− 10

5− x

)
(
28

5

)
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Legg også merke til at vi kan også få regnet ut summer av sannsynligheter. Figur 7.1 viser også
at sannsynligheten for at fire eller fem jenter velges ut er 0.041.

Python

For å få beregnet dette i Python må vi skrive en del kode eller importerer moduler. Det
gjør at andre verktøy egner seg bedre for slike utregninger. Vi kan ta med noen eksempler
for å vise det. Vi kan lage en funksjon som beregner sannsynligheten etter formelen som
ble presentert tidligere. Programkode 7.1 viser hvordan.

1 import math as m
2
3 n = 28
4 s = 10
5 r = 5
6
7 def binomial(a,b):
8 bin = m.factorial(a)//(m.factorial(b)*m.factorial(a-b))
9 return bin

10
11 def hypergeometrisk(n, s, r, x):
12 hg = binomial(s,x) * binomial(n-s,r-x)/binomial(n,r)
13 return hg
14
15 print(hypergeometrisk(n,s,r,3))

Programkode 7.1: Egendefinert funksjon

Dette er en løsning som gjør at enkelt kan gjenbruke koden til andre oppgaver. Modulen
math er importert for å slippe å lage en egen funksjon for fakultet. Den samme modulen
har også en funksjon for å finne binomialkoeffisienten som heter comb. Den kunne erstattet
funksjonen binomial.

Nå fins det flere muligheter. Modulen scipy kan gjøre det samme for oss, men det blir
ikke så klart hva som skjer. Programkode 7.2 viser hvordan kommandoen hypergeom gir
oss en hypergeometrisk fordeling hvor vi kan finne bruke funksjonen pmf, probability mass
function for å finne det vi er ute etter.

1 import scipy.stats as st
2 n = 28
3 s = 10
4 r = 5
5
6 hg = st.hypergeom(n,s,r)
7 p = hg.pmf(3)
8 print(p)

Programkode 7.2: Scipy

Kjører vi programmene får vi samme svar som ved utregning

0.18681318681318695
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7.4.1 Simulering med Python
Dette eksemplet kan vi også simulere med Python. Programkode 7.3 viser et eksempel.

1 import random as rd
2 ant_forsok = 10000
3 ant_gutter = 18
4 ant_jenter = 10
5 teller = 0
6
7 klassen = ["G"]*ant_gutter + ["J"]*ant_jenter
8
9 for i in range(ant_forsok):

10 utvalg = rd.sample(klassen, 5)
11 if utvalg.count("J") == 3:
12 teller = teller + 1
13
14 print ("Sannsynligheten for å trekke tre jenter: ", teller/ant_forsok)

Programkode 7.3: Hypergeometrisk utvalg

Det krever en del kjennskap til lister og hvordan vi kan få laget dem. Koden klassen = ["G"
]*ant_gutter + ["J"]*ant_jenter lager ei liste med bokstaver. For å slippe å skrive inn alle
bokstavene er det gitt beskjed om hvor mange av hver som skal legges inn. Lista klassen blir
da sånn:

[’G’, ’G’, ’G’, ’G’, ’G’, ’G’, ’G’, ’G’, ’G’, ’G’, ’G’, ’G’, ’G’, ’G’, ’G’, ’G’, ’G’, ’G’, ’J’, ’J’, ’J’, ’J’, ’J’, ’J’, ’J’, ’J’, ’J’, ’J’]

Fra denne lista plukkes det ut fem elementer uten tilbakelegging, som legges i lista utvalg,
med kommandoen utvalg = rd.sample(klassen, 5). Vi kan telle antall ”J”i utvalget med
kommandoen utvalg.count("J"). En hvis-setning teller opp antall utvalg med tre ”J”. I mitt
tilfelle fikk jeg dette resultatet:

Sannsynligheten for å trekke tre jenter:  0.1894

7.5 Lotto
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Oppgave 8

Lotto er et populært spill hvor det trekkes ut sju tall først. Så trekkes det ut tre tilleggs-
tall. Totalt er det 34 tall det velges blant. Spillet kan gi gevinst hvis følgende oppnås

• 7 rette
• 6 rette + ett tilleggstall
• 6 rette
• 5 rette
• 4 rette + ett tilleggstall

Finn sannsynlighetene for å oppnå premie

Sannsynligheten for å få sju rette

Først finner vi antall mulige måter sju tall kan trekkes av 34 tall. Det trekkes uten tilbakelegging
og rekkefølgen spiller ingen rolle: den er uordna.

Antall mulige finner vi da ved

34C7 =

(
34

7

)
= 5379616

Av alle disse muligheten er det bare en som er gunstig for å vinne. Da finner vi at sannsynligheten
blir

P (7 rette) = 1(
34
7

) =
1

5379616
= 1.8589 · 10−7

Sannsynligheten for å få seks rette og ett tilleggstall

Antall gunstige kombinasjoner vil være at det seks av de sju er riktige. I tillegg kan vi ha ett
av de tre tilleggstallene riktige. Antall gunstige valg blir da

(
7

6

)
·
(
3

1

)
= 21

Antall mulige kombinasjoner har vi fra før. Sannsynligheten blir

P (6 rette + ett tilleggstall) =
(
7
6

)
·
(
3
1

)(
34
7

) =
21

5379616
= 3.9036 · 10−6

Sannsynligheten for å få seks rette

I dette tilfellet er det ingen riktige tilleggstall. Når alle tallene er trukket vil det være igjen
34− 10 = 24. Det siste tallet må være blant de som er igjen. Da kan vi finne sannsynligheten

P (6 rette) =
(
7
6

)
·
(
24
1

)(
34
7

) =
21

672452
= 3.1229 · 10−5

68



Sannsynligheten for å få fem rette

Nå gjelder det å ha fem av sju riktige tall. Det spiller ikke noen rolle om vi har tilleggstall. De
to vi har feil kan da velges blant de 27 øvrige

P (5 rette) =
(
7
5

)
·
(
27
2

)(
34
7

) =
7371

5379616
= 1.3702 · 10−3

7.6 Poker
I et pokerspill trekker vi også uten tilbakelegging og vi kan benytte en hypergeometrisk sannsyn-
lighetsmodell for å finne sannsynlighetene for noen hendinger. Nå blir det noe mer komplisert
enn det forrige eksemplet, men vi kan ta det med for å vise et eksempel tankegangen

Sannsynligheten for å få ett par Her er det 13 forskjellige valører og man skal ha par i
ett av dem. Det er fire farger å velge mellom og vi skal ha to av dem. De andre kortene kan
velges fra resten

P (ett par) =

(
13

1

)(
4

2

)(
12

3

)
· 43(

52

5

) =
13 · 6 · 220 · 64

2598960
= 0.4226

Sannsynligheten for å få to par Det er 13 forskjellige verdier å velge blant for å få to
kort med samme verdi

(
13
2

)
. Vi skal ha to par og får at det vil være

(
4
2

)
·
(
4
2

)
= 36 mulige

kombinasjoner. Da er det 11 verdier igjen å velge det siste kortet fra
(
11
1

)
= 11. Hvert av disse

kan velges fra hver av de fire
(
4
1

)
= 4

P (to par) =

(
13

1

)(
4

2

)(
4

2

)(
11

1

)(
4

1

)
(
52

5

) =
78 · 6 · 6 · 11 · 4

2598960
= 0.04754
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