Programmering med Python

Per G. Osterlie
FLT, NTNU

per.g.osterlie@ntnu.no

2. februar 2024

Introduksjon

1.1 Et eksempel pa et Python-program
1.2 Vilager noen enkle program Lo
Aritmetikk

2.1 Enkle utregninger
2.2 Litt mer avansert oL
2.3 Regnerekkefglge
Variabler og datatyper

3.1 Programmeringsvariabler00 o
3.2 Grunnleggende datatyper
3.3 Konvertering mellom datatyper oL
3.4 Input. . ..o
3.5 Introduksjono
3.6 Lister —hvaerdet?
3.7 Operasjoner med listero
3.8 Mer om operasjoner pa tekststrenger oo
3.9 Bruk av anfgrseltegno

Programmeringsteknikker

4.1 Hvordan skrive kode?
4.2 Pseudokode
4.3 Flytskjema e
Vilkar
5.1 Hvis-test e e
5.2 Sammenlikninger og boolske variabler 0000000
5.3 Logiske operatorer
Lokker
6.1 For-lgkker
6.2 While s
Funksjoner
7.1 Hva er en funksjon i Python?
7.2 Definisjon av funksjoner L
7.3 Lokale og globale variabler
Bibliotek
81 Hvaerenmodul? e
8.2 Pakker vi ofte importerer.
8.2.1 Math e
8.2.2 Random
823 PyPlot.
824 NumPy

23
23
23
24

26
26
28
29

32
32
33

35
35
35
38

9 Tegne grafer
9.1 Punktplott
9.2 Funksjoner som grafer L
9.2.1 Fleregrafer

A Vedlegg
A.1 Formattering med f-strenger
A.2 Nullindeksering
A.3 Mer om funksjoner og parametreo

Siden denne teksten er litt kjapt satt sammen kan det forekomme
" noen smaéfeil (sikkert store ogsa). Gi meg beskjed i sa fall, sd kan
de rettes opp.

20¢9

Creative Commons Navngivelse-IkkeKommersiell-DelPaSammeVilkar 4.0

Laget med KTEX

L L

http://creativecommons.org/licenses/by-nc-sa/4.0/

1 Introduksjon

1.1 Et eksempel pa et Python-program

Vi kan starte med a se pa et ferdig program som er skrevet i programmeringsspraket Python.

O ~J O U i W N

©

**0.5) /(2%a)
10 RIVACLEY
11 ,

Programkode 1.1: abc-formelen

Ved fgrste mgte er slik kode uforstaelig for oss. Vi ma laere oss spraket — akkurat som om vi skal
snakke med personer med andre sprak enn norsk. Sprak er bygd opp av semantikk, grammatikk,
ord og syntaks. Dette er noe vi ma leere. Siden vi kan engelsk fra fgr, ser vi at noen av ordene
er kjente: input, print og if. Utviklerne har valgt disse ordene nettopp av den grunn. Vi kan
gjenkjenne hva kommandoene gjgr.

Vi kan ogsa se at det blir utfgrt en del matematiske operasjoner (kall det gjerne utregninger).
Her star det d = bx%2-(4xaxc). Python krever at vi holder oss pa linja og ikke benytter indek-
ser eller brgkstrek. Det krever en skrivemate som skiller seg fra den vi benytter i matematikk.
Oversatt far vi

d = b**x2-(4xaxc) — d=b—4-a-c
x_1 = (-b + d*x0.5)/(2*xa) —> xlz#

Det betyr at vi ogsa ma leere oss en nesten helt ny notasjon for a kunne skrive kode.

I tillegg kan vi observere at noe av teksten er rykket inn. Slike innrykk er vesentlige i Python. De
danner blokker for hva som skal utfgres. Denne maten a markere blokker pa kalles signifikante
innrykk (eng. significant white space).

Forelgpig er dette et eksempel pa hva vi skal bli kjent med. Koden er skrevet av noen som
allerede kjenner kommandoene og syntaksen til Python. Fgr vi kommer sa langt er det en del
vi ma se pa, men til slutt vil nok det som star der veere ganske greit. La oss starte litt enklere
og fortsette ut fra det.

1.2 Vi lager noen enkle program

Vi starter med & lage et enkelt program i Python, og fglger en god tradisjon med et program
som skriver: Hallo verden. Her er det

1

S U = W N

Programkode 1.2: Hallo verden

Dette enkle eksemplet viser hvordan vi kan benytte programmering til a f& datamaskina til a
gjgre som vi vil. Med kommandoen print("Halloverden") ber vi om a fa skrevet ut teksten
Hallo verden til skjermen. Allerede her mgter vi en kommando vi vil benytte ofte: print().
Kommandoen vil skrive ut det vi setter inn mellom parentesene og gir denne utskrifta:

Hallo verden

Noe annet vi ogsa stoter pa er datatypen tekststreng, som er markert med anfgrseltegn': "Hallo
verden". Resultatet blir at denne tekststrengen skrives ut.

Legg ogsa merke til det star noen kommentarer i starten. Mellom de to linjene med tre anfer-
seltegn kan vi skrive hva vi vil. Ofte er det lurt a ta med noen kommentarer til seinere bruk
eller slik at andre skal forsta hva koden inneholder.

Vi kan ogsa skriver kommentarer med bare ei linje, eller etter en kommando, ved & bruke tegnet
#. Nar det benyttes vil ikke Python bry seg med hva som kommer etterpa. Tegnet kalles en
hashtag eller, pa norsk, en skigard.

En tekstvariabel La oss forandre litt pa koden var og skrive

Programkode 1.3: Hallo verden 2.0

Koden gjor akkurat det samme, men bruken av en variabel kommer tydeligere fram. Komman-
doen tekst = "Halloverden" tilordner verdien "Hallo verden" til variabelen tekst. I den
siste linja ber om at innholdet i variabelen skrives ut.

Disse sma eksemplene gjgr at vi mgter mye av det vi vil arbeide videre med i programmeringa:
variabler og kommandoer. Vi vil se neermere pa det seinere.

Oppgave 1

Lag et program som skriver ut navnet ditt.

'Kalles ogsa gasegyne, hermetegn og likende

Et lite eksempel til Vi kan se pa et annet eksempel hvor vi finner arealet av et rektangel.

=~ W N

Programkode 1.4: Litt mer avansert

Arealet er: 17.52

Oppgave 2

Lag et program som skriver ut omkretsen av et rektangel med gitt hgyde og bredde.

Na skal vi se pa

[aritmetikk i Python A operatorer

2.1 Enkle utregninger

For a eksperimenter med noen utregninger er det enklest a bare benytte det som kalles termina-
len (andre navn er konsollen eller consol). Terminalen er der vi far resultatet av programmene
vare. Vi kan ogsa skrive kommandoer der a fa dem utfgrt. Fordelen med det er at vi far svaret
med en gang. Alternativet er a lage program for det samme og kjgre programmet. Da ma vi si
fra at vi gnsker & fa skrevet ut resultatet. Her er de to alternativene for a vise utregning av 1+2

>>> 1+2 ; .
5 Il print(1+2)

For a fa gjort noen kjappe utregninger er det enkleste & bare prgve ut kommandoene i termina-
len, men en oppnar akkurat det samme hvis utregningene skrives inne i en -kommando.
I eksemplene her vil jeg benytte terminalen.

De fire regningsartene

Her er noen eksempler pa utregning i Python

>>> 17+24 #Addisjon

41

>>> 31-12 #Subtraksjon

19

>>> 54%x23 #Multiplikasjon
1242

>>> 52/7 #Divisjon
T7.428571428571429

Legg merke til at multiplikasjonstegnet er en asterisk x. Ellers er skriveméten omtrent som vi
er vant med.

Oppgave 3

Prgv med forskjellige enkle utregninger med de fire regningartene.

2.2 Litt mer avansert

I Python finner vi flere aritmetiske operatorer. Tabellen viser en oversikt over de mest vanlige.

De fire regningsartene har vi sett pa, men de andre ma forklares.

Potenser skrives ved & benytte operatoren *. I vanlig matematisk notasjon skriver vi 32. I
Python ma vi skrive det samme som 3xx2. Prgver vi det ser vi at svaret stemmer.

Operatorer

Tegn

|

/

*
*k

//
%

Operasjon Eksempel
Addisjon a+b
Subtraksjon a-b
Divisjon a/b
Multiplikasjon axb
Potens X**x3
Heltallsdivisjon a//b
Modulus a%b

Tabell 2.1: Operatorer

>>> 3%%2
9

Hva om vi gnsker a finne kvadratrota av 27 Svaret pa det er at Python ikke har innebygd en
kommando for a finne rgtter. Vi kan hente inn flere kommandoer, blant dem en kommando for
o . ° . . 1

4 finne kvadratrota, men vi kan ogsd benytte det vi vet om potenser, nemlig at v/2 = 22 og

skrive 2%%(0.5).

Vanlig divisjon blir utfgrt pa denne maten

>>> 52/7 #Divisjon
T7.428571428571429
>>> 3/7
0.42857142857142855

Heltallsdivisjon finner heltallet av divisjon og operatoren er //

>>> 52//7
7

Modulo | eller restdivisjon, gir oss resten som blir igjen etter en heltallsdivisjon.

>>> 52%7 #Modulo
3

Bade heltallsdivisjon og restdivisjon er operasjoner som benyttes en del i programmering. Fi-

guren under viser hvor resultatene av operasjonene kommer fra.

r

52

7

=7+ §<— rest

!

helttall

~

Oppgave 4

Er 354045614 delelig med 137
Tips: Vil resten bli lik null?

2.3 Regnerekkefglge

Nar vi skal skrive utregninger ma vi gjgre det pa en mate som gir mening for den som skal lese
det. I programmering kommuniserer vi til ei datamaskin, som ikke kan legge til eller tolke det
som star der. Parenteser for & markere regnerekkefglgen blir da sveert viktig. Her er det bare a
prgve a fa utregningene sa tydelige som mulig — og husk at det er bedre med for mange enn for

fa parenteser.

Oppgave 5

Regn ut i Python og kontroller svaret
6-2
.y

B

Oppgave 6

Regn ut med Python
3t -4

3+0,75+2° — V14 + r—

Svaret skal bli: 18.998342613226058

Oppgave 7

Hva blir resultatet av denne utregninga?
5+ (4-2)%x2+4%2-4//3-(5-23)/7

3 Variabler og datatyper

Na skal vi se pa

(d hva en variabel er bruker
A forskjellige datatyper 4 konvertering mellom datatyper
[d hvordan vi kan hente inn data fra en

Programmering innebeerer a ta vare pa, og behandle, data. Det er nettopp derfor vi har navnet
datamaskin og databehandling. Vi skal na se pa at data er og at de kan vaere forskjellige typer.
Vi skal ogsa se pa hvordan vi kan lagre data i Python og hvordan vi kan konvertere fra den
ene typen til den andre.

3.1 Programmeringsvariabler

Variabler er kanskje kjent fra matematikk og andre fag. I programmering mgter vi ogsa begre-
pet variabler. Navnet er det samme og det er likheter med hvordan de benyttes i andre fag, men
veere oppmerksom pa at det ikke alltid er tilfelle. I programmeringssprak er variabler plasshol-
dere ved at de tar vare pa verdier. Det er derfor programmeringsvariabler ofte kalles containers
i engelskspraklig litteratur. Pa norsk er plassholdere ofte brukt. Plassholder er egentlig & fore-
trekke, men jeg vil bruke «variabely, eller «programmeringsvariabel», her siden begrepet ser ut
til & ga igjen i laerebgker og leereplan. Veer bare klar over at ordet ikke er entydig og betydningen
vil veere, nettopp, variabel.

I informatikkfaget kan vi tenke pa programmeringsvariabler som en lagringsplass. La oss se pa
et eksempel:

a = 13

Sjol om det er en enkel kommando skjer det mye. Python vil opprette en variabel med navnet
a. Likhetstegnet er her en operator, som gjor at verdien som fglger legges inn i variabelen.
Likhetstegnet kan leses som «settes lik» og har her en rolle som en tilordning. I mange pro-
grammeringssprak unngas flertydigheten til likhetstegnet ved a benytte := som operator, men
ikke i Python.

Ofte kan det veere greit a forestille seg variabelen som en boks, eller ei skuffe, hvor noe plasseres.
I dette tilfellet plasserer vi verdien 13 i en boks som heter a. Vi kan representere det ved denne
figuren:

For a fa ut innholdet i variabelen til skjermen benytter vi kommandoen print (). Skriver vi
print(a) vil resultatet na bli 13.

Tidligere kom vi fram til denne koden for & finne omkretsen av et rektangel

=N

Programkode 3.1: Omkretsen av et rektangel

Her har vi tre tilordninger i starten og vi kan tenke oss data som tilordnes legges i bokser.

bredde hoyde tekst

I den siste kommandoen print(tekst, 2xbredde + 2x hoyde) hentes innholdet i boksene og
benyttes i operasjonene. Til slutt skrives svaret ut.

Hva er spesielt med programmeringsvariabler?

Ved at variablene er plassholdere og at kommandoer utferes sekvensielt — steg for steg fra den
forste linja, kan vi skrive kode som den i programmeringskode 3.2.

Programkode 3.2: Bruk av programmeringsvariabel

Noe slikt ville veert uhgrt i matematikken, men siden vi her har programmeringsvariabler gar
det greit. Forst tilordnes heltallet sju til a. Neste linje kan leses som: «legg til tre til det som
allerede er lagret i a». Det nye innholdet i a blir det gamle innholdet pluss tre og programmet
vil skrive ut 10. En slik bruk er sveert vanlig i programmering. Ofte vil vi ha en teller som gkes
med en verdi, som oftest 1, og en slik bruk av programmeringsvariabler gjgr det mulig:

Programkode 3.3: Bruk av teller

Oppgave 8

Vi har dette programmet

=W N

~N O Ot

Hva blir resultatet?
Tips: Det kan veere lurt & finne fram papir og blyant for a tegne bokser.

3.2 Grunnleggende datatyper

Da har vi sett litt pa programmeringsvariabler. I eksemplene var de fleste variablene heltall,
men det dukket opp noen desimaltall og tekststrenger ogsa. Na skal vi se mer pa de forskjellige

10

datatypene og starter med de mest grunnleggende.

Noen datatyper i Python
Forkortelse Type

int Heltall

float Desimaltall /Flyttall
str Streng

bool Boolsk

Tabell 3.1: Noen datatyper i Python

Disse datatypene ma vi se neermere pa. Vi starter med de som er tallverdier

Tall

Fra matematikken kjenner vi til flere typer tall som heltall og desimaltall. Et programmerings-
sprak ma kunne lagre de forskjellige typene og behandle dem ut fra de egenskapene tallene
har.

Heltall

P& engelsk kalles heltallene for integer og det er grunnen til at navnet Python benytter er
forkortelsen int. I matematikk benyttes symbolet Z for alle heltallene. I tillegg til de naturlige
tallene er ogsa de negative og null med i denne tallmengden.

Z={-,-3,-2-10123, -}

I Python er det sann at datatypen til en variabel bestemmes ut fra verdien vi tilordner den.
Slik er det ikke alle programmeringssprak. Fordelen er at det gjor det enklere for oss a skrive
kode.

Nar vi skriver kommandoen a = 13 er verdien som tilordnes et heltall. Python bruker da
datatypen heltall for variabelen a uten at vi ma skrive noe mer. I andre sprak er det vanlig at
vi ma si fra hvilken datatype variabelen skal ha.

Desimaltall

Desimaltall er enkle a skrive for oss, men mer problematisk & fa lagra i ei datamaskin. Maten en
lagrer desimaltall pa gjor at de kalles flyttall i den her sammenhengen. I Python kalles denne
datatypen for float.

Skriver vi na b = 13.0 gir det beskjed om at vi vil legge inn et desimaltall i variabelen b slik
at den automatisk vil veere av typen float.

Her er et program som legger inn et flyttall i en variabel og tilordner en ny variabel som
kvadratet av den verdien

1 1234567890.123456789
2 *
3 (b)

Programkode 3.4: Store verdier

11

Programmet gir dette resultatet

1.5241578753238835e+18

Blir flyttallet stort nok vil det skrives pa standardform
a-10", a € [1,10)

Det betyr at tallet a skal veere fra og med 1 og opp til 10 og at det skal multiplisers med en
tierpotens. Kalkulatorer og datamaskiner skriver dette pa sin egen mate slik at -10™ blir til en
eller En. Det betyr at resultatet i programkode 3.4 skal skrives slik i matematisk sprakdrakt

1.5241578753238835 - 108

hvor 10'® er skrevet som e+18.

Tekststrenger

Vi har sett at variabler ogsa kan inneholde tekst. Navnet pa den datatypen er streng, eller pa
engelsk string. I Python benyttes str som en forkortelse. Her er et eksempel pa hvordan vi
legger inn en tekststreng i en variabel

d = "dettegerpenystreng"

Vi markerer at dette er en streng ved a skrive mellom to anfgrseltegn. Vi kan ogsa benytte
enkle anfgrseltegn, men det kan vaere greit a holde seg til en mate a gjgre det pa.

Vi kan ogsa utfgre operasjoner med tekststrenger. Det skal vi se mere pa seinere, men en liten
smakebit er & sette sammen strenger (eng. concatenate). Operatoren for det er plusstegnet.

=W N

Programkode 3.5: Tekststrenger

Velkommen, Olga!

De to variablene h og 0lga slds sammen med tegnene , og ! og tilordnes variabelen h. Til
slutt far vi skrevet ut en ny tekststreng.

3.3 Konvertering mellom datatyper

Vi kan gjore om en datatype til en annen ved & konvertere datatypen. Det er ikke alle slike
konverteringer som gar, men er noen eksempler:

N}

=~ W

12

t

Programkode 3.6: Konvertering

Programmet gir dette resultatet

SH0O
7.324

Kommandoen int(7.324) gjor om det som star inne i parentesen til et heltall og float(3)
gjor om heltallet 3 til desimaltallet 3.0. Vi far gjort om desimaltallet 7.324 til en tekststreng
ved kommandoen str(7.324). For oss ser det som blir skrevet ut som et desimaltall, men bare
prov a bruk var3 som et desimaltall ved a skrive f. eks. var3x2. Da far vi ei feilmelding som
sier fra om at dette gar ikke.

Slike konverteringer kan veere nyttige og benyttes ofte for a sikre at datatypen blir den vi
gnsker.

Vi kan ogsa be om a fa skrevet ut datatypen til variablene med kommandoen type.

S Ot

Programkode 3.7: Hvilken datatype?

7 7.0 7.97
<class 'int'> <class 'float'> <class 'float'> <class 'int'>

3.4 Input

Nar vi programmerer er vi ofte interessert i & kommunisere med en bruker. Vi gnsker & fa
skrevet inn data, fa gjort et eller annet, og sende det ut pa skjermen. Vi har allerede brukt
kommandoen print og fatt skrevet ut og vi har sett hvordan vi kan utfgre flere operasjoner.
Na skal vi se pa kommandoen input som gjor det mulig for en bruker & skrive inn verdier.

Vi kan se pa et eksempel som beregner prisen en kunde ma betale for jordbeser nar prisen per
kurv og antall kurver oppgis. Vi kunne skrive koden slik:

=W N

ot

Programkode 3.8: Jordbeer

13

Resultatet blir

Ola du ma betale 278.0 kr.

Na vil vi gjgre om programmet til at en bruker gir oss navnet og de andre verdiene. Det gjgr
vi med input

=W N

ot

Programkode 3.9: Mere jordbaer

Na har vi fatt et program hvor vi henter opplysninger fra brukeren. Kommandoen navn =
input ("Hva heter du?") gjgr at tekststrengen Hva heter du? blir skrevet til skjermen og
programmet venter pa hva som blir skrevet inn. Etter at noe blir skrevet, og brukeren avslutter
med retur-tasten, fortsetter programmet til neste linje.

Nar vi vil at brukeren skal skrive inn antall og pris sgrger vi for at det blir korrekt datatype
ved at vi setter hele input-kommandoen inne i kommandoer som gjgr om til den korrekte
datatypen. Hvis ikke blir det som skrives inn til tekststrenger og det kan vi ikke bruke til
utregninger. Vi far et flyttall med kommandoen float() og heltall med int().

Til slutt skrives variablene ut sammen med noen tekststrenger som passer.

Et tips nar du programmerer er a starte med & tilordne verdier til variablene som i programkode
3.8. Da slipper vi & matte svare pa alle spgrsmaélene for a teste koden. Nar alt fungerer som det
skal, gjgr vi om til & la brukeren legge inn verdier.

3.5 Introduksjon

Lister er en nyttig datatype i Python. Ordet liste kjenner vi igjen fra f. eks. handlelister eller
gnskelister. Lister kan inneholde flere elementer og vi ma heller ikke bestemme oss for hvor
mange elementer det skal vaere. Det er bare & legge til etter behov. Ei liste oppretter vi ganske
enkelt ved a gi den et navn og sa skrive elementene i klammeparenteser. Etter a ha gjort det
kan vi utfgre operasjoner med listene, f. eks. legge sammen to lister:

>>> a = [1,2,3,4]

>>> min_liste_av_noen_partall = [2,4,6,8,10]
>>> a + min_Lliste_av_noen_partall

[1, 2, 3, 4, 2, 4, 6, 8, 10]

Na skal vi se mer pa hva lister er og hvordan de kan benyttes.

3.6 Lister — hva er det?

Vi starter med ei liste over plantenavn hvor hvert element er en tekststreng:
planter = ["lgvetann","blaveis","hvitveis","rgdklgver"]

(nsker vi & se innholdet i lista kan vi gjgre det med kommandoen print

14

Programkode 3.10: Utskrift

Vi har laget oss en programmeringsvariabel av typen liste med plantenavn. En slik samling
med elementer er noe vi ofte far bruk siden vi har kommandoer og operasjoner som gjgr det
mulig a fa gjort noe med listene eller elementer i ei liste.

3.7 Operasjoner med lister

Legge til noe i ei liste

Noen av poenget med listene er at vi kan legge til, eller trekke fra, elementer. For & legge til
ett element bruker vi kommandoen append etter & ha oppgitt navnet pa lista. Vi ma ogsa ta
med hva vi gnsker a legge til. La oss si at vi gnsker a legge til hestehov i lista over plantenavn.
Da ma legge til tekststrengen "hestehov" pa slutten av lista var.

Programkode 3.11: Append

Det som skjer er at det legges til etter de andre tekststrengene.

'Igvetann’ | ’bléaveis’ | "hvitveis’ | rodklgver’

planter.append("hestehov")

Sla sammen lister

Vi kan sla sammen lister ved bruk av operatoren +.

>>> a = [1, 2.71, "hallo"]

>>> b = [8, "hei",3.14]

>>> a + b

[1, 2.71, 'hallo', 8, 'hei', 3.14]

Legg ogsa merke til at elementene i ei liste ikke ma veere av samme datatype.

Indeksering

Da har vi sett at vi kan legge til pa slutten av lista. Her havnet «hesthov» som det femte
elementet i lista, men som vi kan se ellers i programmeringsverdenen starter ikke tellinga med
én. Det benyttes en nullindeksering.

Vi lager denne lista verdier = [3.14,2.71,4.32,-3.98,1.01]. Indeksene starter med null

15

3.1412.71(4.32]-3.98 | 1.01

verdier.index(-3.98)

Vi kan finne indeksen til et element ved a bruke kommandoen index. Her er et eksempel

>>> verdier = [3.14,2.71,4.32,-3.98,1.01]
>>> verdier.index(-3.98)
3

Kommandoen leter opp elementet og gir oss indeksen tilbake. Prgver vi med noe som ikke er i
lista far vi ei feilmelding

>>> verdier.index(4)

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ValueError: 4 s not in Tlist

Indekseringen gjgr at vi kan fa tilgang til hvert element i lista og det behovet oppstar nar vi
programmerer.

Hente ut deler av lista

Vi kan angi hvilke elementer vi gnsker & skrive ut fra ei liste ved & benytte indeksene. Vi kan
benytte indeksen for a fa skrevet ut det som er pa den plassen eller vi kan angi flere indekser.
Her er et eksempel.

>>> verdier = [3.14,2.71,4.32,-3.98,1.01]
>>> verdier[3]

=3, 98

>>> verdier[2:4]

[4.32, -3.98]

>>> verdier[2:]

[4.32, -3.98, 1.01]

>>> verdier[:2]

[3.14, 2.71]

3.1412.7114.32(-3.98 [1.01

verdier[3]

En forklaring til kommandoene

16

verdier[3] gir elementet som er indeksert pa plass tre.
verdier[2:4] gir elementene fra og med indeks to og til fire.
verdier[2:] gir elementene fra og med to og resten av lista.
verdier[:2] gir elementene fra starten og opp til indeks to.

Bruk av indekser kan veere lurt nar vi har to lister med tilhgrende elementer. La oss si at vi
registrer navn og mobilnummer til hver person. Da kan det lgses ved & opprette to lister: ei
med navnene og ei med nummerene. Har vi navn og nummer pa riktig plass lgser indeksene
jobben med a skrive ut bade navnet og nummeret:

>>> navn = ["Ole", "Kari","Truls"]

>>> nummer = [9225434, 4567476, 5564489]
>>> print(navn[2], nummer[2])

Truls 5564489

Her har starten pa en database!

Fjerne fra lista

For a fjerne et element fra lista er det bare & si fra hvilket element og bruke kommandoen
remove

>>> verdier = [3.14,2.71,4.32,-3.98,1.01]
>>> verdier.remove(2.71)

>>> verdier

[3.14, 4.32, -3.98, 1.01]

Her kan vi legge merke til at elementet fjernes uten at rekkefglgen pa de andre forandres.

Andre operasjoner

Sortering av listene kan vi gjgre med kommandoen sort. Bruker vi den pa lista over plante-
navn vil resultatet bli ei alfabetisk sortert liste over navnene.

>>> planter.sort()
>>> planter

['blaveis', 'hestehov', 'hvitveis', 'levetann', 'redklever']

Antall elementer i lista finner vi ved len.

>>> verdier = [3.14,2.71,4.32,-3.98,1.01]
>>> Tlen(verdier)
5

Summen av elementene i ei liste med tall er gitt av kommandoen sum

>>> a = [17273:4]
>>> sum(a)
10

17

Antall forekomster Vi kan ogsa finne ut hvor mange elementer som har samme verdi i ei
liste. Da benytter vi kommandoen count().

>>> min_liste = [1,1,2,3,4,4,5,5,5,6,7,7,8]
>>> min_liste.count(5)

3

>>> min_Tliste.count(7)

2

Her far vi at det er tre forekomster av 5 og to element som har verdien 7.

Stgrste og minste verdi finne vi med kommandoene max og min.

>>> max(min_liste)
8
>>> min(min_liste)
1

En oversikt

Her er en oversikt over noen kommandoer som kan benyttes pa lister. For flere kan det lgnne
seg a spke pa nettet.

Listekommandoer
Kommando Forklaring
append () Legger til et element sist i lista
clear() Sletter alle elementene
copy () Kopierer lista
count () Gir antall elementer av en gitt verdi
index () Gir indeksen til den forste forekomsten til en gitt verdi
insert() Setter inn et element i en gitt posisjon
pop () Sletter et element i en gitt posisjon
remove () Sletter et element med en gitt verdi
reverse() Reverserer rekkefglgen i lista
sort() Sorterer lista

Tabell 3.2: Listekommandoer

Noen oppgaver

Oppgave 9

Hva gjor dette programmet?

=W N

ot

18

Oppgave 10

Hva gjor dette programmet?

[ENOVEN)

N O Ot

= [3.14,2.71,4.32,-3.98,1.01]
[2]

[2:4]

[3:]

19

3.8 Mer om operasjoner pa tekststrenger
Vi har sett at tekststrenger kan veere variabler. Et eksempel var at vi deklarerte en variabel pa
denne maten
d = "dette erpen streng"
Vi far da en streng- variabel av type str.

I Python kan vi utfgre en rekke operasjoner pa variabler av typen streng.

Sammensetning av tekstvariabler er kanskje den mest vanlig operasjonen. La oss se pa
eksempelet i programkode 3.12. Her er det flere tekstvariabler som slas sammen med operatoren
+. Til slutt tilordnes den nye tekststrengen til en variabel og skrives ut.

A R

S Ot

Programkode 3.12: Sla sammen tekst

Resultatet blir at vi far skrevet ut den sammenslatte teksten: dette er en streng.

Hvordan lagres en streng? Det ma vi se naermere pa for vi gar videre. Tekststrenger
lagres tegn for tegn i ei liste. Hvert tegn har en egen indeks. Hvis vi fortsetter med tilordningen
d = "dette er en streng" sa vil den lagres pa denne maten

o 1 2 3 4 5 6 7 & 9 10 11 12 13 14 15 16 17

dlelt]|tleluv]le]TrT | uvleln|fu]ls]t]|r|e|lni|§g

mellomrom

Hvert tegn lagres fortlgpende, akkurat som i ei liste, og hvert tegn indekseres. Legg merke til
at her, som ellers i programmeringsverdenen, sa indekseres det fra null. Legg oga merke til at
mellomrom, som alle andre tegn, plasseres i denne lista. Nar vi gnsker a vise et mellomrom er
det vanlig & benytte tegnet ;.

Lengden av en tekststreng finner vi med kommandoen len(<streng>). Skriver vi komman-
doen lengde = len(d) vil variabelen lengde inneholde antall tegn som strengen d bestar av.
Programkode 3.13 hvordan vi kan benytte kommandoen.

Ett tegn er det mulig & hente ut fra tekststrengen. Husk at den ble lagra som ei liste med
alle tegnene. Dnsker vi & hente ut bare ett tegn kan vi gjore det med a si fra om hvilken indeks.
Skriver vi d[4] hentes det tegnet som er indeksert som nummer 4, dvs det femte tegnet slik vi
regner.

20

Deler av strengen kan vi ogsa hente ut fra lista over alle tegnene. Kommandoen som gjgr
det er en utvidelse av den vi benyttet for a hente ett tegn:

streng[startindeks: sluttindeks: steg]

Start- og sluttindeks er indeksverdien vi gnsker a starte og slutte med. Kommandoen d[0:5]

gir dette som resultat. Alle tegnene opp til indeks 5 blir med. Mellomrommet som har indeks
5 blir ikke med.

Sier vi fra om hvor lange steg det skal vaere mellom det som hentes ut far det konsekvenser.
Kommandoen print(d[0:5:2]) gir dte. Hva skjer? Jo, intervallet er det samme, men na blir
ikke alle tegnene med. Bare hvert andre tegn hentes fra lista.

Sjekke forekomsten . Vi kan sjekke om en streng er inne i en annen ved a skrive
<streng> in <streng>

Fins en streng inne i en streng Det kan vi sjekke med "en" in d gir enten True eller False —
sann eller usann.

[0:5:2])
)

0 3 S Ot

Programkode 3.13: Tekststrenger

Denne strengen bestar av 18 tegn
Det femte tegnet er: e

Det siste tegnet er: g

Her er en del av strengen: ette er
dte

True

Oppgave 12

Eksperimenter med de forskjellige kommandoene.

Oppgave 13

Lag et program som teller hvor mange ganger en bestemt bokstav forekommer i en tekst.

3.9 Bruk av anfgrseltegn

Vi markerer at dette er en streng ved a skrive mellom to anferseltegn. Vi kan ogsa benytte enkle
anfgrseltegn, som i denne kommandoen d = 'dette er en streng'. Det er bare i spesielle

21

tilfeller at det utgjor en forskjell. Dnsker vi & fa skrevet ut strengen: Det er noe "alle"vet!
kan vi velge a skrive strengen med enkle anfgrseltegn for & unnga feilmelding:

('Deternoe"alle" jvet!")

Hvis vi vil bruke doble gar det ogsa, men da ma vi si fra om at vi mener doble anfgrseltegn
inne mellom anfgrseltegnene

("Det_ernoe \"alle\" yvet!")

Apostrofer krever ogsa en spesiell handtering, men pa norsk er jo det enkelt & unnga dem.
Tekststrengen NRK's kontor krever at vi enten skriver ("NRK's_ kontor") eller (
"NRK\ 's_kontor'").

Det er bare i sjeldne tilfeller vi stgter pa disse problemene, men oppstar det ei feilmelding kan
det veere greit & veere klar over at det kan veere her problemet ligger. Det kan ogsa hende at
du stgter pa forskjeller i ulike versjoner av bade Python og programmet hvor du skriver kode.

22

4 Programmeringsteknikker

4.1 Hvordan skrive kode?

Nar en skal skrive et program er det viktig med en god struktur. Med en gang koden blir mer
omfattende kan det veere greit a starte med papir og blyant for sa & kladde seg fram til en god
lgsning. Da er det greit med to hjelpemidler: flytskjema og pseudokode.

4.2 Pseudokode

En pseudokode er noe midt mellom programkode og vanlig sprak: En strukturert framstilling
av programmet uten a tenke for mye pa syntaksen som kreves for at det skal kunne fungere.
Pa den maten far vi fram strukturen i koden samtidig som vi slipper a tenke for mye pa hvilke
sprakspesifikke kommandoer som ma benyttes. Det tar vi til slutt nar pseudokoden oversettes
til programmeringsspraket vi benytter. Nar vi benytter Python er den prosessen ganske grei.
Python likner mer pa pseudokode enn hva tilfellet er med andre sprak.

La oss se pa et eksempel hvor vi skal prgve a lgse oppgaven under

Oppgave 14

Lag et program hvor det skrives inn to ulike tall. Programmet skal vise hvilket tall som
er stgrst.

For vi gar i gang med programmeringen kan det veere lurt a skrive koden uten a tenke for mye
pa syntaks og hvordan kommandoene skal skrives i Python.

1 |skriv inn tall a

> |skriv inn tall b

3 hvis a > b

| skriv ut: tall a er storst
eller

6 skriv ut: tall b er stgrst

Slik kan det skrives, men det kan veere lurt a legge seg litt naermere syntaksen i Python med
noe som dette:

1 [dinput tall a

> [input tall b

if a > b

' output tall a er storst

else if a = b

6 output tallene er like store
7 else

8 output tall b er stogrst

Eksemplet er banalt. Her er det ingen grunn til a pseudokode siden Pythonkoden er sa neer,
men det viser hvordan en kan ga fram uten &a tenke for mye pa hvordan det ma skrives. I mer
komplekse situasjoner kan pseudokode veere nyttig.

23

Skulle vi lgst oppgaven i Python, og sett bort fra at det ma veere to ulike, ville vi endt opp
med noe slikt:

T W N

o N O

Programkode 4.1: Eksempel

Vi skal se neermere pa hva som skjer i program som dette seinere.

4.3 Flytskjema

Et flytskjema er ogsa et hjelpemiddel for a fa skrevet koden.
Forklaring flytskjema

Start/Slutt Markerer start og
slutt
Parallell-
- e/ Gu
ogram
Prosesser
Avgjgrelse

Flytskjema for eksemplet

24

Tall b
er stgrst

Nei

Skriv

tallaog b

Ja

inn

25

Talle

ne er

like store

Ja

Tall a
er stgrst

5.1 Hyvis-test

Néar vi programmerer oppstar det ofte et behov for & ta en avgjgrelse basert pa et vilkar'. Vi
gnsker at noe skal skje hvis et vilkar er stemmer eller ikke. Til slikt har vi hvis-tester. Vi se et
typisk eksempel i programkode 5.1

Programkode 5.1: En enkel hvis-test

Her sjekkes det om alderen som ble skrevet inn er et tall stgrre enn 16. Hvis det stemmer skal
en tekststreng skrives ut. Hvis det ikke stemmer skjer det ikke noe som helst. For ogsa a fa
skrevet ut noe nar det ikke stemmer kan vi benytte kommandoen else. Da vil noe bli utfgrt
bade om det stemmer og om det ikke gjgr det.

QU s W N =

Programkode 5.2: En hvis-ellers-test

Dette var enkle eksempler. Med flere slike hvis-tester, ofte satt inn i hverandre, kan det bli
uoversiktlig. Da er flytskjema til stor hjelp. Figur 5.1 er et som viser avgjorelsene som blir tatt
i det forrige eksemplet.

'betingelse er et annet ord for det samme

26

Skriv inn:
alder

Nei

Ja

alder > 167

Skriv ut:
Du er
voksen

Skriv ut:
Du er ikke
voksen

Figur 5.1: Flyskjema med en hvis-test

Folger vi pilene i flytskjemaet far et helhetlig bilde pa hva som skjer i koden. Vi slipper ogsa a
tenke pa programsyntaks eller programmeringssprak.

La oss prove et litt mer avansert eksempel hvor flere hvis-tester er satt inn i hverandre. Vi sier
at hvis-testene er ngstet nar det kommer en ny test inn i en annen. Her er et programeksempel
som ber om a fa oppgitt en alder og sa skriver ut forskjellige beskjeder basert pa alderen.

Programkode 5.3: Hvis-tester som er ngstet

Programkode 5.3 kan bli uoversiktlig. Her ligger testene inne i hverandre med kommandoene
if [1 elif []. Det er en kortform for a skrive if og sa else med en pafglgende hvis-test.
Syntaksen er

Med mange slike ngsta hvis-setninger kommer flytskjema til sin rett. Tegner vi opp det som
skjer i koden vil vi ende opp med et flytskjema som i figur 5.2 (her er start og stopp tatt bort)

27

alder < 127

alder < 207 Du er tenaring Du er et barn

Du er gans-

?
alder < 307 ke voksen

Du er mid-

7
alder < 607 delaldrende

Du begynner
3 dra pa arene

Figur 5.2: Flyskjema med flere hvis-tester

5.2 Sammenlikninger og boolske variabler

Eksemplene viser at det ofte er behov for & sammenlikne stgrrelser nar vi programmerer. I en
hvis-test sjekker vi om en pastand er sann eller usann. Slike sammenlikninger kjenner vi fra
matematikken. Her er noen eksempler

a=b, a#b, a>b a>b a<b a<bd

Datamaskina kan raskt svare pa om dette stemmer eller ikke. I Python vil svaret enten veere
True eller False. Dette er de to logiske konstantene som benyttes. Logiske variabler kalles ogsa
boolske variabler, og vi sier at de er av datatypen boolean.

George Boole (1815 — 1864)

Nar vi tar opp logikk i programmering stgter vi pa navnet Boole, som i boolske uttrykk
og boolske variabler. George Boole var en engelsk matematiker og filosof og er den som
skapte grunnlaget for det som kalles boolsk algebra.

Les mer om Boole pad Wikipedia: https://no.wikipedia.org/wiki/George Boole

Nar vi skal sammenlikne stgrrelser i Python ma vi benytte noen operatorer. Symbolene er ikke
helt ukjente, men vi mé passe pa at det blir skrevet korrekt. Tabellen viser hvordan Python vil
at vi skal skrive det.

Legg merke til at vi benytter to likhetstegn for & undersgke om to stgrrelser er like hverandre.

I programkode 5.4 skrives resultatet av noen sammenlikninger ut.

1 =1
2 =2

28

https://no.wikipedia.org/wiki/George_Boole

Sammenlikninger)
Tegn Operasjon Eksempel

> Sterre enn a>b

< Mindre enn a<b
== Erlik a==
>= Stgrre enn eller lik a>=b
<= Mindre enn eller lik a<=b

= Ikke lik al=b

Tabell 5.1: Sammenlikninger

Programkode 5.4: Sammenlikninger

Kjorer vi denne koden vil resultatet bli:

> b er: False
< b er: True
er: False

[I VR)

b
b er: True

Python utfgrer sammenlikningene og finner at resultatet enten blir True eller False.

Oppgave 15

Eksperimenter med andre verdier av a og b og se om du far det resultatet du forventer.

5.3 Logiske operatorer

Vi har sett hvordan vi kan sammenlikne stgrrelser og fa svar pa sammenlikningene som sanne
eller usanne. Sammenlikningene er boolske variabler, som enten er True eller False. I Python
kan vi ogsa utfere operasjoner med slike boolske variabler med det som kalles logiske operatorer.
Vi sier at vi setter opp boolske uttrykk.

Det gir oss behov for en tur innom logikken og de logiske operatorene. I Python er de viktigste

Logiske operatorer
Navn Python kommando

oG and
ELLER or
IKKE not

Tabell 5.2: Logiske operatorer
Vi kan se pa et eksempel som benytter and og or.

29

© 00~ O U i W N =

10

—_
—

12
13

Programkode 5.5: Bruk av logiske operatorer

I programkode 5.5 starter vi med a legge inn tre verdier i tre variabler. [hvis-setningene benytter
vi sammenlikninger satt sammen med logiske operatorer.

Oppgave 16

Skriv av koden og eksperimenter med forskjellig verdier. Prgv & forutsi resultatet fgr du
kjorer koden.

Nar vi benytter logiske operatorer kan det veere greit & se pa en sannhetstabell. Setter vi opp
verdier for to boolske variabler, a og b, kan vi fa denne oversikten

r

Sannhetstabell
a b aand b aor b
True True True True
True False False True
False True False True
| False False False False

Tabell 5.3: Sannhetstabell
Her ser vi at a and b bare er True hvis begge variablene True. Vi kan ogsa legge merke til at
a or b bare er False hvis begge er det.

Vi kan la Python skrive ut det samme ved a legge inn forskjellige boolske konstanter i variabler,
slik som programkode 5.6 viser.

Ot W N

(&)

Programkode 5.6: Logiske operatorer

Her far vi ogsa vist hvordan operatoren not kan benyttes som en negasjon. Hvis noe ikke er
sant er det usant. Er det ikke usant er det sant. Resultatet blir:

30

x and y er: False
X or y er: True
not x er: False

Vi kan na vende tilbake til programkode 5.5 hvor vi benyttet de logiske operatorene pa forskjellig
sammenlikninger. Den fgrste hvis-setningen var: a>o b >0 c > 0: Med de
opprinnelige verdiene for variablene vil vi fa disse resultatene

a>0 b>0 c>0 a>0o0 b >0 c >0
True True True True

Vilkaret i hvis-setningen oppfylles og vi far utfgrt det som kommer i blokka etter setningen.
Det som ikke er oppfylt vil utferes i -delen. Legg merke til at vil veere negasjonen av
vilkaret, nemlig: (a > 0 b > 0 c > 0), som bare vil veere False i tilfellet over.
For alle andre resultat av sammenlikningene vil vi fa True.

31

6 Lokker

Lgkker, eller slgyfer, er programkode som gjentas flere ganger. Vi kan skrive kode slik at en
programblokk gjentas

» et bestemt antall ganger
o til et bestemt krav er oppfylt
o for alltid

I programmene vi skriver gnsker vi & unnga den siste varianten — at lgkkene gjentas for alltid.
Vi gnsker a fa kode til a gjentas til noe oppfylles eller et visst antall ganger. I virkeligheten er
det derimot ofte gnskelig at noe skal gjentas for alltid. Tenk bare pa styringssystemer hvor noe
skal sjekkes hele tida.

Vi skal se pa to typer lgkker og vi starter med at vi gnsker a gjenta noe et bestemt antall
ganger.

6.1 For-lgkker

Ei for-lgkke kan benyttes for a fa gjentatt en kode et antall ganger og med verdier vi bestemmer.
Et eksempel er

1 (2,10):
(i)

Programkode 6.1: Ei enkel for-lgkke

Det denne lgkka gjgr er & gjenta setningen print(i). Hvordan den skal gjentas bestemmes av
det som er satt opp i starten.

for i 1in range (2,10): forteller at variabelen i skal vaere et heltall i omradet fra 2 og opp
til 10. Det som star i blokka under vil gjentas og i vil gkes med 1 for hver gang. Kjgrer vi denne
koden vil tallene Skriver ut alle tallene 2, 3, 4, 5, 6, 7, 8 og 9, skrives ut. Legg merke til at tallet
10 ikke skrives ut. Syntaksen er <variabelnavn> in range (<startverdi>, <sluttverdi>)
hvor sluttverdien ikke er med.

Hvis vi ikke sier fra om annet gkes in range() med 1, men en kan ogsa fa til & gke med andre
steg, f.eks. 5. Da kan vi sette steglengden til slutt: range (1,100,5)

I eksemplet over sa vi at en variabel var av typen heltall og vi fikk verdien til & gke med en
gitt steglengde. Vi kan ogsa benytte for-slgyfer hvor variabeltypen og verdiene bestemmes pa
en annen mate. Ofte kan det veere verdier i lister, slik vi ser i programkode 6.2.

W N =

Programkode 6.2: Lgkke med liste

Vi vil fa skrevet ut innholdet i lista. Koden starter med at variabelen - far tilordna det fgrste
elementet i lista, resten av koden i blokka vil utfgres, og sa vil variabelen gkes til neste element.
Det hele gjentas helt til siste element. Vi far denne utskrifta:

32

Ola
Kari
Jens

Flytskjema

Flytskjema kan ogsa veere nyttige for a vise lgkker. En skjematisk framstilling av ei for-lgkke
blir slik:

G3a ut av Igkka

Koden vil gjentas helt helt til vi kommer til siste element. Med for-lgkker kan vi gjenta kode
og vi har kontroll med hvor mange ganger koden gjentas samtidig som vi kan kontrollere hver
verdi som tilordnes.

6.2 While

Vi har ogsa en annen type lgkker: while-lgkker. Ei slik lgkke vil gjentas sa lenge et visst vilkar
er oppfylt. Pa norsk kan vi kalle det sa-lenge-lokke, og den bygger vi opp pa denne maten:

1 [sd lenge <vilkar>:
2 gjor det her
3

4+ |fortsett koden

Her er det eksempel:

Programkode 6.3: while-lgkke

Vilkaret er at i < 10. Inne i lgkka skjer det noe med variabelen i og etter at all koden i blokka
er utfgrt sjekkes det om vilkaret er oppfylt. Resultatet blir det samme som i programkode 6.1
— tallene fra og med 1 til og med 9 skrives ut.

For a oppna det samme kunne vi ogsa brukt ei for-lgkke, men i andre situasjoner er det bare
while som gjelder. Se bare pa eksemplet under.

33

N O O s W N

Programkode 6.4: Ei while-lgkke til

Vi gnsker & fortsette med noe helt til brukeren velger & ga ut av lgkka. For a oppna det kan vi
ikke bruke for. I dette eksemplet er det ogsa brukt en boolsk variabel for & vise hvor anvendelige
slike er. Alternativt kunne vi bare skrevet while svar != "j" men ved & innfgre variabelen
ferdig oppnar vi mer fleksibilitet hvis vi hadde innfgrt flere vilkar for & avslutte.

Flytskjema
Flytskjema for ei while-lgkke

Falsk

Betingelse

G3 ut av Igkka

Oppgave 17

Lag et program som beregner hvor mange ar et belgp ma sta i banken for at det skal
vokse til et nytt belgp. Velg renta sjol.

34

Na skal vi se pa

A hva funksjoner er

7.1 Hva er en funksjon i Python?

De fleste programmeringssprak gir oss muligheten til a lage funksjoner, delprogram eller su-
brutiner — her fins det mange navn for det samme. I Python kalles slikt for en funksjon. Et
eksempel kan veere at vi skal skrive ut navn og adresse til noen personer. Da kan det vaere pa
sin plass med et lite delprogram som tar seg av den jobben.

QU i W N~

Programkode 7.1: Delprogram

I eksemplet er det definert en pythonfunksjon! som har fatt navnet skriv_ut. Navnet velges
fritt, men det ma ikke vaere noen mellomrom i det. Denne funksjonen mottar variabler og gjgr
noe med dem. Alt som skal gjentas mange ganger kan med fordel bli gjort med funksjoner. Det
effektiviserer koden og vi far samtidig delt opp koden var i delprogram.

Resultatet blir denne utskrifta:

Navn: Ola Adresse: Sandefjord
Navn: Kari Adresse: Trondheim

La oss na si at vi gnsket et litt annet format pa utskrifta. Da kunne vi enkelt forandre det som
funksjonen gjgr og fatt endret alle utskriftene. La oss si til noe sant:

1 ¢) E
2 (+ + +)

Programkode 7.2: Ny utskrift

Vi skal na se mer pa hvordan vi kan benytte funksjoner i Python

7.2 Definisjon av funksjoner

La oss si at vi har gitt en matematisk funksjon y = f(z) = x*>+3 og skal finne funksjonsverdien.
I Python kan vi lgse oppgaven slik: Vi legger inn en verdi for og regner ut en y-verdi.

T Python kalles dette bare en funksjon. Jeg kommer ogsi til & bare bruke ordet «funksjon», men det er
viktig & veere klar over at ordbruken skiller seg fra hva en funksjon er i andre sammenhenger.

35

Programkode 7.3: Uten bruk av funksjon

Husk at skrivematen xx*2 betyr x2.

I forste linje setter vi variabelen x til -1, sa far vi regna ut y til & bli fire — og til slutt skrives
verdien av y ut. Vi far da skrevet ut fire.

Ganske greit, men lite fleksibelt. Hva om vi gnsker & finne flere funksjonsverdier? Da ma vi
gjenta det hele. For mer fleksibilitet kan vi definere funksjoner i python.

For vi gar i gang ma vi se pa hvordan vi kan definere funksjoner i Python. Husk at funksjo-
ner i programmering ikke ngdvendigvis er det samme som i matematikken. Funksjoner slik vi
definerer dem i skolematematikken mottar en innverdi og gir en entydig utverdi. Vi kan lage
funksjoner i Python som har egenskapene, men vi kan ogsa lage funksjoner som ikke faller inn
under definisjonen vi kjenner fra matematikken. I det forste eksemplet sa vi en pythonfunk-
sjon som ikke har egenskapene som kreves av en matematisk funksjon. Pythonfunksjonen i det
tilfellet er et delprogram eller subrutine.

Na kan vi pregve a definere en pythonfunksjon som oppfgrer seg som en matematisk funksjon.
Programkode 7.4 viser et slikt eksempel. Den forste linja def f(x): forteller at vi gnsker
a definere en funksjon som er kalt f. Funksjonen skal motta en verdi som i funksjonen har
variabelnavnet x. Etter kolon vil det som er rykket inn veaere kommandoene i funksjonen. Til
slutt er det spesifisert hva som skal returneres fra funksjonen.

S R R e

(@)

Programkode 7.4: Definisjon av en funksjon

Nar vi bruker en funksjon i en kode sier vi at vi kaller pa funksjonen. Her gjgr vi det ved kom-
mandoen a = f(1). Verdien 1 overfgres til variabelen x inne i funksjonen. I vart tilfelle benyttes
den overforte verdien i ei utregning. Til slutt returneres verdien y tilbake til hovedprogrammet
og tilordnes verdien a.

Figur 7.1 gir forklaring til et eksempel hvor det er definert en funksjon som legger sammen
to tall. Funksjonen har fatt navnet adder. I hovedprogrammet finner vi kommandoen print(
adder (12,13)) hvor vi ber om & fa skrevet ut resultatet av verdien vi far tilbake fra funksjonen.
Funksjonen er definert med et funksjonsnavn og parametre. Her er det to parametre som har
fatt navnene a og b. Etter at vi kaller pa funksjonen med med adder(12,13) vil a tilordnes
verdien 12 og b tilordnes 13. Kodeblokken i funksjonen legger de to sammen og sender verdien
25 tilbake.

Mer skjematisk kan det framstilles som i figur 7.2 hvor pilene viser overfgringen av verdier til
parametrene.

Her blir det kanskje mange piler, begrep og teoretisk. Litt eksperimentering kan veere et godt
tips for a rydde opp i teorien.

36

definisjon funksjonsnavn parametre

blokk med kode

retur av
funksjonsverdi

=W N

ot

(12,13))

Figur 7.1: Definisjon og bruk av funksjon i Python

def f(a):
eturn c
d = f(b)

Figur 7.2: Parameteroverfgring

Eksemplet har med en del variabler for & vise verdiene tydelig. Kommandoen return kan
inneholde en utregning, slik at vi kunne skrevet return a + b og gjort funksjonen adder ei
linje kortere. Programkode 7.5 viser hvordan vi kan returnere verdier som regnes ut.

1 (x):

(x):

T W N

*4

~N &

(2(3) - 7(1))

Programkode 7.5: To funksjoner

For mange er kort kode, og bruk av fa variabler, viktig, men for var del er det en smakssak.

Funksjoner i Python

Syntaksen for funksjoner

parametrene er ei liste med de ngdvendige parametrene. Det ma ikke veere noen parametre
eller returvariabler.

37

7.3 Lokale og globale variabler

Variabler kan veere tilgjengelig uansett hvor i programkoden vi benytter dem eller bare vaere
tilgjengelige innafor en funksjon. De to typene kalles globale og lokale.

Programkode 7.6 viser at det defineres en global variabel a2 = 3. Denne variabelen er tilgjengelig
for alle deler av koden — global viser til akkurat det. Inne i blokka til funksjonen er det ogsa
definert en variabel med samme navn som den globale, men den er satt til en annen verdi.

NeJ

Programkode 7.6: Lokale og globale variabler

Hva skjer? Kjgrer vi programmet ender vi opp med dette resultatet:

inne i funksjonen 14
utenfor funksjonen 3

Utskrifta viser at tilordninga a = 14 ikke pavirker verdien til den globale variabelen a. Det som
blir gjort inne i funksjonen pavirker ikke resten. Den variabelen er lokal.

Globale variabler er tilgjengelige for alle deler av koden. I programkode 7.8 benyttes verdien
av den globale variabelen a inne i funksjonen. Her er b en lokal variabel som forblir ukjent for
resten av koden.

=W N

N S Ot

Programkode 7.7: Lokale og globale variabler

Dette programmet gir

Et forsgk pa a skrive ut verdien av b i hovedprogrammet med kommandoen print(b) gir meg
feilmeldinga: NameError: name 'b' 1is not defined og det ma jeg si meg enig i siden b er

lokal.

38

Det er kanskje ikke ofte vi far bruk for det, men vi kan si fra om at vi gnsker & definere en
global variabel inne i koden til en funksjon. Det gjor vi ved a sette global foran variabelnavnet.

U W N =

D

Programkode 7.8: Definisjon av global variabel

Det er lurt a holde styr pa hva som skal veere lokale og globale variabler. En god skikk er a
bare bruke lokale variabler inne i funksjonen. Vi sender over variabelverdier som parametre og
returnerer noe tilbake. Alt som skjer av kode inne i funksjonen bgr benytte lokale variabler.
En slik bruk gjgr det enklere & unnga feil siden alt som skjer inne i funksjonen ikke pavirker
resten av programkoden. En god regel, men det hender at vi gjor unntak.

Oppgave 18

Eksperimenter med lokale og globale variabler.

39

8 Bibliotek

Moduler, pakker og bibliotek er navn vi stgter pa nar vi skal utvide funksjonaliteten til et
program. Ved enkel programmering er det ikke s& ngye hva vi kaller det, men for de som er mer
opptatt av korrekt sprakbruk kan vi ta med denne forklaringen

Moduler og pakker

Fra dokumentasjonen av Python:

Module: A module is a file containing Python definitions and statements. The file name
is the module name with the suffix .py appended.

Package: Packages are a way of structuring Python’s module namespace by using “dot-
ted module names”.

Vi kan altsa betrakte moduler som filer, og pakker som noe som strukturerer flere slike filer.
Bibliotek (eng. library) er et ord som ikke er klart definert i Python, men det benyttes ofte
som en referanse til samlinger av moduler, pakker og annet. Her vil jeg stort sett holde meg til
ordene modul og bibliotek uten a tenke for mye pa den tekniske definisjonen. Vi kan tenke pa
det som samlinger av programkode, definisjoner og annet som andre har laget for oss. Skal vi
lage litt mer avanserte programmer far vi ofte behov for funksjonalitet som ikke er tilgjengelig
uten & hente inn noe ekstra.

8.1 Hva er en modul?

For a se naermere pa hvordan vi kan utvide det som allerede fins innebygd i Python kan vi se
pa hvordan vi kan lage en egen modul.

I Python kan vi definere vare egne funksjoner. La oss si at det er funksjoner vi vil benytte flere
ganger. Da kan vi lagre funksjonene vare i ei fil', la oss kalle den minmodul.py. Innholdet i fila
finner du i programkode 8.1.

NNQJCRN R

ot

Programkode 8.1: minmodul.py

To funksjoner er definert, og na kan vi importere funksjonene inn i andre program pa flere
mater.

Skriver vi import minmodul vil fila var importeres®. For & kalle opp de enkelte funksjonene
som er definert i modulen ma vi legge til modulnavnet. I programkode 8.2 ser vi koden som ma
benyttes.

! Akkurat det med & lagre ei fil kan gi noen utfordringer avhengig av programmeringsmiljg. Her er det ment
som en forklaring.
2Det krever at programmeringsmiljget finner fila var

40

Programkode 8.2: import minmodul

For a slippe a skrive lange modulnavn kan vi ogsa importere modulen med et alias. La oss velge
bokstaven m og skrive import minmodul as m

3 .2(3) - m.f(1))

Programkode 8.3: import minmodul as m

Disse to variantene er de mest ryddige siden den importerte modulen holdes unna alle komman-
doene som allerede er innebygd som standard i Python. Et ord en stgter pa i den sammenheng
er namespace. Her ligger alle kommandoene som er innebygd, funksjoner vi definerer og mye
annet. Maten vi har importert modulen pa klusser ikke til det som ligger der fra fgr. Nye kom-
mandoer holdes for seg sjgl. Ulempen er at vi ma si fra at kommandoene er i en importert
modul.

Vi kan importere modulene inn i namespace, men da bgr vi veere oppmerksom pa det som kalles
namespace polution. I enkel programmering er det som regel ikke noe problem, men det kan
veere greit a etablere en god praksis fra start. La oss allikevel se pa hvordan vi kan importere
moduler inn pa en mate som gjor at vi slipper a skrive modulnavnet. Det gjgr vi ved a skrive
from modulnavn import =*.

1
2

3 (2(3) - (1))

Programkode 8.4: import *

Her er hele modulen importert — stjerna sier det. Funksjonene g og f har blitt en del av de
kommandoene vi kan benytte. En slik import kan altsa skape litt kluss. Hva om Python allerede
inneholdt en kommando som heter f eller g7 Vi fyller ogsa opp namespace.

En analogi som kan illustrere dette er & se pa modulnavnene vi importerer som etternavn og

Olsén\ J ens;m\

sa far med alle familiemedlemene.

Han®

Ole Kari Jonas Knut Kari Anna Kari Anna Jonas

Importerer vi modulene med kommandoene import Hansen, import Olsenog import Jensen,
vil vi enkelt kunne adressere alle familiemedlemmene. En importering inn i namespace vil fgre
til rot siden det er flere fornavn som gar igjen.

For & ikke fa importert alle funksjonene i modulen kan vi fortelle hvilken funksjon vi er ute
etter. La oss si at vi bare gnsker a importere funksjonen f.

1
2

3 (r(1))

Programkode 8.5: import f

41

Da har vi kontroll pa hva vi legger til og unngar a fa med alt annet, men ogsa denne praksisen
kan komme i konflikt med andre funksjoner. Konklusjonen er at det er en god programmerings-
praksis a unnga denne maten a importere pa. Pa den annen side kan det vurderes om hva som
er det beste pedagogisk. En slik import gjer det enklere a skrive koden for nybegynneren ved at
det ikke ma refereres til modulen nar kommandoene kalles. I eksemplene som benyttes i dette
kompendiet har jeg valgt a ikke bruke en slik import.

8.2 Pakker vi ofte importerer

Dette var et enkelt eksempel pa en egen modul, men stort sett importerer vi moduler som andre
har skrevet. Heldigvis er det mange som allerede har laget moduler med mye nyttig for oss.

8.2.1 Math

Uten a importere tilleggskommandoer er Python begrenset. Skal vi utfgre matematiske opera-
sjoner far vi ofte bruk for Math.

Vi importerer den og ber python om & liste opp alle funksjonene.
1
2 (())
Programkode 8.6: Liste av innholdet

Da far vi dette resultatet.

acos, acosh, asin, asinh, atan, atan2, atanh, ceil, comb, copysign, cos, cosh, degrees, dist,
e, erf, erfc, exp, expml, fabs, factorial, floor, fmod, frexp, fsum, gamma, gecd, hypot,
inf, isclose, isfinite, isinf, isnan, isqrt, ldexp, lgamma, log, log10, loglp, log2, modf, nan,
perm, pi, pow, prod, radians, remainder, sin, sinh, sqrt, tan, tanh, tau, trunc

Her kan vi finne kommandoen sqrt, som star for square root eller kvadratrot. A kunne finne
kvadratrota av et tall uten a skrive mye kode kan vi da enkelt gjore ved & importere math og
benytte kommandoen.

Importen av math kan skje slik det er beskrevet tidligere. Vi kan importere bade med og uten
alias — og vi bare importere det vi har bruk for.

Legg merke til at vi hvis vi velger a bare importere sqrt, sa skriver vi from math import sqrt
og kan benytte kommandoen direkte uten a matte skrive navnet pa modulen.
Noen viktige i Math-modulen

Math-modulen inneholder ogsa alle trigonomteriske funksjoner som sinus, cosinus og tangens.
For a finne sinus til en verdi kan vi skrive math.sin() og for & finne vinkelen nar vi vet forholdet,
math.asin(). Den siste star for arcus sinus. P& kalkulatoren benyttes ofte sin™!. Tilsvarende

42

Metode

Beskrivelse

math.ceil()
math.comb()
math.degrees()
math.exp()
math. fabs ()
math.factorial()
math.floor ()
math.gcd()
math.log()
math.logl0()
math.perm()
math.pow()
math.sqrt()

Runder av verdi til opp til naermeste heltall
Returnerer antall kombinasjoner
Konverterer fra radianer til grader
Returnerer e opphgyd i x

Returnerer absoluttverdien

Returnerer fakultet av et tall

Runder av ned til neermeste heltall
Returnerer stgrste felles divisor til to heltall
Returnerer den naturlige logaritmen
Returnerer 10-er logaritmen

Returnerer antall permutasjoner
Returnerer verdien av x opphgyd iy
Returnerer kvadratrota av et tall

Tabell 8.1: Math-modulen

er det for de andre trigonometriske funksjonene. Ei liste over noen kommandoer kan du finne i

tabell 8.1.

Konstantene 7 og e finner vi ogsa i denne modulen som math.pi og math.e.

Et eksempel hvor vi benytter en god tilnserming til 7 ~ 3.141592653589793

8.2.2 Random

Programkode 8.7: Sirkel

Random inneholder kommandoer som gjor at vi kan fa generert tilfeldige tall og en del annet.
Tabell 8.2 viser noen av det vi kan fa bruk for.

Metode

Beskrivelse

random.
random.
random.
random.

seed()

Initialiserer tallgeneratoren

randint() Gir et tilfeldig heltall i et gitt intervall

random()
choice()

Gir et tilfeldig tall mellom 0 og 1
Velger et tilfeldig element fra ei liste

=W N

Tabell 8.2: Random-modulen

(0,100)

0)
([

)

43

Programkode 8.8: Eksempler fra Random

8.2.3 PyPlot

Pyplot er en modul vi finner som en del av den stgrre modulen Matplotlib. Vi benytter den
for grafiske framstillinger som grafer, punktplott, sgylediagram osv. For a importere modulen
skriver vi matplotlib.pyplot as plt. Da far vi importert Pyplot med aliaset plt. Vi
kommer til & se mer pa Pyplot nar vi skal plotte data.

Les mer om Matplotlib her https://matplotlib.org
Her er en introduksjon til Pyplot: Pyplot tutorial

8.2.4 NumPy

NumPy er en forkortelse for Numerical Python. Modulen gir oss tilgang til & behandle matriser
og arrays. I tillegg inneholder modulen en del av de samme kommandoene som vi finner i Math,
f.eks. kvadratrot. Mer om NumPy kan du finne pa disse sidene https://numpy.org

44

https://matplotlib.org
https://matplotlib.org/tutorials/introductory/pyplot.html
https://numpy.org

9 Tegne grafer

Grafer til funksjoner og punktplott er det ofte nyttig a tegne. Som regel har vi godt egna
verktgy til & gjore det bade enklere, og raskere, enn med Python. I noen tilfeller kan det vaere
greit a vite hvordan vi kan fa gjort det i Python ogsa. Her kan du lese mer om hvordan

Na skal vi se pa hvordan vi kan

[tegne grafer til funksjoner [plotte data

Tidligere har vi sett hvordan funksjoner defineres og na skal vi ta det i bruk nar vi skal tegne
grafen til en funksjon. Fgr vi gjgr det lager vi noen punktplott.

9.1 Punktplott

La oss starte med et enkelt eksempel og se pa programkode 9.1. For vi kan starte ma vi legge
til en del kommandoer som ikke er direkte innebygd i Python. Vi ma importere det som skal
til for & kunne fa tegnet opp det vi gnsker. Vi importerer PyPlot med kommandoen: import

matplotlib.pyplot as plt. Na vil vi fA mange nye kommandoer som kan benyttes med
aliaset plt. Forst ma vi ha noen verdier som skal plottes. Det skaffer vi oss ved a opprette to
lister med navnene x og y. Vi kan lage plottet med kommandoen plt.plot(x,y): plott verdiene
til de to listene x og y.

= [1,2,3,4,5]
= [1,4,9,16,25]

Programkode 9.1: Et enkelt plott

Her kan det veere grunn til a legge merke til at kommandoen plt.plot(x,y) plotter punktene,
men de vises ikke. Fgrst nar vi ber om det med plt.show() vil vi fa sett punktene i et koordi-
natsystem. Da bgr resultatet veere som i figur 9.1. Der ser vi punktene plottet og det er tegnet
linjer fra det ene punktet til det andre. Verdiene langs de to aksene tar Python seg av.

45

25 A

20 A

15 A

10 A

10 15 20 25 30 35 40 45 50
Figur 9.1: Et enkelt plott

Litt pynt

Kanskje kan det gjgre seg med litt forklaring pa aksene? Det kan vi fa med noen kommandoer
til. I programkode 9.2 er det lagt til navn pa aksene og ei overskrift. Et rutenett i bakgrunnen
kan ogsa gjore seg. Her er det lagt til med plt.grid().

= [1,2,3,4,5]
= [1,4,9,16,25]

o

0 N S Ot

10
11
12
13
14

Programkode 9.2: Et plott med litt pynt

Resultatet vises i figur 9.2

Bare punktene

Na har vi fatt tegna opp punktene med linjer mellom punktene. Ofte er det akkurat det vi
gnsker, men na gnsker vi bare a fa plottet punktene som et punktplott. Pa engelsk kalles det
et scatter plot. Bytter vi ut plt.plot(x,y) med plt.scatter(x,y) sier vi fra om at det er et
punktplott vi gnsker oss. Kjgrer vi programmet med den nye kommandoen far vi resultatet i
figur 9.3.

46

Et enkelt eksempel

25 A

20 A

—
v
!

y-verdier

=
o
I

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
x-verdier

Figur 9.2: Et enkelt plott med forklarende tekst

Et enkelt eksempel

251 @

20 A

—
w
!

y-verdier

=
o
I

o
0- T T T T T T T T T
1.0 15 2.0 2.5 3.0 3.5 4.0 4.5 5.0

x-verdier

Figur 9.3: Et punktplott med forklarende tekst

Flere plott i samme koordinatsystem

Punktplott kan inneholde flere serier med verdier som vi gnsker a plotte i samme koordinat-
system. Vi kan se pa et eksempel hvor x-verdiene er de samme, men y-verdiene er ulike. I
programkode 9.3 er det tre lister som inneholder verdiene. Verdiene plottes med & si fra om x-
og y-verdier. I tillegg kan vi gi plottene navn. Kommandoen plt.scatter(x,yl, label = "
graf,,1") sier fra om at det skal lages et plott og at plottet skal ha merkelappen (eng. label)
«graf 1». For at vi skal fa se navnene til de to seriene ma vi si fra om det med plt.legend().

3 [1,2,3,4,5]

47

[1,4,9,16,25]
[(2,4,6,8,10]

Programkode 9.3: To ulike serier

Da far vi plottet to serier med data. Python velger ulike farger pa de to plottene og vi far opp
en forklaring med tekstene vi har valgt. Figur 9.4 viser resultatet.

Et enkelt eksempel

2571 e grafl ¢
® graf2
20 A
(]

.§ 15 A
°
9]
2
>

10 A &

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
x-verdier

Figur 9.4: Plott med to dataserier

9.2 Funksjoner som grafer

I matematikkundervisning far vi behov for a tegne grafer til matematiske funksjoner. Grafen
til en funksjon bestar av en mengde x-verdier og de tilhgrende funksjonsverdiene. For at det
skal se ut som en graf og ikke et punktplott er vi avhengig av & ha mange x-verdier. De kan vi
skrive inn, men det blir for mye jobb. Heldigvis kan vi fa hjelp, men hjelpa ma vi importere.
Modulen NumPy inneholder en kommando som heter 1inspace som vi kan benytte til a lage
mange x-verdier. Ved & si fra om en start- og en sluttverdi kan vi be om a fa laget et visst
antall verdier mellom dem:

linspace(start, stopp, antall)

48

Prover vi kommandoen i terminalen kan vi fa dette resultatet:

>>> dmport numpy as np

>>> x = np.linspace(-5,5,10)

>>> print(x)

[-5. -3.88888889 -2.77777778 -1.66666667 —-0.55555556 0.55555556 1.66666667
2.77777778 3.88888889 5. |

Vi far laget ti verdier som starter med -5 og slutter med 5. Kommandoen sgrger for at verdiene
er fordelt likt i intervallet. Resultatet kan vi betrakte som ei liste, men det er egentlig en egen
datatype som heter ndarray.

La oss si at vi gnsker & tegne grafen til funksjonen gitt ved f(z) = 2% i intervallet [—10, 10].
Da definerer vi forst funksjonen i Python. Sa ma vi fa laget oss x-verdier. Vi far tusen verdier
i det gitte intervallet med x = np.linspace(-10,10, 1000). Alle verdien tilordnes variabelen
x. Innholdet kan vi betrakte som ei liste. Nar disse verdiene sendes til den definerte funksjonen
far vi tilbake alle de tilhgrende y-verdiene. Na er de klare for a plottes.

N —

Ut = W

© 0D

(-10,10, 1000)

Programkode 9.4: Plotting av graf

Grafen blir plottet i et koordinatsystem hvor aksene opprettes automatisk og vil se ut som i
figur 9.6. Koordinatsystemet er kanskje litt uvant? Her er gar ikke andreaksen gjennom origo,
men tegnes til venstre. Det gar an & gjore om pa det, men det krever en del kode. Forelgpig far
vi ngye oss med denne framstillinga.

9.2.1 Flere grafer

Vi kan se pa et eksempel hvor vi gnsker a tegne flere grafer i samme koordinatsystem.

Eksempel 1

Tegn grafene til disse funksjonene i intervallet [—10, 10]

f(@) =2*
glx) =2x+9

100 1

80 A

60

40 A

20 A

100 -75 -50 -25 00 25 50 75 100
Figur 9.5: Grafen til f(z) = z?

Framgangsmaten er som tidligere. Vi ma definere funksjonene og vi ma fa laget x-verdier,
grafene plottes ved & si fra om hvilke verdier vi vil ha med. Programkode 9.5 viser hvordan det
kan bli gjort. Her er det ogsa tatt med litt mer i plottet. Grafene har fatt merkelapper og gitte
farger. Maten vi kan skrive de matematiske symbolene krever en spesiell kode og at versjonen
av Python vi benytter er i stand til a gjenkjenne det. Kommandoen er:

plt.plot(x,yl, label = r"s$f(x)=x"2$", c = "r")

Her er $f(x)=x"23$ koden for f(x) = x?. Python velger forskjellige farger for ulike grafer, men
vi kan bestemme hvilken farge vi gnsker med kommandoen ¢ = "<farge>". Vi skriver inn en
bokstav for fargen. Det er bare & velge fra tabellen med bokstaver for de forskjellige fargene.

Farger
Forkorting Farge
Bla
Regd
Grgnn
Cyan
Magenta
Gul
Svart
Hvit

g < B oomwmr o

Tabell 9.1: Farger

20

(-10,10, 1000)

Programkode 9.5: To grafer med forskjellig farge

51

To grafer

100 1

80 -

60 -

40 ~

20 A

-10.0 -7.5 -=5.0 =25 0.0 2.5 5.0 7.5 10.0

Figur 9.6: Plott med to dataserier

52

A Vedlegyg

Vedleggene er litt forskjellig som kanskje noen finner interessant, men som ikke er av stor
betydning for enkel programmering.

A.1 Formattering med f-strenger

Med versjon 3.6 introduserte Python noe som kalles f-strenger. Navnet kommer av at vi ma
skrive en f i kommandoen pa denne maten print(f"strengen"). Nar det er gjort kan vi legge
til formatteringer av strengen. Har vi en variabel med navnet «x», som inneholder verdien til
et nullpunkt, kan vi skrive ut den inne i strengen: print (f"Nullpunktet er x = {x}")

Det samme resultatet har vi oppnadd med bare print ogsa, men det fine med f-strenger er at
vi kan legge til mer formattering. La oss si at vi vil ha fire desimaler. Da kan vi skrive

print(f"Nullpunktet erx = {x:0.4f}")

Med f-strenger kan vi fa utskriftene til a se penere ut. Det krever at vi benytter en versjon av
Python etter 3.6. Har du ikke det, sa gar du bare glipp av litt pynt.

Vi kan se pa et eksempel til. Programkode A.1 skriver ut en tabell med verdier.

(x):
2x*%x+3%*% (—x) -3

O I

= [-2, -1, 0, 1, 2]

ot

(

o N O

o)

Programkode A.1: Funkjsonstabell

Programmet skriver ut en funksjonstabell.

01234567890123456789
-2 6.25
-1 0.50
0 -1.00
1 -0.67
21.11

Kommandoen print(f"{x:7.0f} {f(x):8.2f}") formatterer strengen slik at desimalskille-
tegnet til x plasseres sju plasser til venstre. Her ber vi om at verdien skal skrives ut uten
desimaler, og dermed desimalskilletegnet. Verdien som skrives ut skal veere av type flyttall.
Neste verdi plasseres med desimalskilletegnet atte plasser til venstre for det som ble skrevet ut.
Den verdien skal skrives ut med to desimaler.

Formatteringen med f-streng

f"{verdi:{bredde}.{presisjon}}"

23

Her er
» wverdi er en variabel eller uttrykk som gir et tall
o bredde er bestemt av antall totalt antall tegn som settes av til det som skal vises
o presisjon er antall tegn som settes av etter desimalskilletegnet

Dette gir oss mulighet til & formattere verdiene som skal skrives ut. Tabell A.1 viser en del
eksempler

Verdi Format Utskrift Forklaring
3.1415926 {:.2f} 3.14 Flyttall med to desimaler
3.1415926 {:+.2f} +3.14 Flyttall med to desimaler inkludert fortegn
-1 {:+.2f} -1.00 Flyttall med to desimaler inkludert fortegn
2.71828 {:.0f} 3 Flyttall uten desimaler
0.25 {:.2%} 25.00% Formatter som prosent
1000000000 {:.2e} 1.00e409 Skriv pa standardform

13 {:10d} xxxxxxxx13 Hgyre-justert ned ti
13 {:<10d} 13xxxxxxxx Venstre-justert
13 {:r10d} =xxxx13xxxx Justert til sentrum og ti som bredde

Tabell A.1: Oversikt over noen formatteringer

Du kan finne mye mer pa nettet om dette temaet. Litt eksperimentering hjelper ogsa.

54

A.2 Nullindeksering

MAN, YOURE BEING IN(ONSISTENT
WITH YOUR ARRAY INDICES. SOME
ARE FRoM ONE, SOME. FRom ZERD,

DIFFERENT TASKs CAWL FOR VAT, WHAT?
DIFFERENT CONVENTIONS. TO)

QUOTE STANFORD ALGOR ITHMS WELL, THATS WHAT HE
EreRT Dodko Ky, SAID WHEN | ASKED
“WHO ARE You? How DID_ Him ABOUT IT,

YOU GET IN MY HOUSE? /

s 8 allis 6

Noe som kan veere forvirrende er at det er vanlig i programmering & starte indeksering med
null. Det kalles nullindeksering. En slik nullindeksering kjenner mange ogsa fra andre fag, men
i hverdagen er vi vant med & starte telling med 1. Det kan veere greit a skille mellom telling og
indeksering. Et eksempel pa nullindeksering kan veere maten etasjer nummereres pa engelsk.
Der er var forste etasje ground floor og sa starter de tellingen av etasjer over.

Edsger W. Dijkstra er en kjent nederlandsk informatiker. Han argumenterte for en nullindek-
sering i et notat fra 1982: Why numbering should start at zero. Der tok han for seg mulige
mater indeksering kunne skje og viste til at nullindeksering har sine fordeler. Slik har det blitt
vanlig a starte med null i programmeringsverdenen. Les gjerne mer her: Wikipedia: Zero-based
numbering

95

https://en.wikipedia.org/wiki/Zero-based_numbering
https://en.wikipedia.org/wiki/Zero-based_numbering

A.3 Mer om funksjoner og parametre

Nar vi benytter programmeringsfunksjoner overfgrer vi ofte parametre til funksjonen. Da har vi
bestemt hvilke parametre vi gnsker & overfgre og rekkefglgen pa dem. Kanskje gnsker vi & endre
rekkefglgen ved & spesifisere variabelnavnene nar vi kaller funksjonen. Det kan vi fa til ved a si
fra nar vi kaller funksjonen. Programkode A.2 viser hvordan kan spesifisere parametrene i den
rekkefglgen vi gnsker.

=W N =

Programkode A.2: Navngiving av parametre

Noen ganger kan det veere vanskelig & vite antall parametre, men Python gir oss noen muligheter
i disse tilfellene ogsa. Programkode A.3 viser et eksempel pa hvordan vi kan definere en funksjon
og si fra om at vi ikke vet hvor mange parametre som overfgres. Ved at vi skriver xfag vil
funksjonen motta parameterverdiene i ei liste og vi kan angi hvilket listeelement vi gnsker a
benytte.

Programkode A.3: Paramteroverfgring

Det er ogsa en annen mate a gjgre det pa ved at parametrene overfgres i det som kalles en
dictionary. Det gjgr det mulig & finne fram til parameteren ved & skrive navnet, slik rrogramkode
A4 viser

Programkode A.4: **kwargs

Ved paramteroverfgring har vi ogsa mulighet til & si fra om en standardverdi (default value)
hvis det ikke overfgres noen parametre. Overfgrer vi en parameter vil den verdien benyttes og
ikke standardverdien. Programkode A.5 viser et eksempel.

T W N

D

Programkode A.5: Standardverdi

Du kan finne ut mye mer om dette ved a sgke pa nettet.

26

5.1
5.2

7.1
7.2

9.1
9.2
9.3
9.4
9.5
9.6

Flyskjema med en hvis-testo 27

Flyskjema med flere hvis-tester 28
Definisjon og bruk av funksjon i Python 37
Parameteroverfgring 37
Et enkelt plott 46
Et enkelt plott med forklarende tekst L. 47
Et punktplott med forklarende tekst 47
Plott med to dataserier 48
Grafen til f(z) =% 50
Plott med to dataserier 52

o7

Tabeller

2.1 Operatorer e 7
3.1 Noen datatyper i Python oo 11
3.2 Listekommandoer 18
5.1 Sammenlikninger 29
5.2 Logiske operatorer L 29
5.3 Sannhetstabell 30
8.1 Math-modulen 43
8.2 Random-modulen 43
9.1 Farger e 50
A.1 Oversikt over noen formatteringero 54

o8

1.1
1.2
1.3
1.4
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
4.1
5.1
5.2
5.3
5.4
9.5
5.6
6.1
6.2
6.3
6.4
7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
9.1
9.2
9.3

abc-formelen
Hallo verden

Hallo verden 2.0.
Litt mer avansert
Omkretsen av et rektangel

Bruk av programmeringsvariabel

Bruk av teller

Store verdier

Tekststrenger

Konvertering
Hvilken datatype?

Jordbeero
Mere jordbeer
Utskrift
Append
Sla sammen teksto
Tekststrenger
Eksempelo
En enkel hvis-test
En hvis-ellers-test
Hvis-tester som er ngstet
Sammenlikninger L.
Bruk av logiske operatorer
Logiske operatorer

Ei enkel -lokke

Lokke med liste

Algkke Lo
Ei lgkke til Lo o000
Delprogram

Ny utskrift

Uten bruk av funksjon
Definisjon av en funksjon
To funksjoner
Lokale og globale variabler
Lokale og globale variabler
Definisjon av global variabel
minmodul.py L.
import minmodul L.
import minmodul asm
import *
import f
Liste av innholdet

Sirkel

Eksempler fra Random

Et enkelt plott

Et plott med litt pynt
To ulike serier

Pythonkode

9.4 Plottingav graf 49

9.5 To grafer med forskjellig fargeo 51
A.1 Funkjsonstabell 53
A.2 Navngiving av parametre 56
A.3 Paramteroverfgring 56
A4 FRRwWargs ... 56
A5 Standardverdi 56

20¢9

Creative Commons Navngivelse-ITkkeKommersiell-DelPaSammeVilkar 4.0
Laget med KTEX

\ 1

60

http://creativecommons.org/licenses/by-nc-sa/4.0/

	Introduksjon
	Et eksempel på et Python-program
	Vi lager noen enkle program

	Aritmetikk
	Enkle utregninger
	Litt mer avansert
	Regnerekkefølge

	Variabler og datatyper
	Programmeringsvariabler
	Grunnleggende datatyper
	Konvertering mellom datatyper
	Input
	Introduksjon
	Lister – hva er det?
	Operasjoner med lister
	Mer om operasjoner på tekststrenger
	Bruk av anførseltegn

	Programmeringsteknikker
	Hvordan skrive kode?
	Pseudokode
	Flytskjema

	Vilkår
	Hvis-test
	Sammenlikninger og boolske variabler
	Logiske operatorer

	Løkker
	For-løkker
	While

	Funksjoner
	Hva er en funksjon i Python?
	Definisjon av funksjoner
	Lokale og globale variabler

	Bibliotek
	Hva er en modul?
	Pakker vi ofte importerer
	Math
	Random
	PyPlot
	NumPy

	Tegne grafer
	Punktplott
	Funksjoner som grafer
	Flere grafer

	Vedlegg
	Formattering med f-strenger
	Nullindeksering
	Mer om funksjoner og parametre

