
Programmering med Python

Per G. Østerlie
FLT, NTNU

per.g.osterlie@ntnu.no

2. februar 2024

Innhold
1 Introduksjon 3

1.1 Et eksempel på et Python-program . 3
1.2 Vi lager noen enkle program . 4

2 Aritmetikk 6
2.1 Enkle utregninger . 6
2.2 Litt mer avansert . 6
2.3 Regnerekkefølge . 8

3 Variabler og datatyper 9
3.1 Programmeringsvariabler . 9
3.2 Grunnleggende datatyper . 10
3.3 Konvertering mellom datatyper . 12
3.4 Input . 13
3.5 Introduksjon . 14
3.6 Lister – hva er det? . 14
3.7 Operasjoner med lister . 15
3.8 Mer om operasjoner på tekststrenger . 20
3.9 Bruk av anførseltegn . 21

4 Programmeringsteknikker 23
4.1 Hvordan skrive kode? . 23
4.2 Pseudokode . 23
4.3 Flytskjema . 24

5 Vilkår 26
5.1 Hvis-test . 26
5.2 Sammenlikninger og boolske variabler . 28
5.3 Logiske operatorer . 29

6 Løkker 32
6.1 For-løkker . 32
6.2 While . 33

7 Funksjoner 35
7.1 Hva er en funksjon i Python? . 35
7.2 Definisjon av funksjoner . 35
7.3 Lokale og globale variabler . 38

8 Bibliotek 40
8.1 Hva er en modul? . 40
8.2 Pakker vi ofte importerer . 42

8.2.1 Math . 42
8.2.2 Random . 43
8.2.3 PyPlot . 44
8.2.4 NumPy . 44

1

9 Tegne grafer 45
9.1 Punktplott . 45
9.2 Funksjoner som grafer . 48

9.2.1 Flere grafer . 49

A Vedlegg 53
A.1 Formattering med f-strenger . 53
A.2 Nullindeksering . 55
A.3 Mer om funksjoner og parametre . 56

Siden denne teksten er litt kjapt satt sammen kan det forekomme
noen småfeil (sikkert store også). Gi meg beskjed i så fall, så kan
de rettes opp.

Creative Commons Navngivelse-IkkeKommersiell-DelPåSammeVilkår 4.0
Laget med LATEX

2

http://creativecommons.org/licenses/by-nc-sa/4.0/

1 Introduksjon
1.1 Et eksempel på et Python-program
Vi kan starte med å se på et ferdig program som er skrevet i programmeringsspråket Python.

1 print("Programmet finner løsning på andregradslikninger på formen ax^2 + bx
+ c = 0")

2 a = float(input("a: "))
3 b = float(input("b: "))
4 c = float(input("c: "))
5
6 d = b**2-(4*a*c)
7
8 if d > 0:
9 x_1 = (-b + d**0.5)/(2*a)

10 x_2 = (-b - d**0.5)/(2*a)
11 print("Løsningene er ", x_1, " og ", x_2)
12 elif d == 0:
13 x_1 = (-b/2*a)
14 print("Løsningen er ", x_1)
15 else:
16 print("Ingen reelle løsninger")

Programkode 1.1: abc-formelen

Ved første møte er slik kode uforståelig for oss. Vi må lære oss språket – akkurat som om vi skal
snakke med personer med andre språk enn norsk. Språk er bygd opp av semantikk, grammatikk,
ord og syntaks. Dette er noe vi må lære. Siden vi kan engelsk fra før, ser vi at noen av ordene
er kjente: input, print og if. Utviklerne har valgt disse ordene nettopp av den grunn. Vi kan
gjenkjenne hva kommandoene gjør.

Vi kan også se at det blir utført en del matematiske operasjoner (kall det gjerne utregninger).
Her står det d = b**2-(4*a*c). Python krever at vi holder oss på linja og ikke benytter indek-
ser eller brøkstrek. Det krever en skrivemåte som skiller seg fra den vi benytter i matematikk.
Oversatt får vi

d = b**2-(4*a*c) −→ d = b2 − 4 · a · c
x_1 = (-b + d**0.5)/(2*a) −→ x1 =

−b+
√
d

2·a

Det betyr at vi også må lære oss en nesten helt ny notasjon for å kunne skrive kode.

I tillegg kan vi observere at noe av teksten er rykket inn. Slike innrykk er vesentlige i Python. De
danner blokker for hva som skal utføres. Denne måten å markere blokker på kalles signifikante
innrykk (eng. significant white space).

Foreløpig er dette et eksempel på hva vi skal bli kjent med. Koden er skrevet av noen som
allerede kjenner kommandoene og syntaksen til Python. Før vi kommer så langt er det en del
vi må se på, men til slutt vil nok det som står der være ganske greit. La oss starte litt enklere
og fortsette ut fra det.

3

1.2 Vi lager noen enkle program
Vi starter med å lage et enkelt program i Python, og følger en god tradisjon med et program
som skriver: Hallo verden. Her er det

1 """
2 Dette er et enkelt program.
3 Mitt første forsøk på å programmere
4 """
5
6 print("Hallo verden") # Skriver ut

Programkode 1.2: Hallo verden

Dette enkle eksemplet viser hvordan vi kan benytte programmering til å få datamaskina til å
gjøre som vi vil. Med kommandoen print("Hallo␣verden") ber vi om å få skrevet ut teksten
Hallo verden til skjermen. Allerede her møter vi en kommando vi vil benytte ofte: print().
Kommandoen vil skrive ut det vi setter inn mellom parentesene og gir denne utskrifta:

Hallo verden

Noe annet vi også støter på er datatypen tekststreng, som er markert med anførseltegn1: "Hallo
␣verden". Resultatet blir at denne tekststrengen skrives ut.

Legg også merke til det står noen kommentarer i starten. Mellom de to linjene med tre anfør-
seltegn kan vi skrive hva vi vil. Ofte er det lurt å ta med noen kommentarer til seinere bruk
eller slik at andre skal forstå hva koden inneholder.

Vi kan også skriver kommentarer med bare ei linje, eller etter en kommando, ved å bruke tegnet
#. Når det benyttes vil ikke Python bry seg med hva som kommer etterpå. Tegnet kalles en
hashtag eller, på norsk, en skigard.

En tekstvariabel La oss forandre litt på koden vår og skrive
1 tekst = "Hallo verden" # Lager en variabel av typen tekststreng
2
3 print(tekst)

Programkode 1.3: Hallo verden 2.0

Koden gjør akkurat det samme, men bruken av en variabel kommer tydeligere fram. Komman-
doen tekst = "Hallo␣verden" tilordner verdien "Hallo␣verden" til variabelen tekst. I den
siste linja ber om at innholdet i variabelen skrives ut.

Disse små eksemplene gjør at vi møter mye av det vi vil arbeide videre med i programmeringa:
variabler og kommandoer. Vi vil se nærmere på det seinere.

Oppgave 1

Lag et program som skriver ut navnet ditt.

1Kalles også gåseøyne, hermetegn og likende

4

Et lite eksempel til Vi kan se på et annet eksempel hvor vi finner arealet av et rektangel.
1 bredde = 7.3
2 hoyde = 2.4
3 tekst = "Arealet er: "
4 print(tekst, bredde * hoyde)

Programkode 1.4: Litt mer avansert

Arealet er: 17.52

Oppgave 2

Lag et program som skriver ut omkretsen av et rektangel med gitt høyde og bredde.

5

2 Aritmetikk
Nå skal vi se på

h aritmetikk i Python h operatorer

2.1 Enkle utregninger
For å eksperimenter med noen utregninger er det enklest å bare benytte det som kalles termina-
len (andre navn er konsollen eller consol). Terminalen er der vi får resultatet av programmene
våre. Vi kan også skrive kommandoer der å få dem utført. Fordelen med det er at vi får svaret
med en gang. Alternativet er å lage program for det samme og kjøre programmet. Da må vi si
fra at vi ønsker å få skrevet ut resultatet. Her er de to alternativene for å vise utregning av 1+2

>>> 1+2
3 1 print(1+2)

For å få gjort noen kjappe utregninger er det enkleste å bare prøve ut kommandoene i termina-
len, men en oppnår akkurat det samme hvis utregningene skrives inne i en print-kommando.
I eksemplene her vil jeg benytte terminalen.

De fire regningsartene
Her er noen eksempler på utregning i Python

>>> 17+24 #Addisjon
41
>>> 31-12 #Subtraksjon
19
>>> 54*23 #Multiplikasjon
1242
>>> 52/7 #Divisjon
7.428571428571429

Legg merke til at multiplikasjonstegnet er en asterisk *. Ellers er skrivemåten omtrent som vi
er vant med.

Oppgave 3

Prøv med forskjellige enkle utregninger med de fire regningartene.

2.2 Litt mer avansert
I Python finner vi flere aritmetiske operatorer. Tabellen viser en oversikt over de mest vanlige.

De fire regningsartene har vi sett på, men de andre må forklares.

6

Operatorer
Tegn Operasjon Eksempel
+ Addisjon a+b
− Subtraksjon a-b
/ Divisjon a/b
∗ Multiplikasjon a*b
∗∗ Potens x**3
// Heltallsdivisjon a//b
% Modulus a%b

Tabell 2.1: Operatorer

Potenser skrives ved å benytte operatoren **. I vanlig matematisk notasjon skriver vi 32. I
Python må vi skrive det samme som 3**2. Prøver vi det ser vi at svaret stemmer.

>>> 3**2
9

Hva om vi ønsker å finne kvadratrota av 2? Svaret på det er at Python ikke har innebygd en
kommando for å finne røtter. Vi kan hente inn flere kommandoer, blant dem en kommando for
å finne kvadratrota, men vi kan også benytte det vi vet om potenser, nemlig at

√
2 = 2

1
2 og

skrive 2**(0.5).

Vanlig divisjon blir utført på denne måten
>>> 52/7 #Divisjon
7.428571428571429
>>> 3/7
0.42857142857142855

Heltallsdivisjon finner heltallet av divisjon og operatoren er //
>>> 52//7
7

Modulo , eller restdivisjon, gir oss resten som blir igjen etter en heltallsdivisjon.
>>> 52%7 #Modulo
3

Både heltallsdivisjon og restdivisjon er operasjoner som benyttes en del i programmering. Fi-
guren under viser hvor resultatene av operasjonene kommer fra.

52
7
= 7 + 3

7

helttall

rest

7

Oppgave 4

Er 354045614 delelig med 13?
Tips: Vil resten bli lik null?

2.3 Regnerekkefølge
Når vi skal skrive utregninger må vi gjøre det på en måte som gir mening for den som skal lese
det. I programmering kommuniserer vi til ei datamaskin, som ikke kan legge til eller tolke det
som står der. Parenteser for å markere regnerekkefølgen blir da svært viktig. Her er det bare å
prøve å få utregningene så tydelige som mulig – og husk at det er bedre med for mange enn for
få parenteser.

Oppgave 5

Regn ut i Python og kontroller svaret
a. 6·2

2

b. 6+2
3

Oppgave 6

Regn ut med Python
3 + 0, 75 + 23 −

√
14 +

34 − 4

23 − 1

Svaret skal bli: 18.998342613226058

Oppgave 7

Hva blir resultatet av denne utregninga?
5 + (4 - 2)* 2 + 4 % 2 - 4 // 3 - (5 - 3)/ 7

8

3 Variabler og datatyper
Nå skal vi se på

h hva en variabel er
h forskjellige datatyper
h hvordan vi kan hente inn data fra en

bruker
h konvertering mellom datatyper

Programmering innebærer å ta vare på, og behandle, data. Det er nettopp derfor vi har navnet
datamaskin og databehandling. Vi skal nå se på at data er og at de kan være forskjellige typer.
Vi skal også se på hvordan vi kan lagre data i Python og hvordan vi kan konvertere fra den
ene typen til den andre.

3.1 Programmeringsvariabler
Variabler er kanskje kjent fra matematikk og andre fag. I programmering møter vi også begre-
pet variabler. Navnet er det samme og det er likheter med hvordan de benyttes i andre fag, men
være oppmerksom på at det ikke alltid er tilfelle. I programmeringsspråk er variabler plasshol-
dere ved at de tar vare på verdier. Det er derfor programmeringsvariabler ofte kalles containers
i engelskspråklig litteratur. På norsk er plassholdere ofte brukt. Plassholder er egentlig å fore-
trekke, men jeg vil bruke «variabel», eller «programmeringsvariabel», her siden begrepet ser ut
til å gå igjen i lærebøker og læreplan. Vær bare klar over at ordet ikke er entydig og betydningen
vil være, nettopp, variabel.

I informatikkfaget kan vi tenke på programmeringsvariabler som en lagringsplass. La oss se på
et eksempel:

a = 13

Sjøl om det er en enkel kommando skjer det mye. Python vil opprette en variabel med navnet
a. Likhetstegnet er her en operator, som gjør at verdien som følger legges inn i variabelen.
Likhetstegnet kan leses som «settes lik» og har her en rolle som en tilordning. I mange pro-
grammeringsspråk unngås flertydigheten til likhetstegnet ved å benytte := som operator, men
ikke i Python.

Ofte kan det være greit å forestille seg variabelen som en boks, eller ei skuffe, hvor noe plasseres.
I dette tilfellet plasserer vi verdien 13 i en boks som heter a. Vi kan representere det ved denne
figuren:

13

a

For å få ut innholdet i variabelen til skjermen benytter vi kommandoen print(). Skriver vi
print(a) vil resultatet nå bli 13.

Tidligere kom vi fram til denne koden for å finne omkretsen av et rektangel
1 bredde = 7.3
2 hoyde = 2.4
3 tekst = "Omkretsen er: "
4 print(tekst, 2*bredde + 2* hoyde)

9

Programkode 3.1: Omkretsen av et rektangel

Her har vi tre tilordninger i starten og vi kan tenke oss data som tilordnes legges i bokser.

7.3

bredde

2.4

hoyde

Omkretsen er:

tekst

I den siste kommandoen print(tekst, 2*bredde + 2* hoyde) hentes innholdet i boksene og
benyttes i operasjonene. Til slutt skrives svaret ut.

Hva er spesielt med programmeringsvariabler?
Ved at variablene er plassholdere og at kommandoer utføres sekvensielt – steg for steg fra den
første linja, kan vi skrive kode som den i programmeringskode 3.2.

1 a = 7
2 a = a + 3
3 print(a)

Programkode 3.2: Bruk av programmeringsvariabel

Noe slikt ville vært uhørt i matematikken, men siden vi her har programmeringsvariabler går
det greit. Først tilordnes heltallet sju til a. Neste linje kan leses som: «legg til tre til det som
allerede er lagret i a». Det nye innholdet i a blir det gamle innholdet pluss tre og programmet
vil skrive ut 10. En slik bruk er svært vanlig i programmering. Ofte vil vi ha en teller som økes
med en verdi, som oftest 1, og en slik bruk av programmeringsvariabler gjør det mulig:

1 teller = 1
2 teller = teller + 1 #Innholdet i teller økes med 1

Programkode 3.3: Bruk av teller

Oppgave 8

Vi har dette programmet
1 a = 7
2 b = 8
3 a = b
4 c = a + 1
5 print(a)
6 print(b)
7 print(c)

Hva blir resultatet?
Tips: Det kan være lurt å finne fram papir og blyant for å tegne bokser.

3.2 Grunnleggende datatyper
Da har vi sett litt på programmeringsvariabler. I eksemplene var de fleste variablene heltall,
men det dukket opp noen desimaltall og tekststrenger også. Nå skal vi se mer på de forskjellige

10

datatypene og starter med de mest grunnleggende.

Noen datatyper i Python
Forkortelse Type

int Heltall
float Desimaltall/Flyttall
str Streng
bool Boolsk

Tabell 3.1: Noen datatyper i Python

Disse datatypene må vi se nærmere på. Vi starter med de som er tallverdier

Tall
Fra matematikken kjenner vi til flere typer tall som heltall og desimaltall. Et programmerings-
språk må kunne lagre de forskjellige typene og behandle dem ut fra de egenskapene tallene
har.

Heltall

På engelsk kalles heltallene for integer og det er grunnen til at navnet Python benytter er
forkortelsen int. I matematikk benyttes symbolet Z for alle heltallene. I tillegg til de naturlige
tallene er også de negative og null med i denne tallmengden.

Z = {· · · ,−3,−2,−1, 0, 1, 2, 3, · · · }

I Python er det sånn at datatypen til en variabel bestemmes ut fra verdien vi tilordner den.
Slik er det ikke alle programmeringsspråk. Fordelen er at det gjør det enklere for oss å skrive
kode.

Når vi skriver kommandoen a = 13 er verdien som tilordnes et heltall. Python bruker da
datatypen heltall for variabelen a uten at vi må skrive noe mer. I andre språk er det vanlig at
vi må si fra hvilken datatype variabelen skal ha.

Desimaltall

Desimaltall er enkle å skrive for oss, men mer problematisk å få lagra i ei datamaskin. Måten en
lagrer desimaltall på gjør at de kalles flyttall i den her sammenhengen. I Python kalles denne
datatypen for float.

Skriver vi nå b = 13.0 gir det beskjed om at vi vil legge inn et desimaltall i variabelen b slik
at den automatisk vil være av typen float.

Her er et program som legger inn et flyttall i en variabel og tilordner en ny variabel som
kvadratet av den verdien

1 a = 1234567890.123456789
2 b = a*a
3 print(b)

Programkode 3.4: Store verdier

11

Programmet gir dette resultatet

1.5241578753238835e+18

Blir flyttallet stort nok vil det skrives på standardform

a · 10n, a ∈ [1, 10⟩

Det betyr at tallet a skal være fra og med 1 og opp til 10 og at det skal multiplisers med en
tierpotens. Kalkulatorer og datamaskiner skriver dette på sin egen måte slik at ·10n blir til en
eller En. Det betyr at resultatet i programkode 3.4 skal skrives slik i matematisk språkdrakt

1.5241578753238835 · 1018

hvor 1018 er skrevet som e+18.

Tekststrenger
Vi har sett at variabler også kan inneholde tekst. Navnet på den datatypen er streng, eller på
engelsk string. I Python benyttes str som en forkortelse. Her er et eksempel på hvordan vi
legger inn en tekststreng i en variabel

d = "dette␣er␣en␣streng"

Vi markerer at dette er en streng ved å skrive mellom to anførseltegn. Vi kan også benytte
enkle anførseltegn, men det kan være greit å holde seg til en måte å gjøre det på.

Vi kan også utføre operasjoner med tekststrenger. Det skal vi se mere på seinere, men en liten
smakebit er å sette sammen strenger (eng. concatenate). Operatoren for det er plusstegnet.

1 h = "Velkommen"
2 navn = "Olga"
3 hilsen = h + ", " + navn + "!"
4 print(hilsen)

Programkode 3.5: Tekststrenger

Velkommen, Olga!

De to variablene h og Olga slås sammen med tegnene , og ! og tilordnes variabelen h. Til
slutt får vi skrevet ut en ny tekststreng.

3.3 Konvertering mellom datatyper
Vi kan gjøre om en datatype til en annen ved å konvertere datatypen. Det er ikke alle slike
konverteringer som går, men er noen eksempler:

1 var1 = int(7.324) # var1 settes til heltallet 7
2 var2 = float(3) # var2 settes til desimaltallet 3.0
3 var3 = str(7.324) # var3 settes til tekststrengen "7.324"
4 print(var1)

12

5 print(var2)
6 print(var3)

Programkode 3.6: Konvertering

Programmet gir dette resultatet

7
3.0
7.324

Kommandoen int(7.324) gjør om det som står inne i parentesen til et heltall og float(3)
gjør om heltallet 3 til desimaltallet 3.0. Vi får gjort om desimaltallet 7.324 til en tekststreng
ved kommandoen str(7.324). For oss ser det som blir skrevet ut som et desimaltall, men bare
prøv å bruk var3 som et desimaltall ved å skrive f. eks. var3*2. Da får vi ei feilmelding som
sier fra om at dette går ikke.

Slike konverteringer kan være nyttige og benyttes ofte for å sikre at datatypen blir den vi
ønsker.

Vi kan også be om å få skrevet ut datatypen til variablene med kommandoen type.
1 a = int(7.9)
2 b = float(7)
3 c = 7.9
4 d = 7
5 print(a, b, c, d)
6 print(type(a), type(b), type(c), type(d))

Programkode 3.7: Hvilken datatype?

7 7.0 7.9 7
<class 'int'> <class 'float'> <class 'float'> <class 'int'>

3.4 Input
Når vi programmerer er vi ofte interessert i å kommunisere med en bruker. Vi ønsker å få
skrevet inn data, få gjort et eller annet, og sende det ut på skjermen. Vi har allerede brukt
kommandoen print og fått skrevet ut og vi har sett hvordan vi kan utføre flere operasjoner.
Nå skal vi se på kommandoen input som gjør det mulig for en bruker å skrive inn verdier.

Vi kan se på et eksempel som beregner prisen en kunde må betale for jordbær når prisen per
kurv og antall kurver oppgis. Vi kunne skrive koden slik:

1 navn = "Ola"
2 pris = 55.60
3 antall = 5
4 totalpris = pris*antall
5 print(navn, "du må betale ", totalpris, "kr.")

Programkode 3.8: Jordbær

13

Resultatet blir

Ola du må betale 278.0 kr.

Nå vil vi gjøre om programmet til at en bruker gir oss navnet og de andre verdiene. Det gjør
vi med input

1 navn = input("Hva heter du?")
2 pris = float(input("Hva er prisen på ei kurv med jordbær?"))
3 antall = int(input("Hvor mange kurver kjøpte du?"))
4 totalpris = pris*antall
5 print(navn, "du må betale ", totalpris, "kr.")

Programkode 3.9: Mere jordbær

Nå har vi fått et program hvor vi henter opplysninger fra brukeren. Kommandoen navn =
input("Hva␣heter␣du?") gjør at tekststrengen Hva heter du? blir skrevet til skjermen og
programmet venter på hva som blir skrevet inn. Etter at noe blir skrevet, og brukeren avslutter
med retur-tasten, fortsetter programmet til neste linje.

Når vi vil at brukeren skal skrive inn antall og pris sørger vi for at det blir korrekt datatype
ved at vi setter hele input-kommandoen inne i kommandoer som gjør om til den korrekte
datatypen. Hvis ikke blir det som skrives inn til tekststrenger og det kan vi ikke bruke til
utregninger. Vi får et flyttall med kommandoen float() og heltall med int().

Til slutt skrives variablene ut sammen med noen tekststrenger som passer.

Et tips når du programmerer er å starte med å tilordne verdier til variablene som i programkode
3.8. Da slipper vi å måtte svare på alle spørsmålene for å teste koden. Når alt fungerer som det
skal, gjør vi om til å la brukeren legge inn verdier.

3.5 Introduksjon
Lister er en nyttig datatype i Python. Ordet liste kjenner vi igjen fra f. eks. handlelister eller
ønskelister. Lister kan inneholde flere elementer og vi må heller ikke bestemme oss for hvor
mange elementer det skal være. Det er bare å legge til etter behov. Ei liste oppretter vi ganske
enkelt ved å gi den et navn og så skrive elementene i klammeparenteser. Etter å ha gjort det
kan vi utføre operasjoner med listene, f. eks. legge sammen to lister:

>>> a = [1,2,3,4]
>>> min_liste_av_noen_partall = [2,4,6,8,10]
>>> a + min_liste_av_noen_partall
[1, 2, 3, 4, 2, 4, 6, 8, 10]

Nå skal vi se mer på hva lister er og hvordan de kan benyttes.

3.6 Lister – hva er det?
Vi starter med ei liste over plantenavn hvor hvert element er en tekststreng:

planter = ["løvetann","blåveis","hvitveis","rødkløver"]

Ønsker vi å se innholdet i lista kan vi gjøre det med kommandoen print

14

1 planter = ["løvetann","blåveis","hvitveis","rødkløver"]
2 print(planter)

Programkode 3.10: Utskrift

Vi har laget oss en programmeringsvariabel av typen liste med plantenavn. En slik samling
med elementer er noe vi ofte får bruk siden vi har kommandoer og operasjoner som gjør det
mulig å få gjort noe med listene eller elementer i ei liste.

3.7 Operasjoner med lister

Legge til noe i ei liste
Noen av poenget med listene er at vi kan legge til, eller trekke fra, elementer. For å legge til
ett element bruker vi kommandoen append etter å ha oppgitt navnet på lista. Vi må også ta
med hva vi ønsker å legge til. La oss si at vi ønsker å legge til hestehov i lista over plantenavn.
Da må legge til tekststrengen "hestehov" på slutten av lista vår.

1 planter = ["løvetann","blåveis","hvitveis","rødkløver"]
2 planter.append("hestehov")
3 print(planter)

Programkode 3.11: Append

Det som skjer er at det legges til etter de andre tekststrengene.

’løvetann’ ’blåveis’ ’hvitveis’ ’rødkløver’

planter.append("hestehov")

Slå sammen lister
Vi kan slå sammen lister ved bruk av operatoren +.

>>> a = [1, 2.71, "hallo"]
>>> b = [8, "hei",3.14]
>>> a + b
[1, 2.71, 'hallo', 8, 'hei', 3.14]

Legg også merke til at elementene i ei liste ikke må være av samme datatype.

Indeksering
Da har vi sett at vi kan legge til på slutten av lista. Her havnet «hesthov» som det femte
elementet i lista, men som vi kan se ellers i programmeringsverdenen starter ikke tellinga med
én. Det benyttes en nullindeksering.

Vi lager denne lista verdier = [3.14,2.71,4.32,-3.98,1.01]. Indeksene starter med null

15

0 1 2 3 4

3.14 2.71 4.32 -3.98 1.01

verdier.index(-3.98)

Vi kan finne indeksen til et element ved å bruke kommandoen index. Her er et eksempel
>>> verdier = [3.14,2.71,4.32,-3.98,1.01]
>>> verdier.index(-3.98)
3

Kommandoen leter opp elementet og gir oss indeksen tilbake. Prøver vi med noe som ikke er i
lista får vi ei feilmelding

>>> verdier.index(4)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
ValueError: 4 is not in list

Indekseringen gjør at vi kan få tilgang til hvert element i lista og det behovet oppstår når vi
programmerer.

Hente ut deler av lista
Vi kan angi hvilke elementer vi ønsker å skrive ut fra ei liste ved å benytte indeksene. Vi kan
benytte indeksen for å få skrevet ut det som er på den plassen eller vi kan angi flere indekser.
Her er et eksempel.

>>> verdier = [3.14,2.71,4.32,-3.98,1.01]
>>> verdier[3]
-3.98
>>> verdier[2:4]
[4.32, -3.98]
>>> verdier[2:]
[4.32, -3.98, 1.01]
>>> verdier[:2]
[3.14, 2.71]

0 1 2 3 4

3.14 2.71 4.32 -3.98 1.01

verdier[3]

En forklaring til kommandoene

16

verdier[3] gir elementet som er indeksert på plass tre.
verdier[2:4] gir elementene fra og med indeks to og til fire.
verdier[2:] gir elementene fra og med to og resten av lista.
verdier[:2] gir elementene fra starten og opp til indeks to.

Bruk av indekser kan være lurt når vi har to lister med tilhørende elementer. La oss si at vi
registrer navn og mobilnummer til hver person. Da kan det løses ved å opprette to lister: ei
med navnene og ei med nummerene. Har vi navn og nummer på riktig plass løser indeksene
jobben med å skrive ut både navnet og nummeret:

>>> navn = ["Ole", "Kari","Truls"]
>>> nummer = [9225434, 4567476, 5564489]
>>> print(navn[2], nummer[2])
Truls 5564489

Her har starten på en database!

Fjerne fra lista
For å fjerne et element fra lista er det bare å si fra hvilket element og bruke kommandoen
remove

>>> verdier = [3.14,2.71,4.32,-3.98,1.01]
>>> verdier.remove(2.71)
>>> verdier
[3.14, 4.32, -3.98, 1.01]

Her kan vi legge merke til at elementet fjernes uten at rekkefølgen på de andre forandres.

Andre operasjoner
Sortering av listene kan vi gjøre med kommandoen sort. Bruker vi den på lista over plante-
navn vil resultatet bli ei alfabetisk sortert liste over navnene.

>>> planter.sort()
>>> planter
['blåveis', 'hestehov', 'hvitveis', 'løvetann', 'rødkløver']

Antall elementer i lista finner vi ved len.
>>> verdier = [3.14,2.71,4.32,-3.98,1.01]
>>> len(verdier)
5

Summen av elementene i ei liste med tall er gitt av kommandoen sum

>>> a = [1,2,3,4]
>>> sum(a)
10

17

Antall forekomster Vi kan også finne ut hvor mange elementer som har samme verdi i ei
liste. Da benytter vi kommandoen count().

>>> min_liste = [1,1,2,3,4,4,5,5,5,6,7,7,8]
>>> min_liste.count(5)
3
>>> min_liste.count(7)
2

Her får vi at det er tre forekomster av 5 og to element som har verdien 7.

Største og minste verdi finne vi med kommandoene max og min.
>>> max(min_liste)
8
>>> min(min_liste)
1

En oversikt
Her er en oversikt over noen kommandoer som kan benyttes på lister. For flere kan det lønne
seg å søke på nettet.

Listekommandoer
Kommando Forklaring
append() Legger til et element sist i lista
clear() Sletter alle elementene
copy() Kopierer lista
count() Gir antall elementer av en gitt verdi
index() Gir indeksen til den første forekomsten til en gitt verdi
insert() Setter inn et element i en gitt posisjon
pop() Sletter et element i en gitt posisjon

remove() Sletter et element med en gitt verdi
reverse() Reverserer rekkefølgen i lista
sort() Sorterer lista

Tabell 3.2: Listekommandoer

Noen oppgaver

Oppgave 9

Hva gjør dette programmet?
1 planter = ["løvetann","blåveis","hvitveis","rødkløver"]
2 planter.append("hestehov")
3 print(planter)
4 antall = len(planter)
5 print(antall)

18

Oppgave 10

Hva gjør dette programmet?
1 planter = ["løvetann","blåveis","hvitveis","rødkløver"]
2 planter.append("hestehov")
3 print(planter)
4 antall = len(planter)
5 print(antall)
6 planter.sort()
7 print(planter)

Oppgave 11

Hva gjør dette programmet?
1 verdier = [3.14,2.71,4.32,-3.98,1.01]
2 a = verdier[2]
3 print(a)
4 b = verdier[2:4]
5 print(b)
6 c = verdier[3:]
7 print(c)
8 d = verdier[:2]
9 print(d)

10 print(a,"\n",b,"\n",c,"\n",d,"\n")
11 print(max(verdier))
12 print(min(verdier))

19

3.8 Mer om operasjoner på tekststrenger
Vi har sett at tekststrenger kan være variabler. Et eksempel var at vi deklarerte en variabel på
denne måten

d = "dette␣er␣en␣streng"

Vi får da en streng- variabel av type str.

I Python kan vi utføre en rekke operasjoner på variabler av typen streng.

Sammensetning av tekstvariabler er kanskje den mest vanlig operasjonen. La oss se på
eksempelet i programkode 3.12. Her er det flere tekstvariabler som slås sammen med operatoren
+. Til slutt tilordnes den nye tekststrengen til en variabel og skrives ut.

1 a = "dette"
2 b = "er"
3 c = "en"
4 d = "streng"
5 s = a + " " + b + " " + c + " " + d
6 print(s)

Programkode 3.12: Slå sammen tekst

Resultatet blir at vi får skrevet ut den sammenslåtte teksten: dette er en streng.

Hvordan lagres en streng? Det må vi se nærmere på før vi går videre. Tekststrenger
lagres tegn for tegn i ei liste. Hvert tegn har en egen indeks. Hvis vi fortsetter med tilordningen
d = "dette␣er␣en␣streng" så vil den lagres på denne måten

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

d e t t e ␣ e r ␣ e n ␣ s t r e n g

mellomrom

Hvert tegn lagres fortløpende, akkurat som i ei liste, og hvert tegn indekseres. Legg merke til
at her, som ellers i programmeringsverdenen, så indekseres det fra null. Legg ogå merke til at
mellomrom, som alle andre tegn, plasseres i denne lista. Når vi ønsker å vise et mellomrom er
det vanlig å benytte tegnet ␣ .

Lengden av en tekststreng finner vi med kommandoen len(<streng>). Skriver vi komman-
doen lengde = len(d) vil variabelen lengde inneholde antall tegn som strengen d består av.
Programkode 3.13 hvordan vi kan benytte kommandoen.

Ett tegn er det mulig å hente ut fra tekststrengen. Husk at den ble lagra som ei liste med
alle tegnene. Ønsker vi å hente ut bare ett tegn kan vi gjøre det med å si fra om hvilken indeks.
Skriver vi d[4] hentes det tegnet som er indeksert som nummer 4, dvs det femte tegnet slik vi
regner.

20

Deler av strengen kan vi også hente ut fra lista over alle tegnene. Kommandoen som gjør
det er en utvidelse av den vi benyttet for å hente ett tegn:

streng[startindeks: sluttindeks: steg]

Start- og sluttindeks er indeksverdien vi ønsker å starte og slutte med. Kommandoen d[0:5]
gir dette som resultat. Alle tegnene opp til indeks 5 blir med. Mellomrommet som har indeks
5 blir ikke med.

Sier vi fra om hvor lange steg det skal være mellom det som hentes ut får det konsekvenser.
Kommandoen print(d[0:5:2]) gir dte. Hva skjer? Jo, intervallet er det samme, men nå blir
ikke alle tegnene med. Bare hvert andre tegn hentes fra lista.

Sjekke forekomsten . Vi kan sjekke om en streng er inne i en annen ved å skrive

<streng> in <streng>

Fins en streng inne i en streng Det kan vi sjekke med "en" in d gir enten True eller False –
sann eller usann.

1 d = "dette er en streng"
2 lengde = len(d)
3 print("Denne strengen består av ", lengde, " tegn")
4 print("Det femte tegnet er: ",d[4])
5 print("Det siste tegnet er: ",d[lengde-1])
6 print("Her er en del av strengen: ",d[1:8])
7 print(d[0:5:2])
8 print("en" in d)

Programkode 3.13: Tekststrenger

Denne strengen består av 18 tegn
Det femte tegnet er: e
Det siste tegnet er: g
Her er en del av strengen: ette er
dte
True

Oppgave 12

Eksperimenter med de forskjellige kommandoene.

Oppgave 13

Lag et program som teller hvor mange ganger en bestemt bokstav forekommer i en tekst.

3.9 Bruk av anførseltegn
Vi markerer at dette er en streng ved å skrive mellom to anførseltegn. Vi kan også benytte enkle
anførseltegn, som i denne kommandoen d = 'dette␣er␣en␣streng'. Det er bare i spesielle

21

tilfeller at det utgjør en forskjell. Ønsker vi å få skrevet ut strengen: Det er noe "alle"vet!
kan vi velge å skrive strengen med enkle anførseltegn for å unngå feilmelding:

print('Det␣er␣noe␣"alle"␣vet!')

Hvis vi vil bruke doble går det også, men da må vi si fra om at vi mener doble anførseltegn
inne mellom anførseltegnene

print("Det␣er␣noe␣\"alle\"␣vet!")

Apostrofer krever også en spesiell håndtering, men på norsk er jo det enkelt å unngå dem.
Tekststrengen NRK's kontor krever at vi enten skriver print("NRK's␣kontor") eller print(
'NRK\'s␣kontor').

Det er bare i sjeldne tilfeller vi støter på disse problemene, men oppstår det ei feilmelding kan
det være greit å være klar over at det kan være her problemet ligger. Det kan også hende at
du støter på forskjeller i ulike versjoner av både Python og programmet hvor du skriver kode.

22

4 Programmeringsteknikker
4.1 Hvordan skrive kode?
Når en skal skrive et program er det viktig med en god struktur. Med en gang koden blir mer
omfattende kan det være greit å starte med papir og blyant for så å kladde seg fram til en god
løsning. Da er det greit med to hjelpemidler: flytskjema og pseudokode.

4.2 Pseudokode
En pseudokode er noe midt mellom programkode og vanlig språk: En strukturert framstilling
av programmet uten å tenke for mye på syntaksen som kreves for at det skal kunne fungere.
På den måten får vi fram strukturen i koden samtidig som vi slipper å tenke for mye på hvilke
språkspesifikke kommandoer som må benyttes. Det tar vi til slutt når pseudokoden oversettes
til programmeringsspråket vi benytter. Når vi benytter Python er den prosessen ganske grei.
Python likner mer på pseudokode enn hva tilfellet er med andre språk.

La oss se på et eksempel hvor vi skal prøve å løse oppgaven under

Oppgave 14

Lag et program hvor det skrives inn to ulike tall. Programmet skal vise hvilket tall som
er størst.

Før vi går i gang med programmeringen kan det være lurt å skrive koden uten å tenke for mye
på syntaks og hvordan kommandoene skal skrives i Python.

1 skriv inn tall a
2 skriv inn tall b
3 hvis a > b
4 skriv ut: tall a er størst
5 eller
6 skriv ut: tall b er størst

Slik kan det skrives, men det kan være lurt å legge seg litt nærmere syntaksen i Python med
noe som dette:

1 input tall a
2 input tall b
3 if a > b
4 output tall a er størst
5 else if a = b
6 output tallene er like store
7 else
8 output tall b er størst

Eksemplet er banalt. Her er det ingen grunn til å pseudokode siden Pythonkoden er så nær,
men det viser hvordan en kan gå fram uten å tenke for mye på hvordan det må skrives. I mer
komplekse situasjoner kan pseudokode være nyttig.

23

Skulle vi løst oppgaven i Python, og sett bort fra at det må være to ulike, ville vi endt opp
med noe slikt:

1 a = int(input("Tall a? "))
2 b = int(input("Tall b? "))
3 if a > b:
4 print("Tall a er størst")
5 elif a == b:
6 print("Tallene er like store")
7 else:
8 print("Tall b er størst")

Programkode 4.1: Eksempel

Vi skal se nærmere på hva som skjer i program som dette seinere.

4.3 Flytskjema
Et flytskjema er også et hjelpemiddel for å få skrevet koden.

Forklaring flytskjema

Start/Slutt Markerer start og
slutt

Parallell-
ogram Input/Output

Rektangel Prosesser

Rombe Avgjørelse

Flytskjema for eksemplet

24

Start

Skriv inn
tall a og b

a > b?

Tall a
er størsta = b

Tallene er
like store

Tall b
er størst

Slutt

JaNei

JaNei

25

5 Vilkår
5.1 Hvis-test
Når vi programmerer oppstår det ofte et behov for å ta en avgjørelse basert på et vilkår1. Vi
ønsker at noe skal skje hvis et vilkår er stemmer eller ikke. Til slikt har vi hvis-tester. Vi se et
typisk eksempel i programkode 5.1

1 alder = int(input("Hvor mange år er du? "))
2 if alder > 16:
3 print("Du er voksen!")

Programkode 5.1: En enkel hvis-test

Her sjekkes det om alderen som ble skrevet inn er et tall større enn 16. Hvis det stemmer skal
en tekststreng skrives ut. Hvis det ikke stemmer skjer det ikke noe som helst. For også å få
skrevet ut noe når det ikke stemmer kan vi benytte kommandoen else. Da vil noe bli utført
både om det stemmer og om det ikke gjør det.

1 alder = int(input("Hvor mange år er du? "))
2 if alder > 16:
3 print("Du er voksen")
4 else:
5 print("Du er ikke voksen")

Programkode 5.2: En hvis-ellers-test

Dette var enkle eksempler. Med flere slike hvis-tester, ofte satt inn i hverandre, kan det bli
uoversiktlig. Da er flytskjema til stor hjelp. Figur 5.1 er et som viser avgjørelsene som blir tatt
i det forrige eksemplet.

1betingelse er et annet ord for det samme

26

Start

Skriv inn:
alder

alder > 16?

Skriv ut:
Du er
voksen

Skriv ut:
Du er ikke

voksen

Stopp

Nei Ja

Figur 5.1: Flyskjema med en hvis-test

Følger vi pilene i flytskjemaet får et helhetlig bilde på hva som skjer i koden. Vi slipper også å
tenke på programsyntaks eller programmeringsspråk.

La oss prøve et litt mer avansert eksempel hvor flere hvis-tester er satt inn i hverandre. Vi sier
at hvis-testene er nøstet når det kommer en ny test inn i en annen. Her er et programeksempel
som ber om å få oppgitt en alder og så skriver ut forskjellige beskjeder basert på alderen.

1 alder = int(input("Hvor mange år er du? "))
2 if alder < 12:
3 print("Du er et barn")
4 elif alder < 20:
5 print("Du er tenåring")
6 elif alder < 30:
7 print("Du er ganske voksen")
8 elif alder < 60:
9 print("Du er middelaldrende")

10 else:
11 print("Du begynner å dra på årene")

Programkode 5.3: Hvis-tester som er nøstet

Programkode 5.3 kan bli uoversiktlig. Her ligger testene inne i hverandre med kommandoene
if [] elif []. Det er en kortform for å skrive if og så else med en påfølgende hvis-test.
Syntaksen er

1 if <vilkår>:
2 <kode>
3 elif <vilkår>:
4 <kode>

Med mange slike nøsta hvis-setninger kommer flytskjema til sin rett. Tegner vi opp det som
skjer i koden vil vi ende opp med et flytskjema som i figur 5.2 (her er start og stopp tatt bort)

27

alder < 12?

Du er et barnalder < 20? Du er tenåring

alder < 30? Du er gans-
ke voksen

alder < 60? Du er mid-
delaldrende

Du begynner
å dra på årene

Nei Ja

Ja

Ja

Nei

Ja

Nei

Nei

Figur 5.2: Flyskjema med flere hvis-tester

5.2 Sammenlikninger og boolske variabler
Eksemplene viser at det ofte er behov for å sammenlikne størrelser når vi programmerer. I en
hvis-test sjekker vi om en påstand er sann eller usann. Slike sammenlikninger kjenner vi fra
matematikken. Her er noen eksempler

a = b, a ̸= b, a > b, a ≥ b, a < b, a ≤ b

Datamaskina kan raskt svare på om dette stemmer eller ikke. I Python vil svaret enten være
True eller False. Dette er de to logiske konstantene som benyttes. Logiske variabler kalles også
boolske variabler, og vi sier at de er av datatypen boolean.

George Boole (1815 – 1864)

Når vi tar opp logikk i programmering støter vi på navnet Boole, som i boolske uttrykk
og boolske variabler. George Boole var en engelsk matematiker og filosof og er den som
skapte grunnlaget for det som kalles boolsk algebra.
Les mer om Boole på Wikipedia: https://no.wikipedia.org/wiki/George_Boole

Når vi skal sammenlikne størrelser i Python må vi benytte noen operatorer. Symbolene er ikke
helt ukjente, men vi må passe på at det blir skrevet korrekt. Tabellen viser hvordan Python vil
at vi skal skrive det.

Legg merke til at vi benytter to likhetstegn for å undersøke om to størrelser er like hverandre.

I programkode 5.4 skrives resultatet av noen sammenlikninger ut.
1 a = 1
2 b = 2

28

https://no.wikipedia.org/wiki/George_Boole

Sammenlikninger
Tegn Operasjon Eksempel
> Større enn a>b
< Mindre enn a<b
== Er lik a==b
>= Større enn eller lik a>=b
<= Mindre enn eller lik a<=b
!= Ikke lik a!=b

Tabell 5.1: Sammenlikninger

3 print("a > b er: ", a > b)
4 print("a < b er: ", a < b)
5 print("a == b er: ", a == b)
6 print("a != b er: ", a != b)

Programkode 5.4: Sammenlikninger

Kjører vi denne koden vil resultatet bli:

a > b er: False
a < b er: True
a == b er: False
a != b er: True

Python utfører sammenlikningene og finner at resultatet enten blir True eller False.

Oppgave 15

Eksperimenter med andre verdier av a og b og se om du får det resultatet du forventer.

5.3 Logiske operatorer
Vi har sett hvordan vi kan sammenlikne størrelser og få svar på sammenlikningene som sanne
eller usanne. Sammenlikningene er boolske variabler, som enten er True eller False. I Python
kan vi også utføre operasjoner med slike boolske variabler med det som kalles logiske operatorer.
Vi sier at vi setter opp boolske uttrykk.

Det gir oss behov for en tur innom logikken og de logiske operatorene. I Python er de viktigste

Logiske operatorer
Navn Python kommando
OG and

ELLER or
IKKE not

Tabell 5.2: Logiske operatorer

Vi kan se på et eksempel som benytter and og or.

29

1 a = 1
2 b = 2
3 c = -1
4
5 if a > 0 and b > 0 and c > 0:
6 print("Alle tallene er større enn 0")
7 else:
8 print("Minst ett av tallene er mindre enn eller lik 0")
9

10 if a > 1 or b > 1 or c > 1:
11 print("Minst ett av tallene er større enn 1")
12 else:
13 print("Alle tallen er mindre eller lik 1")

Programkode 5.5: Bruk av logiske operatorer

I programkode 5.5 starter vi med å legge inn tre verdier i tre variabler. I hvis-setningene benytter
vi sammenlikninger satt sammen med logiske operatorer.

Oppgave 16

Skriv av koden og eksperimenter med forskjellig verdier. Prøv å forutsi resultatet før du
kjører koden.

Når vi benytter logiske operatorer kan det være greit å se på en sannhetstabell. Setter vi opp
verdier for to boolske variabler, a og b, kan vi få denne oversikten

Sannhetstabell
a b a and b a or b

True True True True
True False False True
False True False True
False False False False

Tabell 5.3: Sannhetstabell

Her ser vi at a and b bare er True hvis begge variablene True. Vi kan også legge merke til at
a or b bare er False hvis begge er det.

Vi kan la Python skrive ut det samme ved å legge inn forskjellige boolske konstanter i variabler,
slik som programkode 5.6 viser.

1 x = True
2 y = False
3
4 print("x and y er: ", x and y)
5 print("x or y er: ", x or y)
6 print("not x er: ", not x)

Programkode 5.6: Logiske operatorer

Her får vi også vist hvordan operatoren not kan benyttes som en negasjon. Hvis noe ikke er
sant er det usant. Er det ikke usant er det sant. Resultatet blir:

30

x and y er: False
x or y er: True
not x er: False

Vi kan nå vende tilbake til programkode 5.5 hvor vi benyttet de logiske operatorene på forskjellig
sammenlikninger. Den første hvis-setningen var: if a > 0 and b > 0 and c > 0: Med de
opprinnelige verdiene for variablene vil vi få disse resultatene

a > 0 b > 0 c > 0 a > 0 and b > 0 and c > 0
True True True True

Vilkåret i hvis-setningen oppfylles og vi får utført det som kommer i blokka etter setningen.
Det som ikke er oppfylt vil utføres i else-delen. Legg merke til at else vil være negasjonen av
vilkåret, nemlig: not(a > 0 and b > 0 and c > 0), som bare vil være False i tilfellet over.
For alle andre resultat av sammenlikningene vil vi få True.

31

6 Løkker
Løkker, eller sløyfer, er programkode som gjentas flere ganger. Vi kan skrive kode slik at en
programblokk gjentas

• et bestemt antall ganger

• til et bestemt krav er oppfylt

• for alltid

I programmene vi skriver ønsker vi å unngå den siste varianten – at løkkene gjentas for alltid.
Vi ønsker å få kode til å gjentas til noe oppfylles eller et visst antall ganger. I virkeligheten er
det derimot ofte ønskelig at noe skal gjentas for alltid. Tenk bare på styringssystemer hvor noe
skal sjekkes hele tida.

Vi skal se på to typer løkker og vi starter med at vi ønsker å gjenta noe et bestemt antall
ganger.

6.1 For-løkker
Ei for-løkke kan benyttes for å få gjentatt en kode et antall ganger og med verdier vi bestemmer.
Et eksempel er

1 for i in range (2,10):
2 print(i)

Programkode 6.1: Ei enkel for-løkke

Det denne løkka gjør er å gjenta setningen print(i). Hvordan den skal gjentas bestemmes av
det som er satt opp i starten.

for i in range (2,10): forteller at variabelen i skal være et heltall i området fra 2 og opp
til 10. Det som står i blokka under vil gjentas og i vil økes med 1 for hver gang. Kjører vi denne
koden vil tallene Skriver ut alle tallene 2, 3, 4, 5, 6, 7, 8 og 9, skrives ut. Legg merke til at tallet
10 ikke skrives ut. Syntaksen er <variabelnavn> in range (<startverdi>, <sluttverdi>)
hvor sluttverdien ikke er med.

Hvis vi ikke sier fra om annet økes in range() med 1, men en kan også få til å øke med andre
steg, f.eks. 5. Da kan vi sette steglengden til slutt: range(1,100,5)

I eksemplet over så vi at en variabel var av typen heltall og vi fikk verdien til å øke med en
gitt steglengde. Vi kan også benytte for-sløyfer hvor variabeltypen og verdiene bestemmes på
en annen måte. Ofte kan det være verdier i lister, slik vi ser i programkode 6.2.

1 navn = ["Ola", "Kari", "Jens"]
2 for i in navn:
3 print(i)

Programkode 6.2: Løkke med liste

Vi vil få skrevet ut innholdet i lista. Koden starter med at variabelen i får tilordna det første
elementet i lista, resten av koden i blokka vil utføres, og så vil variabelen økes til neste element.
Det hele gjentas helt til siste element. Vi får denne utskrifta:

32

Ola
Kari
Jens

Flytskjema
Flytskjema kan også være nyttige for å vise løkker. En skjematisk framstilling av ei for-løkke
blir slik:

Initialisering

Siste element?

Kode inne
i for-løkkaGå ut av løkka

Sann

Falsk

Koden vil gjentas helt helt til vi kommer til siste element. Med for-løkker kan vi gjenta kode
og vi har kontroll med hvor mange ganger koden gjentas samtidig som vi kan kontrollere hver
verdi som tilordnes.

6.2 While
Vi har også en annen type løkker: while-løkker. Ei slik løkke vil gjentas så lenge et visst vilkår
er oppfylt. På norsk kan vi kalle det så-lenge-løkke, og den bygger vi opp på denne måten:

1 så lenge <vilkår>:
2 gjør det her
3

4 fortsett koden

Her er det eksempel:
1 i = 1
2 while i < 10:
3 print("Nå er i: ",i)
4 i = i+1

Programkode 6.3: while-løkke

Vilkåret er at i < 10. Inne i løkka skjer det noe med variabelen i og etter at all koden i blokka
er utført sjekkes det om vilkåret er oppfylt. Resultatet blir det samme som i programkode 6.1
– tallene fra og med 1 til og med 9 skrives ut.

For å oppnå det samme kunne vi også brukt ei for-løkke, men i andre situasjoner er det bare
while som gjelder. Se bare på eksemplet under.

33

1 ferdig = False
2
3 while not ferdig:
4 print("Nå er du inne i løkka")
5 svar = input("Ønsker du å gå ut? (j/n): ")
6 if svar == "j":
7 ferdig = True

Programkode 6.4: Ei while-løkke til

Vi ønsker å fortsette med noe helt til brukeren velger å gå ut av løkka. For å oppnå det kan vi
ikke bruke for. I dette eksemplet er det også brukt en boolsk variabel for å vise hvor anvendelige
slike er. Alternativt kunne vi bare skrevet while svar != "j", men ved å innføre variabelen
ferdig oppnår vi mer fleksibilitet hvis vi hadde innført flere vilkår for å avslutte.

Flytskjema
Flytskjema for ei while-løkke

Initialisering

Betingelse

Kode inne i
while-løkkaGå ut av løkka

Sann

Falsk

Oppgave 17

Lag et program som beregner hvor mange år et beløp må stå i banken for at det skal
vokse til et nytt beløp. Velg renta sjøl.

34

7 Funksjoner
Nå skal vi se på

h hva funksjoner er

7.1 Hva er en funksjon i Python?
De fleste programmeringsspråk gir oss muligheten til å lage funksjoner, delprogram eller su-
brutiner – her fins det mange navn for det samme. I Python kalles slikt for en funksjon. Et
eksempel kan være at vi skal skrive ut navn og adresse til noen personer. Da kan det være på
sin plass med et lite delprogram som tar seg av den jobben.

1 # Delprogram
2 def skriv_ut(navn,sted):
3 print("Navn: ",navn, "Adresse: ", sted)
4
5 # Hovedprogram
6 skriv_ut("Ola","Sandefjord")
7 skriv_ut("Kari", "Trondheim")

Programkode 7.1: Delprogram

I eksemplet er det definert en pythonfunksjon1 som har fått navnet skriv_ut. Navnet velges
fritt, men det må ikke være noen mellomrom i det. Denne funksjonen mottar variabler og gjør
noe med dem. Alt som skal gjentas mange ganger kan med fordel bli gjort med funksjoner. Det
effektiviserer koden og vi får samtidig delt opp koden vår i delprogram.

Resultatet blir denne utskrifta:

Navn: Ola Adresse: Sandefjord
Navn: Kari Adresse: Trondheim

La oss nå si at vi ønsket et litt annet format på utskrifta. Da kunne vi enkelt forandre det som
funksjonen gjør og fått endret alle utskriftene. La oss si til noe sånt:

1 def skriv_ut(navn,sted):
2 print("Jeg heter "+ navn + " og er fra "+ sted)

Programkode 7.2: Ny utskrift

Vi skal nå se mer på hvordan vi kan benytte funksjoner i Python

7.2 Definisjon av funksjoner
La oss si at vi har gitt en matematisk funksjon y = f(x) = x2+3 og skal finne funksjonsverdien.
I Python kan vi løse oppgaven slik: Vi legger inn en verdi for x og regner ut en y-verdi.

1I Python kalles dette bare en funksjon. Jeg kommer også til å bare bruke ordet «funksjon», men det er
viktig å være klar over at ordbruken skiller seg fra hva en funksjon er i andre sammenhenger.

35

1 x = -1
2 y = x**2+3
3 print(y)

Programkode 7.3: Uten bruk av funksjon

Husk at skrivemåten x**2 betyr x2.

I første linje setter vi variabelen x til -1, så får vi regna ut y til å bli fire – og til slutt skrives
verdien av y ut. Vi får da skrevet ut fire.

Ganske greit, men lite fleksibelt. Hva om vi ønsker å finne flere funksjonsverdier? Da må vi
gjenta det hele. For mer fleksibilitet kan vi definere funksjoner i python.

Før vi går i gang må vi se på hvordan vi kan definere funksjoner i Python. Husk at funksjo-
ner i programmering ikke nødvendigvis er det samme som i matematikken. Funksjoner slik vi
definerer dem i skolematematikken mottar en innverdi og gir en entydig utverdi. Vi kan lage
funksjoner i Python som har egenskapene, men vi kan også lage funksjoner som ikke faller inn
under definisjonen vi kjenner fra matematikken. I det første eksemplet så vi en pythonfunk-
sjon som ikke har egenskapene som kreves av en matematisk funksjon. Pythonfunksjonen i det
tilfellet er et delprogram eller subrutine.

Nå kan vi prøve å definere en pythonfunksjon som oppfører seg som en matematisk funksjon.
Programkode 7.4 viser et slikt eksempel. Den første linja def f(x): forteller at vi ønsker
å definere en funksjon som er kalt f. Funksjonen skal motta en verdi som i funksjonen har
variabelnavnet x. Etter kolon vil det som er rykket inn være kommandoene i funksjonen. Til
slutt er det spesifisert hva som skal returneres fra funksjonen.

1 def f(x):
2 y = x**2+3
3 return y
4 #Hovedprogram
5 a = f(1)
6 print(a)

Programkode 7.4: Definisjon av en funksjon

Når vi bruker en funksjon i en kode sier vi at vi kaller på funksjonen. Her gjør vi det ved kom-
mandoen a = f(1). Verdien 1 overføres til variabelen x inne i funksjonen. I vårt tilfelle benyttes
den overførte verdien i ei utregning. Til slutt returneres verdien y tilbake til hovedprogrammet
og tilordnes verdien a.

Figur 7.1 gir forklaring til et eksempel hvor det er definert en funksjon som legger sammen
to tall. Funksjonen har fått navnet adder. I hovedprogrammet finner vi kommandoen print(
adder(12,13)) hvor vi ber om å få skrevet ut resultatet av verdien vi får tilbake fra funksjonen.
Funksjonen er definert med et funksjonsnavn og parametre. Her er det to parametre som har
fått navnene a og b. Etter at vi kaller på funksjonen med med adder(12,13) vil a tilordnes
verdien 12 og b tilordnes 13. Kodeblokken i funksjonen legger de to sammen og sender verdien
25 tilbake.

Mer skjematisk kan det framstilles som i figur 7.2 hvor pilene viser overføringen av verdier til
parametrene.

Her blir det kanskje mange piler, begrep og teoretisk. Litt eksperimentering kan være et godt
tips for å rydde opp i teorien.

36

1 def adder (a,b) :
2 c = a + b
3 return c
4
5 print(adder(12,13))

definisjon funksjonsnavn parametre

blokk med kode

retur av
funksjonsverdi

Figur 7.1: Definisjon og bruk av funksjon i Python

def f(a):

return c

d = f(b)

Figur 7.2: Parameteroverføring

Eksemplet har med en del variabler for å vise verdiene tydelig. Kommandoen return kan
inneholde en utregning, slik at vi kunne skrevet return a + b og gjort funksjonen adder ei
linje kortere. Programkode 7.5 viser hvordan vi kan returnere verdier som regnes ut.

1 def f(x):
2 return x**2+3
3
4 def g(x):
5 return x*4
6
7 print(g(3) - f(1))

Programkode 7.5: To funksjoner

For mange er kort kode, og bruk av få variabler, viktig, men for vår del er det en smakssak.

Funksjoner i Python

Syntaksen for funksjoner
1 def funksjonsnavn (parametre):
2 # kommandoblokk
3 return returvariabler

parametrene er ei liste med de nødvendige parametrene. Det må ikke være noen parametre
eller returvariabler.

37

7.3 Lokale og globale variabler
Variabler kan være tilgjengelig uansett hvor i programkoden vi benytter dem eller bare være
tilgjengelige innafor en funksjon. De to typene kalles globale og lokale.

Programkode 7.6 viser at det defineres en global variabel a = 3. Denne variabelen er tilgjengelig
for alle deler av koden – global viser til akkurat det. Inne i blokka til funksjonen er det også
definert en variabel med samme navn som den globale, men den er satt til en annen verdi.

1 a = 3
2
3 def en_funksjon():
4 a = 14
5 print("inne i funksjonen",a)
6
7 # hovedprogram
8 en_funksjon()
9 print("utenfor funksjonen",a)

Programkode 7.6: Lokale og globale variabler

Hva skjer? Kjører vi programmet ender vi opp med dette resultatet:

inne i funksjonen 14
utenfor funksjonen 3

Utskrifta viser at tilordninga a = 14 ikke påvirker verdien til den globale variabelen a. Det som
blir gjort inne i funksjonen påvirker ikke resten. Den variabelen er lokal.

Globale variabler er tilgjengelige for alle deler av koden. I programkode 7.8 benyttes verdien
av den globale variabelen a inne i funksjonen. Her er b en lokal variabel som forblir ukjent for
resten av koden.

1 a = 3
2 def en_funksjon():
3 b = 2*a
4 print("b: ",b)
5
6 # hovedprogram
7 en_funksjon()
8 print("a: ",a)

Programkode 7.7: Lokale og globale variabler

Dette programmet gir

b: 6
a: 3

Et forsøk på å skrive ut verdien av b i hovedprogrammet med kommandoen print(b) gir meg
feilmeldinga: NameError: name 'b' is not defined og det må jeg si meg enig i siden b er
lokal.

38

Det er kanskje ikke ofte vi får bruk for det, men vi kan si fra om at vi ønsker å definere en
global variabel inne i koden til en funksjon. Det gjør vi ved å sette global foran variabelnavnet.

1 def en_funksjon():
2 global a
3 a = 21
4
5 en_funksjon()
6 print("a: ",a)

Programkode 7.8: Definisjon av global variabel

Det er lurt å holde styr på hva som skal være lokale og globale variabler. En god skikk er å
bare bruke lokale variabler inne i funksjonen. Vi sender over variabelverdier som parametre og
returnerer noe tilbake. Alt som skjer av kode inne i funksjonen bør benytte lokale variabler.
En slik bruk gjør det enklere å unngå feil siden alt som skjer inne i funksjonen ikke påvirker
resten av programkoden. En god regel, men det hender at vi gjør unntak.

Oppgave 18

Eksperimenter med lokale og globale variabler.

39

8 Bibliotek
Moduler, pakker og bibliotek er navn vi støter på når vi skal utvide funksjonaliteten til et
program. Ved enkel programmering er det ikke så nøye hva vi kaller det, men for de som er mer
opptatt av korrekt språkbruk kan vi ta med denne forklaringen

Moduler og pakker

Fra dokumentasjonen av Python:
Module: A module is a file containing Python definitions and statements. The file name

is the module name with the suffix .py appended.
Package: Packages are a way of structuring Python’s module namespace by using “dot-

ted module names”.

Vi kan altså betrakte moduler som filer, og pakker som noe som strukturerer flere slike filer.
Bibliotek (eng. library) er et ord som ikke er klart definert i Python, men det benyttes ofte
som en referanse til samlinger av moduler, pakker og annet. Her vil jeg stort sett holde meg til
ordene modul og bibliotek uten å tenke for mye på den tekniske definisjonen. Vi kan tenke på
det som samlinger av programkode, definisjoner og annet som andre har laget for oss. Skal vi
lage litt mer avanserte programmer får vi ofte behov for funksjonalitet som ikke er tilgjengelig
uten å hente inn noe ekstra.

8.1 Hva er en modul?
For å se nærmere på hvordan vi kan utvide det som allerede fins innebygd i Python kan vi se
på hvordan vi kan lage en egen modul.

I Python kan vi definere våre egne funksjoner. La oss si at det er funksjoner vi vil benytte flere
ganger. Da kan vi lagre funksjonene våre i ei fil1, la oss kalle den minmodul.py. Innholdet i fila
finner du i programkode 8.1.

1 def f(x):
2 return x**2+3
3
4 def g(x):
5 return x*4

Programkode 8.1: minmodul.py

To funksjoner er definert, og nå kan vi importere funksjonene inn i andre program på flere
måter.

Skriver vi import minmodul vil fila vår importeres2. For å kalle opp de enkelte funksjonene
som er definert i modulen må vi legge til modulnavnet. I programkode 8.2 ser vi koden som må
benyttes.

1 import minmodul
2
3 print(minmodul.g(3) - minmodul.f(1))

1Akkurat det med å lagre ei fil kan gi noen utfordringer avhengig av programmeringsmiljø. Her er det ment
som en forklaring.

2Det krever at programmeringsmiljøet finner fila vår

40

Programkode 8.2: import minmodul

For å slippe å skrive lange modulnavn kan vi også importere modulen med et alias. La oss velge
bokstaven m og skrive import minmodul as m

1 import minmodul as m
2
3 print(m.g(3) - m.f(1))

Programkode 8.3: import minmodul as m

Disse to variantene er de mest ryddige siden den importerte modulen holdes unna alle komman-
doene som allerede er innebygd som standard i Python. Et ord en støter på i den sammenheng
er namespace. Her ligger alle kommandoene som er innebygd, funksjoner vi definerer og mye
annet. Måten vi har importert modulen på klusser ikke til det som ligger der fra før. Nye kom-
mandoer holdes for seg sjøl. Ulempen er at vi må si fra at kommandoene er i en importert
modul.

Vi kan importere modulene inn i namespace, men da bør vi være oppmerksom på det som kalles
namespace polution. I enkel programmering er det som regel ikke noe problem, men det kan
være greit å etablere en god praksis fra start. La oss allikevel se på hvordan vi kan importere
moduler inn på en måte som gjør at vi slipper å skrive modulnavnet. Det gjør vi ved å skrive
from modulnavn import *.

1 from minmodul import *
2
3 print(g(3) - f(1))

Programkode 8.4: import *

Her er hele modulen importert – stjerna sier det. Funksjonene g og f har blitt en del av de
kommandoene vi kan benytte. En slik import kan altså skape litt kluss. Hva om Python allerede
inneholdt en kommando som heter f eller g? Vi fyller også opp namespace.

En analogi som kan illustrere dette er å se på modulnavnene vi importerer som etternavn og
så får med alle familiemedlemene.

Hansen
Ole Kari Jonas

Olsen
Knut Kari Anna

Jensen
Kari Anna Jonas

Importerer vi modulene med kommandoene import Hansen, import Olsen og import Jensen,
vil vi enkelt kunne adressere alle familiemedlemmene. En importering inn i namespace vil føre
til rot siden det er flere fornavn som går igjen.

For å ikke få importert alle funksjonene i modulen kan vi fortelle hvilken funksjon vi er ute
etter. La oss si at vi bare ønsker å importere funksjonen f.

1 from minmodul import f
2
3 print(f(1))

Programkode 8.5: import f

41

Da har vi kontroll på hva vi legger til og unngår å få med alt annet, men også denne praksisen
kan komme i konflikt med andre funksjoner. Konklusjonen er at det er en god programmerings-
praksis å unngå denne måten å importere på. På den annen side kan det vurderes om hva som
er det beste pedagogisk. En slik import gjør det enklere å skrive koden for nybegynneren ved at
det ikke må refereres til modulen når kommandoene kalles. I eksemplene som benyttes i dette
kompendiet har jeg valgt å ikke bruke en slik import.

8.2 Pakker vi ofte importerer
Dette var et enkelt eksempel på en egen modul, men stort sett importerer vi moduler som andre
har skrevet. Heldigvis er det mange som allerede har laget moduler med mye nyttig for oss.

8.2.1 Math
Uten å importere tilleggskommandoer er Python begrenset. Skal vi utføre matematiske opera-
sjoner får vi ofte bruk for Math.

Vi importerer den og ber python om å liste opp alle funksjonene.
1 import math
2 print(dir(math))

Programkode 8.6: Liste av innholdet

Da får vi dette resultatet.

acos, acosh, asin, asinh, atan, atan2, atanh, ceil, comb, copysign, cos, cosh, degrees, dist,
e, erf, erfc, exp, expm1, fabs, factorial, floor, fmod, frexp, fsum, gamma, gcd, hypot,
inf, isclose, isfinite, isinf, isnan, isqrt, ldexp, lgamma, log, log10, log1p, log2, modf, nan,
perm, pi, pow, prod, radians, remainder, sin, sinh, sqrt, tan, tanh, tau, trunc

Her kan vi finne kommandoen sqrt, som står for square root eller kvadratrot. Å kunne finne
kvadratrota av et tall uten å skrive mye kode kan vi da enkelt gjøre ved å importere math og
benytte kommandoen.

Importen av math kan skje slik det er beskrevet tidligere. Vi kan importere både med og uten
alias – og vi bare importere det vi har bruk for.

1 import math
2 a = math.sqrt

(2)
3 print(a)

1 import math as m
2 a = m.sqrt(2)
3 print(a)

1 from math import sqrt
2 a = sqrt(2)
3 print(a)

Legg merke til at vi hvis vi velger å bare importere sqrt, så skriver vi from math import sqrt
og kan benytte kommandoen direkte uten å måtte skrive navnet på modulen.

Noen viktige i Math-modulen

Math-modulen inneholder også alle trigonomteriske funksjoner som sinus, cosinus og tangens.
For å finne sinus til en verdi kan vi skrive math.sin() og for å finne vinkelen når vi vet forholdet,
math.asin(). Den siste står for arcus sinus. På kalkulatoren benyttes ofte sin−1. Tilsvarende

42

Metode Beskrivelse
math.ceil() Runder av verdi til opp til nærmeste heltall
math.comb() Returnerer antall kombinasjoner
math.degrees() Konverterer fra radianer til grader
math.exp() Returnerer e opphøyd i x
math.fabs() Returnerer absoluttverdien
math.factorial() Returnerer fakultet av et tall
math.floor() Runder av ned til nærmeste heltall
math.gcd() Returnerer største felles divisor til to heltall
math.log() Returnerer den naturlige logaritmen
math.log10() Returnerer 10-er logaritmen
math.perm() Returnerer antall permutasjoner
math.pow() Returnerer verdien av x opphøyd i y
math.sqrt() Returnerer kvadratrota av et tall

Tabell 8.1: Math-modulen

er det for de andre trigonometriske funksjonene. Ei liste over noen kommandoer kan du finne i
tabell 8.1.

Konstantene π og e finner vi også i denne modulen som math.pi og math.e.

Et eksempel hvor vi benytter en god tilnærming til π ≈ 3.141592653589793

1 import math as m
2 radius = 3
3 areal = m.pi*radius**2
4 omkrets = 2*m.pi*radius
5 print(areal)
6 print(omkrets)

Programkode 8.7: Sirkel

8.2.2 Random
Random inneholder kommandoer som gjør at vi kan få generert tilfeldige tall og en del annet.
Tabell 8.2 viser noen av det vi kan få bruk for.

Metode Beskrivelse
random.seed() Initialiserer tallgeneratoren
random.randint() Gir et tilfeldig heltall i et gitt intervall
random.random() Gir et tilfeldig tall mellom 0 og 1
random.choice() Velger et tilfeldig element fra ei liste

Tabell 8.2: Random-modulen

1 import random
2 print(random.randint(0,100))
3 print(random.random())
4 print(random.choice(["rød", "blå", "hvit", "grønn"]))

43

Programkode 8.8: Eksempler fra Random

8.2.3 PyPlot
Pyplot er en modul vi finner som en del av den større modulen Matplotlib. Vi benytter den
for grafiske framstillinger som grafer, punktplott, søylediagram osv. For å importere modulen
skriver vi import matplotlib.pyplot as plt. Da får vi importert Pyplot med aliaset plt. Vi
kommer til å se mer på Pyplot når vi skal plotte data.

Les mer om Matplotlib her https://matplotlib.org

Her er en introduksjon til Pyplot: Pyplot tutorial

8.2.4 NumPy
NumPy er en forkortelse for Numerical Python. Modulen gir oss tilgang til å behandle matriser
og arrays. I tillegg inneholder modulen en del av de samme kommandoene som vi finner i Math,
f.eks. kvadratrot. Mer om NumPy kan du finne på disse sidene https://numpy.org

44

https://matplotlib.org
https://matplotlib.org/tutorials/introductory/pyplot.html
https://numpy.org

9 Tegne grafer
Grafer til funksjoner og punktplott er det ofte nyttig å tegne. Som regel har vi godt egna
verktøy til å gjøre det både enklere, og raskere, enn med Python. I noen tilfeller kan det være
greit å vite hvordan vi kan få gjort det i Python også. Her kan du lese mer om hvordan

Nå skal vi se på hvordan vi kan

h tegne grafer til funksjoner h plotte data

Tidligere har vi sett hvordan funksjoner defineres og nå skal vi ta det i bruk når vi skal tegne
grafen til en funksjon. Før vi gjør det lager vi noen punktplott.

9.1 Punktplott
La oss starte med et enkelt eksempel og se på programkode 9.1. Før vi kan starte må vi legge
til en del kommandoer som ikke er direkte innebygd i Python. Vi må importere det som skal
til for å kunne få tegnet opp det vi ønsker. Vi importerer PyPlot med kommandoen: import
matplotlib.pyplot as plt. Nå vil vi få mange nye kommandoer som kan benyttes med

aliaset plt. Først må vi ha noen verdier som skal plottes. Det skaffer vi oss ved å opprette to
lister med navnene x og y. Vi kan lage plottet med kommandoen plt.plot(x,y): plott verdiene
til de to listene x og y.

1 import matplotlib.pyplot as plt
2 # legger inn x-verdier og y-verdier
3 x = [1,2,3,4,5]
4 y = [1,4,9,16,25]
5
6 # plotter verdiene
7 plt.plot(x,y)
8
9 # viser plottet

10 plt.show()

Programkode 9.1: Et enkelt plott

Her kan det være grunn til å legge merke til at kommandoen plt.plot(x,y) plotter punktene,
men de vises ikke. Først når vi ber om det med plt.show() vil vi få sett punktene i et koordi-
natsystem. Da bør resultatet være som i figur 9.1. Der ser vi punktene plottet og det er tegnet
linjer fra det ene punktet til det andre. Verdiene langs de to aksene tar Python seg av.

45

Figur 9.1: Et enkelt plott

Litt pynt
Kanskje kan det gjøre seg med litt forklaring på aksene? Det kan vi få med noen kommandoer
til. I programkode 9.2 er det lagt til navn på aksene og ei overskrift. Et rutenett i bakgrunnen
kan også gjøre seg. Her er det lagt til med plt.grid().

1 import matplotlib.pyplot as plt
2 # legger inn x-verdier og y-verdier
3 x = [1,2,3,4,5]
4 y = [1,4,9,16,25]
5
6 # plotter verdiene
7 plt.plot(x,y)
8 # tekst
9 plt.xlabel("x-verdier") # tekst på x-aksen

10 plt.ylabel("y-verdier") # tekst på y-aksen
11 plt.title("Et enkelt eksempel") # overskrift
12 plt.grid() # rutenett
13 # viser plottet
14 plt.show()

Programkode 9.2: Et plott med litt pynt

Resultatet vises i figur 9.2

Bare punktene
Nå har vi fått tegna opp punktene med linjer mellom punktene. Ofte er det akkurat det vi
ønsker, men nå ønsker vi bare å få plottet punktene som et punktplott. På engelsk kalles det
et scatter plot. Bytter vi ut plt.plot(x,y) med plt.scatter(x,y) sier vi fra om at det er et
punktplott vi ønsker oss. Kjører vi programmet med den nye kommandoen får vi resultatet i
figur 9.3.

46

Figur 9.2: Et enkelt plott med forklarende tekst

Figur 9.3: Et punktplott med forklarende tekst

Flere plott i samme koordinatsystem
Punktplott kan inneholde flere serier med verdier som vi ønsker å plotte i samme koordinat-
system. Vi kan se på et eksempel hvor x-verdiene er de samme, men y-verdiene er ulike. I
programkode 9.3 er det tre lister som inneholder verdiene. Verdiene plottes med å si fra om x-
og y-verdier. I tillegg kan vi gi plottene navn. Kommandoen plt.scatter(x,y1, label = "
graf␣1") sier fra om at det skal lages et plott og at plottet skal ha merkelappen (eng. label)
«graf 1». For at vi skal få se navnene til de to seriene må vi si fra om det med plt.legend().

1 import matplotlib.pyplot as plt
2 # legger inn x-verdier og y-verdier
3 x = [1,2,3,4,5]

47

4 y1 = [1,4,9,16,25]
5 y2 = [2,4,6,8,10]
6
7 # plotter verdiene
8 plt.scatter(x,y1, label = "graf 1")
9 plt.scatter(x,y2, label = "graf 2")

10
11 # tekst
12 plt.xlabel("x-verdier")
13 plt.ylabel("y-verdier")
14 plt.title("Et enkelt eksempel")
15 plt.legend()
16 plt.grid()
17 # viser plottet
18 plt.show()

Programkode 9.3: To ulike serier

Da får vi plottet to serier med data. Python velger ulike farger på de to plottene og vi får opp
en forklaring med tekstene vi har valgt. Figur 9.4 viser resultatet.

Figur 9.4: Plott med to dataserier

9.2 Funksjoner som grafer
I matematikkundervisning får vi behov for å tegne grafer til matematiske funksjoner. Grafen
til en funksjon består av en mengde x-verdier og de tilhørende funksjonsverdiene. For at det
skal se ut som en graf og ikke et punktplott er vi avhengig av å ha mange x-verdier. De kan vi
skrive inn, men det blir for mye jobb. Heldigvis kan vi få hjelp, men hjelpa må vi importere.
Modulen NumPy inneholder en kommando som heter linspace som vi kan benytte til å lage
mange x-verdier. Ved å si fra om en start- og en sluttverdi kan vi be om å få laget et visst
antall verdier mellom dem:

linspace(start, stopp, antall)

48

Prøver vi kommandoen i terminalen kan vi få dette resultatet:
>>> import numpy as np
>>> x = np.linspace(-5,5,10)
>>> print(x)
[-5. -3.88888889 -2.77777778 -1.66666667 -0.55555556 0.55555556 1.66666667

2.77777778 3.88888889 5.]

Vi får laget ti verdier som starter med -5 og slutter med 5. Kommandoen sørger for at verdiene
er fordelt likt i intervallet. Resultatet kan vi betrakte som ei liste, men det er egentlig en egen
datatype som heter ndarray.

La oss si at vi ønsker å tegne grafen til funksjonen gitt ved f(x) = x2 i intervallet [−10, 10].
Da definerer vi først funksjonen i Python. Så må vi få laget oss x-verdier. Vi får tusen verdier
i det gitte intervallet med x = np.linspace(-10,10, 1000). Alle verdien tilordnes variabelen
x. Innholdet kan vi betrakte som ei liste. Når disse verdiene sendes til den definerte funksjonen
får vi tilbake alle de tilhørende y-verdiene. Nå er de klare for å plottes.

1 import matplotlib.pyplot as plt
2 import numpy as np
3
4 # definerer funksjonen f
5 def f(x):
6 return x**2
7
8 # legger inn x-verdier
9 x = np.linspace(-10,10, 1000)

10
11 # beregner y-verdier
12 y = f(x)
13
14 # plotter
15 plt.plot(x,y)
16 plt.show()

Programkode 9.4: Plotting av graf

Grafen blir plottet i et koordinatsystem hvor aksene opprettes automatisk og vil se ut som i
figur 9.6. Koordinatsystemet er kanskje litt uvant? Her er går ikke andreaksen gjennom origo,
men tegnes til venstre. Det går an å gjøre om på det, men det krever en del kode. Foreløpig får
vi nøye oss med denne framstillinga.

9.2.1 Flere grafer
Vi kan se på et eksempel hvor vi ønsker å tegne flere grafer i samme koordinatsystem.

Eksempel 1

Tegn grafene til disse funksjonene i intervallet [−10, 10]

f(x) = x2

g(x) = 2x+ 9

49

Figur 9.5: Grafen til f(x) = x2

Framgangsmåten er som tidligere. Vi må definere funksjonene og vi må få laget x-verdier,
grafene plottes ved å si fra om hvilke verdier vi vil ha med. Programkode 9.5 viser hvordan det
kan bli gjort. Her er det også tatt med litt mer i plottet. Grafene har fått merkelapper og gitte
farger. Måten vi kan skrive de matematiske symbolene krever en spesiell kode og at versjonen
av Python vi benytter er i stand til å gjenkjenne det. Kommandoen er:

plt.plot(x,y1, label = r"$f(x)=x^2$", c = "r")

Her er $f(x)=x^2$ koden for f(x) = x2. Python velger forskjellige farger for ulike grafer, men
vi kan bestemme hvilken farge vi ønsker med kommandoen c = "<farge>". Vi skriver inn en
bokstav for fargen. Det er bare å velge fra tabellen med bokstaver for de forskjellige fargene.

Farger
Forkorting Farge

b Blå
r Rød
g Grønn
c Cyan
m Magenta
y Gul
k Svart
w Hvit

Tabell 9.1: Farger

50

1 import matplotlib.pyplot as plt
2 import numpy as np
3
4 # definerer funksjonen f
5 def f(x):
6 return x**2
7
8 def g(x):
9 return 2*x+9

10
11 # legger inn x-verdier
12 x = np.linspace(-10,10, 1000)
13
14 # beregner y-verdier
15 y1 = f(x)
16 y2 = g(x)
17
18 # plotter
19 plt.plot(x,y1, label = r"$f(x)=x^2$", c = "r")
20 plt.plot(x,y2, label = r"$f(x)=2x+9$", c = "b")
21 plt.xlabel("x")
22 plt.ylabel("y")
23 plt.title("To grafer")
24 plt.legend()
25 plt.grid()
26 plt.show()

Programkode 9.5: To grafer med forskjellig farge

51

Figur 9.6: Plott med to dataserier

52

A Vedlegg
Vedleggene er litt forskjellig som kanskje noen finner interessant, men som ikke er av stor
betydning for enkel programmering.

A.1 Formattering med f-strenger
Med versjon 3.6 introduserte Python noe som kalles f-strenger. Navnet kommer av at vi må
skrive en f i kommandoen på denne måten print(f"strengen"). Når det er gjort kan vi legge
til formatteringer av strengen. Har vi en variabel med navnet «x», som inneholder verdien til
et nullpunkt, kan vi skrive ut den inne i strengen: print(f"Nullpunktet␣er␣x␣=␣{x}")

Det samme resultatet har vi oppnådd med bare print også, men det fine med f-strenger er at
vi kan legge til mer formattering. La oss si at vi vil ha fire desimaler. Da kan vi skrive

print(f"Nullpunktet␣er␣x␣=␣{x:0.4f}")

Med f-strenger kan vi få utskriftene til å se penere ut. Det krever at vi benytter en versjon av
Python etter 3.6. Har du ikke det, så går du bare glipp av litt pynt.

Vi kan se på et eksempel til. Programkode A.1 skriver ut en tabell med verdier.
1 def f(x):
2 return 2**x+3**(-x)-3
3
4 X = [-2, -1, 0, 1, 2]
5
6 print("01234567890123456789")
7
8 for x in X:
9 print(f"{x:7.0f} {f(x):8.2f}")

Programkode A.1: Funkjsonstabell

Programmet skriver ut en funksjonstabell.

01234567890123456789
-2 6.25
-1 0.50
0 -1.00
1 -0.67
2 1.11

Kommandoen print(f"{x:7.0f}␣{f(x):8.2f}") formatterer strengen slik at desimalskille-
tegnet til x plasseres sju plasser til venstre. Her ber vi om at verdien skal skrives ut uten
desimaler, og dermed desimalskilletegnet. Verdien som skrives ut skal være av type flyttall.
Neste verdi plasseres med desimalskilletegnet åtte plasser til venstre for det som ble skrevet ut.
Den verdien skal skrives ut med to desimaler.

Formatteringen med f-streng

f"{verdi:{bredde}.{presisjon}}"

53

Her er

• verdi er en variabel eller uttrykk som gir et tall

• bredde er bestemt av antall totalt antall tegn som settes av til det som skal vises

• presisjon er antall tegn som settes av etter desimalskilletegnet

Dette gir oss mulighet til å formattere verdiene som skal skrives ut. Tabell A.1 viser en del
eksempler

Verdi Format Utskrift Forklaring
3.1415926 {:.2f} 3.14 Flyttall med to desimaler
3.1415926 {:+.2f} +3.14 Flyttall med to desimaler inkludert fortegn

-1 {:+.2f} -1.00 Flyttall med to desimaler inkludert fortegn
2.71828 {:.0f} 3 Flyttall uten desimaler

0.25 {:.2%} 25.00% Formatter som prosent
1000000000 {:.2e} 1.00e+09 Skriv på standardform

13 {:10d} xxxxxxxx13 Høyre-justert ned ti
13 {:<10d} 13xxxxxxxx Venstre-justert
13 {:^10d} xxxx13xxxx Justert til sentrum og ti som bredde

Tabell A.1: Oversikt over noen formatteringer

Du kan finne mye mer på nettet om dette temaet. Litt eksperimentering hjelper også.

54

A.2 Nullindeksering

Noe som kan være forvirrende er at det er vanlig i programmering å starte indeksering med
null. Det kalles nullindeksering. En slik nullindeksering kjenner mange også fra andre fag, men
i hverdagen er vi vant med å starte telling med 1. Det kan være greit å skille mellom telling og
indeksering. Et eksempel på nullindeksering kan være måten etasjer nummereres på engelsk.
Der er vår første etasje ground floor og så starter de tellingen av etasjer over.

Edsger W. Dijkstra er en kjent nederlandsk informatiker. Han argumenterte for en nullindek-
sering i et notat fra 1982: Why numbering should start at zero. Der tok han for seg mulige
måter indeksering kunne skje og viste til at nullindeksering har sine fordeler. Slik har det blitt
vanlig å starte med null i programmeringsverdenen. Les gjerne mer her: Wikipedia: Zero-based
numbering

55

https://en.wikipedia.org/wiki/Zero-based_numbering
https://en.wikipedia.org/wiki/Zero-based_numbering

A.3 Mer om funksjoner og parametre
Når vi benytter programmeringsfunksjoner overfører vi ofte parametre til funksjonen. Da har vi
bestemt hvilke parametre vi ønsker å overføre og rekkefølgen på dem. Kanskje ønsker vi å endre
rekkefølgen ved å spesifisere variabelnavnene når vi kaller funksjonen. Det kan vi få til ved å si
fra når vi kaller funksjonen. Programkode A.2 viser hvordan kan spesifisere parametrene i den
rekkefølgen vi ønsker.

1 def min_funksjon(fag3, fag2, fag1):
2 print("Jeg tar faget " + fag2)
3
4 min_funksjon(fag1 = "MGLU234", fag2 = "Lær2003", fag3 = "MGLU7654")

Programkode A.2: Navngiving av parametre

Noen ganger kan det være vanskelig å vite antall parametre, men Python gir oss noen muligheter
i disse tilfellene også. Programkode A.3 viser et eksempel på hvordan vi kan definere en funksjon
og si fra om at vi ikke vet hvor mange parametre som overføres. Ved at vi skriver *fag vil
funksjonen motta parameterverdiene i ei liste og vi kan angi hvilket listeelement vi ønsker å
benytte.

1 def min_funksjon(*fag):
2 print("Jeg tar faget " + fag[1])
3
4 min_funksjon("MGLU234", "Lær2003", "MGLU7654")

Programkode A.3: Paramteroverføring

Det er også en annen måte å gjøre det på ved at parametrene overføres i det som kalles en
dictionary. Det gjør det mulig å finne fram til parameteren ved å skrive navnet, slik rrogramkode
A.4 viser

1 def min_funksjon(**fag):
2 print("Jeg tar faget " + fag["fag2"])
3
4 min_funksjon(fag1 = "MGLU234", fag2 = "Lær2003", fag3 = "MGLU7654")

Programkode A.4: **kwargs

Ved paramteroverføring har vi også mulighet til å si fra om en standardverdi (default value)
hvis det ikke overføres noen parametre. Overfører vi en parameter vil den verdien benyttes og
ikke standardverdien. Programkode A.5 viser et eksempel.

1 def min_funksjon(fag = "Lær2003"):
2 print("Jeg tar faget " + fag)
3
4 min_funksjon()
5 min_funksjon(fag = "MGLU234")
6 min_funksjon(fag = "MGLU7654")

Programkode A.5: Standardverdi

Du kan finne ut mye mer om dette ved å søke på nettet.

56

Figurer
5.1 Flyskjema med en hvis-test . 27
5.2 Flyskjema med flere hvis-tester . 28

7.1 Definisjon og bruk av funksjon i Python . 37
7.2 Parameteroverføring . 37

9.1 Et enkelt plott . 46
9.2 Et enkelt plott med forklarende tekst . 47
9.3 Et punktplott med forklarende tekst . 47
9.4 Plott med to dataserier . 48
9.5 Grafen til f(x) = x2 . 50
9.6 Plott med to dataserier . 52

57

Tabeller
2.1 Operatorer . 7

3.1 Noen datatyper i Python . 11
3.2 Listekommandoer . 18

5.1 Sammenlikninger . 29
5.2 Logiske operatorer . 29
5.3 Sannhetstabell . 30

8.1 Math-modulen . 43
8.2 Random-modulen . 43

9.1 Farger . 50

A.1 Oversikt over noen formatteringer . 54

58

Pythonkode
1.1 abc-formelen . 3
1.2 Hallo verden . 4
1.3 Hallo verden 2.0 . 4
1.4 Litt mer avansert . 5
3.1 Omkretsen av et rektangel . 9
3.2 Bruk av programmeringsvariabel . 10
3.3 Bruk av teller . 10
3.4 Store verdier . 11
3.5 Tekststrenger . 12
3.6 Konvertering . 12
3.7 Hvilken datatype? . 13
3.8 Jordbær . 13
3.9 Mere jordbær . 14
3.10 Utskrift . 15
3.11 Append . 15
3.12 Slå sammen tekst . 20
3.13 Tekststrenger . 21
4.1 Eksempel . 24
5.1 En enkel hvis-test . 26
5.2 En hvis-ellers-test . 26
5.3 Hvis-tester som er nøstet . 27
5.4 Sammenlikninger . 28
5.5 Bruk av logiske operatorer . 30
5.6 Logiske operatorer . 30
6.1 Ei enkel for-løkke . 32
6.2 Løkke med liste . 32
6.3 while-løkke . 33
6.4 Ei while-løkke til . 34
7.1 Delprogram . 35
7.2 Ny utskrift . 35
7.3 Uten bruk av funksjon . 36
7.4 Definisjon av en funksjon . 36
7.5 To funksjoner . 37
7.6 Lokale og globale variabler . 38
7.7 Lokale og globale variabler . 38
7.8 Definisjon av global variabel . 39
8.1 minmodul.py . 40
8.2 import minmodul . 40
8.3 import minmodul as m . 41
8.4 import * . 41
8.5 import f . 41
8.6 Liste av innholdet . 42
8.7 Sirkel . 43
8.8 Eksempler fra Random . 43
9.1 Et enkelt plott . 45
9.2 Et plott med litt pynt . 46
9.3 To ulike serier . 47

59

9.4 Plotting av graf . 49
9.5 To grafer med forskjellig farge . 51
A.1 Funkjsonstabell . 53
A.2 Navngiving av parametre . 56
A.3 Paramteroverføring . 56
A.4 **kwargs . 56
A.5 Standardverdi . 56

Creative Commons Navngivelse-IkkeKommersiell-DelPåSammeVilkår 4.0
Laget med LATEX

60

http://creativecommons.org/licenses/by-nc-sa/4.0/

	Introduksjon
	Et eksempel på et Python-program
	Vi lager noen enkle program

	Aritmetikk
	Enkle utregninger
	Litt mer avansert
	Regnerekkefølge

	Variabler og datatyper
	Programmeringsvariabler
	Grunnleggende datatyper
	Konvertering mellom datatyper
	Input
	Introduksjon
	Lister – hva er det?
	Operasjoner med lister
	Mer om operasjoner på tekststrenger
	Bruk av anførseltegn

	Programmeringsteknikker
	Hvordan skrive kode?
	Pseudokode
	Flytskjema

	Vilkår
	Hvis-test
	Sammenlikninger og boolske variabler
	Logiske operatorer

	Løkker
	For-løkker
	While

	Funksjoner
	Hva er en funksjon i Python?
	Definisjon av funksjoner
	Lokale og globale variabler

	Bibliotek
	Hva er en modul?
	Pakker vi ofte importerer
	Math
	Random
	PyPlot
	NumPy

	Tegne grafer
	Punktplott
	Funksjoner som grafer
	Flere grafer

	Vedlegg
	Formattering med f-strenger
	Nullindeksering
	Mer om funksjoner og parametre

