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1 En introduksjon

1.1 Hva er ei likning?

Likninger er et viktig tema i matematikkundervisninga i grunnskolen. Vi skal holde oss til den
samme typen likninger. Det er likninger hvor vi er pa jakt etter en, eller flere, verdier for en
ukjent stgrrelse. Det fins flere andre typer: differenslikninger og differensiallikninger er eksempler
elever mgter i videregaende skole. Da er den ukjente ei tallfglge eller et funksjonsuttrykk. Ei
likning har noe med et eller annet som er likt. Ligger ikke det i ordet? Vi kan kalle ei likning
for en pastand om likhet. La oss starte med a se pa hva en pastand er.

Hva er en pastand?

En pastand vil pasta noe. Ofte benyttes ordet «utsagn» synonymt med «pastandy». Det blir
ogsa gjort i denne teksten. La oss se pa noen eksempler pa hva en pastand kan veere.

e «Trondheim er en by»

e «Trondheim er Norges vakreste by»
e «1+2=23»

o «2+42=05»

e «Tallet fem er et primtall»

I vare tilfeller vil pastander enten veere sanne eller usanne.

Ei likning er en pastand

Ei likning er en pastand, eller et utsagn, med en ukjent stgrrelse. Her er et eksempel:
2r+5=11

I denne pastanden er bokstaven z brukt for den ukjente stgrrelsen '. En lgsning av ei likning
finner vi nar vi bestemmer den ukjente slik at pastanden er sann. I eksemplet vart blir pastanden
sann nar r = 3

Det kan vi se hvis vi ser pa verdiene for hvert av uttrykkene med likhetstegn mellom. Hvis
x = 3 vil hgyre side fortsatt veere 11 Verdien pa venstre side er da

2-34+5=11

Pastanden er sann nar den ukjente verdien er 3.

Det er det samme vi gjgr ved a prgve en verdi.

1Ja, dette kan de fleste fra fgr, men ofte skjuler det seg mye matematikk i det som kan virke som banaliteter.
Det kan derfor veere greit a tenke gjennom sjgl om det virker opplagt.



Eksempel 1

Vis at = 2 er en lgsning av likningen
20 +x =12 -z

Vi ma undersgke om pastanden er sann nar r = 2.
venstre side

2:2242=2-442=8+2=10
hgyre side

12—-2=10
Da ser vi at verdien av uttrykket venstresida er like stor som den pa hgyresida nar x = 2.
Det betyr at x = 2 er en lgsning.
Her kan vi legge merke til at det ikke er den eneste verdien som gjor pastanden sann.
Bare prgv det samme med x = —3. Vi sier at lgsningsmengden til likninga er 2 og —3.
Det skriver vi slik: L = {—3,2}

Betrakter vi likningene pa denne maten er det egentlig som funksjoner. I dette tilfellet som en
avbilding fra alle reelle tall, R, over i mengden {sann,_usann}.

1.2 Implikasjoner og ekvivalens

Hvis et utsagn er sant kan en ofte trekke slutninger ut fra det utsagnet. Det kan vi kalle en
hvis-sa-slutning. Tar vi litt lett pa de etniske definisjonene av «trgnder» og «nordmann» kan
vi la disse pastandene vaere noen eksempler pa det

o Hvis Arne er fjorten, er han en tenaring
o Hvis Arne er trgnder, er han nordmann
Det hender at slike slutninger trekkes for raskt. Et eksempel er slutningen til Erasmus Montanus

fra Holbergs komedie av samme navn. Her gjennomfgrer Erasmus et «bevis» for at mora hans,
Mor Nille, er en stein.

Montanus: Morlille, jeg vil gjgre jer til sten.

Nille: Hgrt slikt snakk. Det er min tro ikke mulig!
Montanus: Nu skal I fa hgre: En sten kan ikke flyve.
Nille: Nei, det er visst nok, unntagen nar man kaster den.
Montanus: I kan ikke flyve.

Nille: Det er og sant.

Montanus: Ergo er morlille en sten!

Hva er feil i denne slutningen?

Implikasjon

En logisk slutning hvor et utsagn er sant hvis et annet er det, kalles en implikasjon. Vi markerer
dette med en implikasjonspil: = . Vi leser det som «Hvis utsagn A, sa utsagn B» eller «utsagn
A medfgrer utsagn By.

Noen eksempler

I o Arne er fjorten = Arne er en tenaring
o Arne er trgnder = Arne er nordmann

Implikasjoner gjelder bare den ene veien. Se bare pa denne pastanden.



B -+ Arne er nordmann = Arne er trgnder

At det ikke stemmer kan vi markere slik

B ¢ Arne er nordmann =% Arne er trgnder

Implikasjonen A = B kan vi betrakte pa to mater. Den ene er at hvis A er sann sa er den
logiske konsekvensen at B ogsa er sann. En konsekvens av det gir en annen mate a se det pa:
Lgsningsmengden til A vil veere inneholdt i lgsningsmengden til B. Det kan vi skrive slik

L, C Lp

La oss se pa Igsningsmengden til pastanden «Arne er trgnder = Arne er nordmanny. Bytter
vi ut tilfellet Arne med hvem som helst kan vi omforme pastanden til «x er trgnder = x er
nordmann» vil Igsningsmengdene kunne skrives som

L4 = {alle trgndere} C Lp = {alle nordmenn}

Da kommer det klart fram at den ene mengden er den delmengde av den andre.

I noen tilfeller kan vi ha implikasjoner begge veier mellom pastandene. Det kaller en ekvivalens

Logisk ekvivalens

Har vi to utsagn, A og B, og implikasjonene A = B og B = A, sier vi at vi har en logisk
ekvivalens. Det markerer vi med en dobbelpil ( <= ). Dette leser vi som «hvis og bare hvis.
Her er noen ekvivalenser

e Arne er trgnder <= Arne er fra Trgndelag
I e 2=0Vy=0<= 2-y=0

o 202 =8 < 22 =4

A 1gse likninger er & bevare ekvivalens

Vi har sett at ei likning er et utsagn og vi skal bestemme en, eller flere, ukjente verdier slik at
utsagnet blir sant. Da kan vi ikke forandre pa det grunnleggende i det opprinnelige utsagnet.
Det ma veere en logisk ekvivalens i alle trinn for a komme fram til lgsninga pa likninga. La oss
se pa et eksempel hvor hvert trinn er markert med ekvivalenssymboler. La oss se hvordan vi
egentlig burde skrive hvordan vi lgser likninga 5xr — 8 = 16 4+ x

50 —8 =16+«

0

e —8+8—x=16+z2z—x2+8

0

br—x=16+38



Eksemplet viser at ekvivalensen bevares gjennom alle trinnene. Na utelater vi stort sett ekvi-
valenspilene, men det er viktig & huske at de egentlig burde statt der og minnet oss pa at
hvert trinn er ekvivalente pastander. A lgse likninger er det samme som & bevare ekvivalenser.
Da kan vi addere, subtrahere, dividere og multiplisere med samme konstant pa begge sider av
likhetstegnet: ekvivalensen bevares. Legg merke til at ekvivalensen ikke gjelder hvis vi f. eks.
multipliserer med en variabel eller kvadrerer. Her er noen eksempler.

r—1=0 (1.1)

La oss multiplisere med = pa begge sider. Da far vi

z(r—1)=0 (1.2)

Implikasjonen gjelder, men pastandene er ikke ekvivalente. Vi har at

r—1=0 = z(z—1)=0

r—1=0 <= z(z—1)=0

Losningsmengden pa den fgrste pastanden, (1.1), er L; = {1}, mens i den andre, (1.2), er
lgsningsmengden Ly = {0, 1}. Her ser vi at

L, C Ly

Det samme kan skje ved kvadrering

r=3 = 22=9

r=3 &= 2*=9

Lgsningsmengden til = 3 er L = {3}, mens for 22 = 9 er lgsningsmengden L = {—3, 3}.

I slike tilfeller ma vi til slutt prgve med alle elementene i lgsningsmengden for & undersgke
gyldigheten. Det er typisk nar vi skal lgse irrasjonale likninger. Vi kan ta med et eksempel pa
det. Prgv gjerne oppgaven i eksemplet fgr du gar videre.

Lgs likninga

Vi—-—22=g

ved regning

Nar vi skal lgse slike irrasjonale likninger ved regning ma vi fgrst ordne uttrykkene slik at vi
far rottuttrykket pa ene sida av likhetstegnet. Her har vi det og vi kan kvadrere begge sider og
sa lgse likninga vi far



( 4—x2>2:x2

4 — 2% =22
22 =4
=2

x:\/§\/x:—\/§

I dette tilfellet bevarer vi ikke ekvivalensen i alle trinnene. Vi har at

Vi —12 =g

2 =2
)
r=V2Vzr=—-V2

Lgsningsmetoden benytter bare en implikasjon i det forste trinnet. Det gjor at vi kan fa falske
lgsninger og vi ma sjekke det vi har funnet.

Sjekker falske lgsninger ved & sette inn i den opprinnelige likninga.

r=—2: 4—(=V2)2=V2 Falsk lgsning fordi hore side er = —v/2
r=12: 4—(V2)2=2 ok!

Da sitter vi igjen med bare en lgsning = = /2

Her er en oppgave som likner. Prgv pa den fgr du ser pa lgsningsforslaget.

Oppgave 1

Lgs likninga

2—vz+1=13—=z

og finn ut i hvilket trinn ekvivalensen brytes.



LA sningsforslag

Nar vi skal lgse slike irrasjonale likninger ved regning ma vi fgrst ordne uttrykkene slik
at vi far rottuttrykket pa ene sida av likhetstegnet.

—Vz+1=13—-2—2

Det neste er a kvadrere hver side. Det er i dette trinnet ekvivalensen brytes. Slik lgses
likninga

2
(—\/a:+1) = (11 —2)’
x4+ 1=121 — 222 + 2
121 -2 +22—2—1=0
—23x 4+ 120+ 22 =0
r=8Vax=15

Her er kanskje symbolet V nytt for deg? Det kan leses som «eller». Na ma vi undersgke om
noen av disse lgsningene er falske. Det gjgr vi ved & sette inn verdiene i den opprinnelige
likninga (fgr vi kvadrerte og bret ekvivalensen). Her er HS og VS forkortelser for hgyre
og venstre side.

r=8 HS:2-+v8+1=-1 VS:13-8=5
r=15 HS:2-+v156+4+1=-2 VS: 13 — 15 = -2

Vi ser at x = 8 er en falsk lgsning og © = 15 er en ekte lgsning.

Svar: Lgsningen er x = 15

All likningslgsning ved regning handler om a utfgre manipulasjoner som bevarer ekvivalens eller
veere klar over at noen trinn er implikasjoner.

Implikasjoner og ekvivalens forklarer logikken bak lgsning av likninger. De logiske slutningene
er viktig for at likningslgsning skal bli noe mer enn en instrumentell aktivitet. Samtidig kan
en undervisning med vektlegging av slik symbolbruk ende i samme problem for elevene. Vi
kjenner til «den nye matematikken» fra slutten av sekstitallet og framover. Da ble logikk og
bruk av logiske symboler sentrale tema. Noe som bade ble for abstrakt for bade elever og leerere.
Konsekvensen ble at undervisningen konsentrerte seg om korrekt bruk av symboler framfor a
fa fram rimeligheten i de resonnementene som ligger til grunn for & lgse ei likning.

La oss avslutte denne delen med en oppgave med pastatte ekvivalenser, men en eller annen
plass ma det skjule seg en feil?



Oppgave 2

Hva er feil her?

a="b |-a
)

a® = ab | + a® — 2ab
)

a® + a* — 2ab = ab+ a® — 2ab
)
2(a* — ab) = a* — ab

)

2=l



2 Likningslgsning

2.1 Lgse likninger er a finne den ukjente

Nar vi blir bedt om & lgse likninger er det a finne den ukjente. Ei likning som
2v+3=4—-=x

ser vi ofte blir skrevet som
2-0+3=4-0

i leerebgkene. Tanken er da at det skal sta det samme i boksene og at hver side skal ha samme
verdi. Oppgaven blir & finne den verdien som gjor at pastanden blir sann.

La oss prgve noen oppgaver hvor du tenker pa hvordan du gar fram for & finne den ukjente.

Oppgave 3
a) 6z —1=>59
b) 3z —1=0
c) 12 =9

2.2 Noen metoder for a lgse likninger

Likningsslgsning kan forega pa flere mater, hvor den ene egentlig er like god som den andre
hvis det bare er spgrsmal om & finne det som er ukjent. Uansett er det lurt & kunne sa mange
metoder som mulig. Her er noen mater vi kan lgse likninger ved

o det-samme-pa-begge-sider-metoden o bruk av digitale verktgy
o produktregelen o prgve-og-feile-metode

o tenke-bakover-metoden o telle-metoden

« andregradsformelen o dekk-over-metoden

o fullstendige kvadraters metode « modell-metoden

o grafisk lgsning o numeriske metoder

I tillegg kommer metoder for a lgse spesielle likninger som addisjons- og innsettingsmetoden
for lgsning av likningssystem.

Ofte deles metodene inn i formelle og uformelle metoder hvor de formelle falger en matematisk
algoritme eller er akseptert som en tradisjonell skolematematisk metode. De uformelle metodene
kan bidra i stor grad til elevenes matematikkompetanse.

La oss se pa noen mater a lgse likninger.

Prgve og feile. En metode for a lgse likninger er & prgve verdier for den ukjente for & se
hvordan det gar. I de fleste tilfeller er ikke det den mest effektive maten, men kan bidra bade
til & finne lgsningen og bygge den matematiske kompetansen.
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Tellemetoden. Har vi ei likning som denne:
r—6=4
gar det an a telle seg fram til at x ma veere 10. Det er ikke en effektiv mate, men viser at eleven

har forstatt bade oppgaven og hva variabelen x star for.

Digitale verktdgy og grafiske lgsninger. Digitale verktgy som CAS-verktgy lgser sveert
kompliserte likninger. Et par eksempler som kan installeres pa nesten alle smarttelefoner er
PhotoMath og Wolfram Alpha. Farstnevnte krever ikke at vi skriver inn likninga en gang. Det
er nok a bevege kameraet over oppgaven. Figur 2.1 viser et eksempel pa bruken.

De digitale verktgyene benyttes som regel ogsa til grafiske lgsninger.
0]

‘+Fx -6 =0

2
R+Fx - 13 =0

X2 +7x-13=0

_7-hon _7+ho )

X

Figur 2.1: Photomath

Produktregelen bygger pa en logisk slutning ut fra et produkt. Et produkt er lik null hvis
en, eller flere, av faktorene er lik null. For et produkt med to faktorer kan vi skrive det slik:

a-b=0 < a=0Vvb=0

Ei faktorisert likning kan vi lgse ved a utnytte denne ekvivalensen.

Andregradsformelen er kanskje bedre kjent som abc-formelen? Den skal vi se mer pa under
andregradslikninger.

De meste interessante metodene for grunnskolen er nok den generelle metoden, bruk av modeller
og dekk-over-metoden. La oss se litt nsermere pa dem.

Generell metode

Den generelle metoden for likningslgsning gar ut pa prinsippet at vi ikke forandrer pastanden
om vi utfgrer addisjon, subtraksjon, divisjon eller multiplikasjon pa begge sider av likhetstegnet.
For mange elever er metoden kjent som «flytte-bytte-regelen» hvor problemlgsing, logisk tenking
og store deler av matematikkompetansen er holdt utenfor. Siden denne metoden er den mest
kjente skal vi ikke ta for oss den, men se pa to nyttige metaforer som benyttes ved forklaring
av metoden. Ofte benyttes en metafor om ei skalvekt (se figur 2.2) den generelle metoden for
a lgse linezere likninger.
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Figur 2.2: Skalvekt som metafor for likning

Skalvekta kan forklare mye, men negative tall er vanskelig & representere bade pa ei skalvekt
og i alle andre sammenhenger.

Oppgave 4

Benytt skalvektmetaforen til a forklare lgsning av disse likningene.
a) 3tr+2=z+6
b) 3z +2=14

Hvilke styrker og svakheter finner du ved modellen?

Det er en grunn til populariteten til skalvekmetaforen. For den som er kjent med skalvekta
gir den en god illustrasjon for at likevekten opprettholdes nar vi legger til, eller fjerner, like
mye pa begge sider. Legg merke til starten av setningen. En forutsetning er at skalvekta er
kjent for elevene. Kanskje kan ei vippe, eller huske !, veere en like bra metafor? Det er noe
de yngste elevene kjenner. En annen begrensning ved modellen er, som tidligere nevnt, at den
bare holder for positive verdier for den ukjente. Na fins det eksempler pa utvidelser som prgver
a utvide metaforen med f. eks. gassballonger for a ta hensyn til positive og negative verdier.
Hvor hensiktmessig det er kan nok diskuteres.

En annen metafor er a benytte en boks, eller ei eske, som en konkretisering av en variabel.
Innholdet er ukjent og likningslgsing er a finne hva det ma veere. Vi kan ta likninga

20 +4=3x+ 2

som eksempel. Lgst med den generelle metoden kan en mate a gjore det pa se slik ut

20 +4 =3z +2 (2.1)
20+ 2 =3x
2=z

Fra likning (1) til likning (2) er det trukket fra 2 pa begge sider av likhetstegnet og ekvivalensen
er beholdt. I neste steg er det trukket fra 2x og vi ender opp med at x = 2. Logikken kan vi
vise med fyrstikkesker og fyrstikker slik som i figurene 2.3a, 2.3b og 2.3c. De samme stegene er
fulgt

1Jeg er usikker pa hva det heter. Wikipedia har disse synonymene: dumphuske, vippe, bikkedisse, kaksedisse,
dibbedue eller humpedisse
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2x+4=3x+2 2x+4=3x+2

2x+2=3x
(a) Utgangspunkt (b) To fyrstikker bort
2x+4=3x+2
2=x

(c) Tatt bort to esker

Figur 2.3: Fyrstikkeskemodellen

Oppgave 5

Benytt fyrstikkeskemodellen til a forklare lgsning av disse to likningene.
a) 3r+2=x+6
b) 3z +8=2
c) 3z+2=4

Hvilke styrker og svakheter finner du ved modellen?

Modell-metoden

Vi starter med en oppgave. Lgs den for du leser videre

Oppgave 6

Ola og Kari er tilsammen 100 ar. Ola er 6 ar eldre enn Kari. Hvor gammel er Ola?

Na skal vi se pa hvordan oppgaven kan lgses med modeller. Vi starter med en type modell hvor
lengde representer verdiene og det som er ukjent. Basert pa opplysningene kan denne modellen
i figur 2.4 tegnes opp. Her er bredden av rektanglene det som viser verdien. Hgyden har ikke
noen betydning.

verst i modellen er opplysningene tegnet opp. Det er lengden av rektanglene som representerer
storrelsene. Vi vet at Ola og Kari til sammen er 100 ar. I linje tre er Ola sin alder erstattet med
Kari + 6. Da kan vi i linje fire slutte oss til at det doble av alderen til Kari er 94. Da méa svaret
vaere at Kari er 47 ar. Dette var en enkel modell, men mer kompliserte likninger kan ogsa lgses
pa samme vis. Bare prgv!

En modell kan ogsa tegnes som areal. Vi ser pa denne oppgaven

13



Figur 2.4: Modeller

Oppgave 7

Jan har 10 kr mer enn Ole. Kari har 20 kr mer enn Jan. Til sammen har de 100 kr. Hvor
mange kroner har Ole?

I figur 2.5 er det tegnet en arealmodell hvor arealet er 100, antall kroner de har til sammen.

10—

30—

Ole

N\

Figur 2.5: Arealmodell

Vi skal fram til hvor mange kroner Ole har. I oppgaven far vi opplyst at Jan har 10 kroner mer.
I arealmodellen markerer vi 10 ruter. Nar vi ogsa vet at Kari har 30 kroner mer enn Ole kan
vi ogsa markere 30 ruter. Ut fra oppgaven vet vi at summen Ole har er regnet med tre ganger.
Arealet som er igjen deler vi i tre like store deler. Vi ender opp med 20 ruter i hver del og kan
konkludere med at Ole ma har 20 kroner. Der det er mulig kan geobrett med fordel benyttes
for illustrere det samme.

Dekk-over-metoden

La oss se pa ei rasjonal likning. Det er ei likning hvor den ukjente er i nevneren pa en brgk.
Mer om det kommer seinere. Her er et stygt eksempel.



La oss na dekke over den stygge nevneren med fingeren. Her erstatter jeg den med en firkant
og far

— =3
O

Hva ma det sta i feltet vi har dekket over? Det er en mulighet og det er at [J = 2. Da vet vi at

2
NE
4

Dekker vi til det som star under rottegnet ser likninga na slik ut:

VvO=2

Da ma det veere slik at [J = 4 og vi kan skrive:

Na er det telleren i brgken sin tur til a dekkes over og vi far

O
— 4
4
Da ser vi at [J, som da star for 22, ma veere lik 16 og da folger det at v =4V x = —4

Legg merke til at hvis alle trinn skrives

2.3 Lgsningsmengder

Vi starter med noen oppgaver.

Oppgave 8

Sr+5=—x+11
S5r+2=3x+ 2

a)
)
) 3z—4=zx-4
)
)

b
c
d r—2=4+z

e) 3—x=2z—3(z—1)

Hvilke situasjoner endte du opp med da du lgste oppgavene? Kjenner du igjen de som star i
tabellen under?

Likning  Forklaring

x=k Her star k for en konstant og vi har funnet en
lpsning

0-x =~k Viskal finne en verdi av x som gjgr at verdien
multiplisert med null skal bli en konstant. Det er
ikke mulig og likninga har ingen lgsning

0-2z =0 For hvilket tall multiplisert med null blir produktet
lik null? Det gjelder for alle verdier

15



De verdiene av den ukjente som er lgsninger til likninga kaller vi lgsningsmengden.

Likninga 2x + 4 = 3z + 2 har én lgsning, = 2. Da skriver vi lgsningsmengden som L = {3}.
Ei likning som 22 = 9 har to lgsninger x = 3V = —3 og vi skriver lgsningsmengden som
L={-3,3}

Ser vi pa likninga x — 2 = 4 + z vil ei lgsning se slik ut

r—2=4+x
r—x=4+2
0-x2=6

Den siste linja ville mange ha skrevet som 0 = 6 og det gir samme svar: Det fins ingen lgsning.
Egentlig kunne vi sett det i den opprinnelige likninga: Finn et ukjent tall som er slik at trekker
du fra 2 far du samme svaret som om du legger til fire.

Likninger hvor vi ender opp med 0-x = k, her betyr k£ en hvilken som helst konstant, har ikke
noen lgsning. Da sier vi at lgsningsmengden er den tomme mengde. Den lgsningsmengden har
fatt sitt eget symbol: ().

Da har vi at

0-x =k = ingen lgsning

Losningsmengden skriver vi slik:

L=

I det siste tilfellet fra tabellen er lgsningen at den ukjente kan veere hva som helst. Hva som
helst innebeerer i vart tilfelle alle de reelle tallene. Vi kan skrive det som

0-z2=0 — z€R

Skrevet som lgsningsmengde blir det

L=R

Likninga 3 — x = 2z — 3(x — 1) forer oss til den situasjonen

3—x=2x—3(x—1)
3—x=2x—3x+3
—x+r=3-3
0-z=0
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Oppgave 9

For hvilke verdier av a har likningssystemet

ar+1vy = a
r+ay = a (2)

e en lgsning

e ingen lgsning

» uendelig mange lgsninger?
Argumenter for svaret.

Likningssystemet bestar av to likninger med to ukjente,  og y. a er her en parameter. Et slikt
likningssystem kan vi lgse pa flere mater.

Addisjonsmetoden Vi tar utgangspunkt i de to likningene merket som (1) og (2) og kan
addere, eller subtrahere, de fra hverandre. Hver likning kan ogsa endres til en ekvivalent likning.
Tar vi (1) - a- (2) far vi y — a®*y = a — a®. Ved & ordne likninga kan det uttrykkes slik

y—a’y=a—a’
(1—a%)-y=a(l—a)

Her kan vi fa tre forskjellige uttrykk

a Likning Lgsninger

a=1 0-y=0 uendelig mange lgsninger
a=—1 0-x= -2 ingen lgsning

a# +1 en lgsning

Innsettingsmetoden gir det samme. Ved & endre pa (1) far vi y = a — az. Det kan vi sette
inn i (2) og far: x + a(a — azx) = a

Regner videre

r+ala—azr)=a

v+a*—d’r=a
(1—a?®) - -z=a—d
(1-a*) - -2=a(l —a)

De samme argumentene gjelder for denne likninga. Vi far samme svar som ved bruk av addi-
sjonsmetoden.

17



3.1 Bokstavenes inntog

I den historiske utviklinga av algebra har vi sett at algebra har gatt fra verbale beskrivelser til
bruk av symboler. Utviklingen kan kan sammenfattes slik

/reto—

‘ . verbale beskrivelser
risk
synko- verbale beskrivel-
pert ser og noen symboler
Sym- symboler for bade kjen-
bolsk te og ukjente verdier

Den retoriske algebraen besto av verbale beskrivelser. Et eksempel pa ei likning med lgsning
kan vi hente fra Rhindpapyrusen

La oss finne den ukjente stgrrelsen hvis 7 mer enn 3 ganger kvadratet av stgrrelsen
er 19.

Her er min lgsning:

For & finne denne ukjente kan vi trekke 7 fra 19 og dele det svaret med 3. Slik far
vi 4. Siden kvadratet er 4 ma den ukjente stgrrelsen veere 2.

I var algebra med bruk av symboler ville vi ha skrevet

322 +7=19
322 =12
2 =4
r =2

Legg merke til at pa den tida regnet de ikke med negative tall.

Symbolene til Diofantos

Et eksempel pa tidlige symbolbruk kan bidra til & vise hvilke utfordringer elever mgter ved
innfgring i algebra. Se bare pa dette algebraiske uttrykket

0
KYBAYyAMa
som i var moderne versjon ser slik ut
22° 4+ 327 — 1
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Dette er symbolene Diofantos (ca. 200-285 e.Kr) benyttet. Han var en av de siste betydelige
matematiker i den antikke greske kulturen. Han bodde i Aleksandria og skrev hovedverket
«Aritmetikay. Det bestar av 13 bgker hvor seks er bevart pa gresk (I - VI) og fire er na funnet i
arabisk versjon (A B,C og D). Verket handler om lgsning av likninger. Diofantos er kjent for a
veere en av de fgrste som innfgrte symboler for en ukjent stgrrelse og for potenser av denne. De
likningene som er oppkalt etter han, Diofantiske likninger, er likninger hvor lgsningsmengden
er hele tall.

Her er en forklaring pa symbolene Diofantos benyttet

Beskrivelse Moderne symbol
¢ en ukjent stgrrelse x
AY  kvadratet av en ukjent stgrrelsesymbol x?
KY kuben av den ukjente 3
0
M  konstant

A subtraksjon —

De smé greske bokstavene var symboler for heltallene slik at a =1, § =2 og v = 3.

Symbolene kunne settes sammen slik at AYAY sto for 2*, AKY sto for 2° og KYKY er det samme

som z5.

Symbolet A har sin opprinnelse fra det greske dunamis som var en spesiell potens for kvadratet.
K kan vi kjenne igjen fra ordet kube som vi benytter i dag.

Diofantos benyttet ikke noe symbol for addisjon. Det ligger implisitt mellom hvert ledd med
mindre det star at neste ledd skal subtraheres. For den som er interessert i utfyllende opplys-
ninger, og diskusjoner rundt disse symbolene, anbefales (Cajori, 1993)

Denne korte innfgringen i en annen symbolverden kan kanskje bidra til & vise at symbolene ma
tillegges mening gjennom erfaring. Det dpenbare for den erfarne brukeren er ikke tilstede i de
symbolene vi benytter. Symbolbruken er konvensjoner vi har blitt enige om.

3.2 Bokstavbruk i algebra

The distinction between variables and constants [...] is sometimes difficult to grasp
clearly. It is not always understood that a constant, like a variable, is a symbol,
a linguistic expression, but with the important distinction that a constant has a
fixed designation, which remains unaltered throughout the discussion in which the
constant appears; whereas a variable designates ambiguously, so to speak, assuming
anyone of a range of values. It would, however, be a grave error to suppose that
the distinction between variables and constants reflects a corresponding distinction
in the domain of objects to which the variables and constants alike refer. Thus
to assert with reference, say, to real number theory that the variables “z” and
“y” designate variable numbers, whereas such constants as “2” and “7w” designate
constant numbers, would be nonsense; or at least there is no known intelligible
theory which could accommodate so odd a notion as that of a variable number.

David Hilbert og Wilhelm Ackermann, Principles of Mathematical Logic, 1937
(Hilbert mfl., 1999, s. 168)

I algebra stoter vi pa en rekke forskjellige typer symboluttrykk. I de forskjellige algebraiske
objektene har symbolene forskjellig rolle. Det kan ogsa bidra til utfordringer for elevene. Her
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er en kort oppsummering av forskjellige algebraiske objekter og bokstavbruken.

Algebraiske uttrykk er bygd opp av konstanter, heltall, variabler og operatorer. Opera-
torene bestar av addisjon, subtraksjon, multiplikasjon, divisjon og rasjonale eksponenter. Et
eksempel pa et algebraisk uttrykk er

3a + 4b* — Tz

Legg merke til at et algebraisk uttrykk ikke en pastand.

Likninger er pastander hvor en ukjent, som oftest blir x benyttet, skal bestemmes slik at
utsagnet blir sant. Velkjente eksempler kan veere

§+3x—9:7 2 =91 =6

I tillegg til algebraiske uttrykk finner vi likhetstegnet.
Ser vi pa likningen

ar’+c=0

finner vi tre bokstaver. For den ukjent benytter vi ofte bokstaven x. De andre bokstavene
representerer ikke ukjente stgrrelser. Vi kaller dem parametre. De kan velges fritt hvis det ikke
er gitt noen begrensninger for valgene vi kan ta. Likninga kan lgses slik

ar® = —c
—c
= —
a

—c

T = +4/—

a

Vi har da kommet fram til ei generell lgsning hvor parametrene a og b kan representere hvilke
verdier som helst.

Parameter er opprinnelig bygd opp av para (rapa), som betyr «ved siden av» og metron, som
betyr «mal». Ofte er parametrene konstanter eller malestgrrelser som kan pavirke resultatet.
Koeflisienter er ogsa et ord som benyttes. Det ordet kommer fra latin coefficere som betyr
«medvirke». Ordbruken kan variere mellom de ulike fagene matematikk, fysikk, gkonomi og
kjemi. Her er vi ikke sa ngye pa det.

Nar vi na skriver algebraiske uttrykk slik som
ar® +bx +c

skiller vi variablene fra parameterne ved at bokstavene fgrst i alfabetet star for kjente stgrrelser,
mens de ukjente er plassert sist. Denne notasjonen ble introdusert av René Descartes (1596-
1650) i La Géometrie (1637). La Géometrie er en del av hovedverket hans Discours de la
méthode.
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Ulikheter er ogsa utsagn hvor x skal bestemmes slik at utsagnet blir sant. Eksempler kan

veere .
20 —5<3 5—12455—2

Identiteter er algebraiske uttrykk som er identisk like. Kvadratsetningene er typiske identi-
teter
(a+b)* = a* + 2ab + b

Bytter vi ut bokstavene med tall, vil vi fa samme resultat uansett om vi benytter hgyre eller
venstre side i identiteten til & regne ut. De to uttrykkene er identisk like. Manipulasjon av
algebraiske uttrykk er & omformulere til identiske uttrykk. Bokstavene far her en rolle som
plassholdere.

Formler er beskrivelser av sammenhenger mellom stgrrelser. Arealet omskrevet av en sirkel

med radius lik r kan vi finne slik
A=m-r?

Legg merke til at her innfgres nok en bruk av bokstaver i form av konstanten 7 som star for en
verdi

Funksjoner viser samvariasjon mellom stgrrelser vi kaller argumentverdi og funksjonsverdi.
Uttrykket

y=f(r)=2"—4dx

forteller at y er en funksjon av verdien x. Et funksjonsuttrykk x> — 4 forteller hvordan vi kan
finne funksjonsverdien nar vi kjenner argumentverdien.

Bokstavenes opptrer i flere roller. De kan sta for konstanter, ukjente, parametre, navn pa
funksjoner og variabler. I tillegg benyttes bokstaver ogsa som forkortelser for benevning. Leser
vi 4g har vi leert oss at det star for fire gram. Tolking av symboler hgrer inn under fagfeltet
semiotikk og er viktig for & sette seg inn i hvilke utfordringer elever stgter pa i matematikken.

3.3 Eleven og likhetstegnet

Vi skal starte med & se pa en klassisk undersgkelse om elever og likhetstegnet (Carpenter
mfl., 2003; Falkner mfl., 1999). Elevene i undersgkelsen ble gitt dette sporsméalet (det var noen
varianter i sprakbruken):

What number would you put in the box to make this a true number sentence?

8+4=0+5

Elevene skulle altsa finne ut hva som matte sta i boksen for at utsagnet skulle bli sant. Nesten
tusen elever pa skoler i USA deltok og resultatet er gjengitt i tabell 3.1.

Svarene overrasket mange: under ti prosent ga korrekt svar og andelen forandret seg ikke med
alderen til de spurte. Forsgket er gjentatt mange ganger og i andre land. Prgv gjerne det samme
med egne elever. Konklusjonen til Falkner mfl. (1999) er at elevene tolker likhetstegnet som
en operator. Akkurat som likhetstegnet en ofte finner pa kalkulatorer betyr det «regn ut». Pa
kalkulatoren er likhetstegnet et ikon for a fa regnet ut et eller annet. I likningene er det ikke
det.
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Tabell 3.1: Resultat

‘ Response/Percent Responding
Grade |7 12 17 12and 17

land 2 |5 58 13 8
Jand4 |9 49 25 10
band 6 |2 76 21 2

Det samme viser ogsa Bergsten mfl. (1997) hos svenske elever. Elevene leser likhetstegnet som
«bliry. At 5+2 «blir» 7. Det gjgr at flere elever lgser likninga 4+ = 13 enn likninga 13 = 4+x.
I folge Bergsten mfl. (1997) er det fordi de stopper opp ved at 13 ikke kan «bli noe annet enn
det er». Dette viser en tolkning av likhetstegnet som er problematisk nar likninger star pa
dagsorden.

Et par utdrag fra (Carpenter mfl., 2003) viser hvordan noen av elevene tenkte. Vi starter med
Lucy.

Ms. L Can you tell me what number you would put in the box to make this a
true number sentence?

Lucy  [After a brief period] Twelve.
Ms. L How do you know it is 127

Lucy Because that’s the answer, 8 and 4 are 12. See, I counted, 8 [pause] 9,
10, 11, 12. See, thats 12.

Ms.L  What about this 5 over here? [pause] Pointing to the 5 in the number
sentence

Lucy  That’s just there.

Ms. L Do you have to do anything with it?

Lucy  No. It’s just there. It doesn’t have anything to do with the 8 and 4.
Ms. L  What do you think it means?

Lucy I don’t know. I dont think it means anything. Maybe they just put it
there to confuse us. You know, sometimes Ms. J. puts extra numbers in
story problems to make us think about what to add or subtract.

Lucy tolker likhetstegnet som at svaret skal komme rett etter det. Randy har en litt annen
tolkning.

Randy It’s 17.

Ms. L  How did you figure 177

Randy Because I know that 8 and 4 is 12, and 5 more is 17.

Ms. L  Why did you add all those numbers?

Randy Because it says to add. See. [Points to the two + symbols

Ms. L  Okay. But these two numbers are over here on this side of the equal sign
[points at the 8 + 4] and the 5 is over here [points at the 5].

Randy Yeah, but you have to add all the numbers. That’s what it says to do.

Randy tar alle tallene med i sin argumentasjon, men han utelater & tolke operatorene. Det kan
virke som om han er mest opptatt av a fa benyttet alle tallene til noe. Disse to transkripsjonene
viser ulike tolkninger av likhetstegnet hvor ingen av tolkningene er korrekte. Feiltolkningene er
knytta til symbolbruk og dreier seg ikke om problemer med tall eller regneteknikker. Ingen slike
tolkninger oppstar av seg sjgl. Sannsynligvis har de har oppstatt gjennom den matematikkun-
dervisningen elevene har tatt del i. Ofte benyttes likhetstegnet slik at svaret kommer rett etter.
Det har elevene laert.
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3.4 Likhetstegnet

Likhetstegnet benyttes til mangt og det kan veere et problem. Vi finner det brukt som en
operator for a vise en utregning, som i 3 + 2 = 5. Det kan ogsa benyttes for a vise like verdier,
tilordninger eller ekvivalenser. Her er en oversikt over noen tolkninger.

Eksempel Bruk Forklaring

34+2=5 operator  Likhetstegnet er brukt som en kom-
mando som viser en utregning

3+2=4+1 likeverdi  Likhetstegnet viser at begge sidene
har lik verdi

t=5 tilordning En variabel tilordnes en stgrrelse. Vi
leser det som t «settes lik» 5. Ofte
skrives det ogsa som t := 5 i flere
programmeringssprak

flz)=a2*+1 tilordning Et funksjonsuttrykk tilordnes en
funksjon.

(a+b)(a—0b)=a*—b* identitet  Likhetstegnet viser at de to sidene er
like for alle verdier av variablene

20 +4=3x+2 likning De to sidene er like for en, eller flere,
verdier av variablene.

Av tabellen kan vi se at likhetstegnet har fatt en variert bruk siden det ble introdusert av
Robert Recorde i 1557. Du kan lese mer om det pa Wikipedia.

Vi har sett at i likningene star likhetstegnet for en betinga likhet. Likheten oppfylles nar vi
finner en ukjent som oppfyller betingelsen.

En identitet er en likhet uten betingelse. (a + b)(a — b) = a* — b? oppfylles for alle verdier av a
og b. Egentlig fins et eget tegn til den bruken. Vi kunne skrevet

(a+b)a—b)=a®>—V

hvor = star for «identisk med».

Nar vi tilordner en verdi til en variabel mener vi ogsa at den settes identisk lik, s& vi kunne brukt
= til det ogsa. Da kunne vi skrevet t = 5. Den vanligste maten kommer fra programmering og
syntaksen som benyttes der er ¢ := 5. I noen tilfeller vil vi ogsa stgte pa t — 5.

Ved tilordning av funksjonsuttrykk benyttes ogsa likhetstegnet. I programmeringssprak og pro-
gramvare vil ogsa denne tilordningen skje pa med samme tegn som over.

Samme tegn har altsa forskjellig betydning ut fra konteksten. Egentlig burde dette ga riktig
galt, men vi har nok vendt oss til en fleksibel bruk — kanskje uten & veaere helt klar over det?

3.5 Likhetstegnet og likningslgsning

En viktig forutsetning for likningslgsing er at elevene far en forstaelse for likhetstegnet som
en beskrivelse av pastanden om at to uttrykk er lik hverandre. Hvis eleven ser dynamisk pa
likhetstegnet som en operator hvor noe «blir» forhindrer det a se likningen som noe statisk som
«er» lik. For & hjelpe elevene & utvikle en gnska tolking av likhetstegnet, og andre symboler,
kan det veere lurt & sette elevene i situasjoner hvor den eksisterende tolkinga utfordres.
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Et annet eksempel med utgangspunkt i oppgaven 8 + 4 = [+ 5 kan vaere a la elevene skrive
ned 12 med s& mange summer de kan komme pa for s& & forklare at alle disse er like. Det gir
folgende forklaring

84+4=74+5
~—~— =
12 12
eller
8+4=T7+5
I [
12

Diskusjoner rundt hva symboler kan bety bgr ogsa kunne hjelpe. Det som er viktig for ma-
tematikklaereren er & veere klar over hvilke problemer elevene kan mgte for sa a utnytte sin
undervisningskompetanse for & gjore noe med det. Da kan tilpasningene i undervisning bli
gjort i hvert enkelt tilfelle.

Det som i alle fall er klart er at feil bruk bgr unngas. Et eksempel er likhetstegnet for a vise
antall objekter. Figur 3.1 viser to eksempler pa akkurat det.

Figur 3.1: Feil bruk av likhetstegnet
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4 Likninger i grunnskolen

4.1 Typer likninger i grunnskolen

Utvalget av likninger i grunnskolen vil begrense seg til
e linezere likninger
 rasjonale likninger
« andregradslikninger
e lineare likningssystem

Lineaere likninger er likninger hvor den ukjente er av forste orden. Vi finner ingen potenser
hvor den ukjente er grunntall. Disse kjenner vi fra fgr, men her er noen eksempler

e x+2=3
e ax +b=cx+d

Rasjonale likninger er likninger med hvor den ukjente er i nevneren, slik disse eksemplene
viser

3
I ) !, 32 3
* T + -1 221

De to siste skal vi se litt neermere pa.

4.2 Linesere likningssystem

En samling av lineacre likninger kalles et lineaert likningssystem. Da skal alle de ukjente bestem-
mes slik at alle likningene blir sanne. Slike lineaere likningssystem kan skrives pa flere mater,
men et vanlig eksempel er dette

a-z+b-y = ¢ (1)

d-z+e-y = f (2
hvor x og y er de ukjente variablene og de andre bokstavene er parametre. Hver likning har da
fatt sitt eget nummer for at vi enkelt kan referer til likninga.

Et typisk eksempel er denne uoppstilte likninga

Mor er 21 ar eldre enn Sivert. Bestefar er tre ganger sa gammel som mor. Om to ar er de
alle til sammen 100 ar. Hvor gammel er Sivert, mor og bestefar?

Benyttes innsettingsmetoden kan likningssystemet lgses slik

m = s+21 (1)
b = 3-m (2
b+2+m+2+s+2 = 100  (3)

Na setter vi inn (1) i (2) og (3). La oss ogsa ordne litt pa (3). Da far vi
b = 3-(s+21) (4)
b+ (s+21)+s = 94 (5)
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Setter vi (4) inn i (5) far vi ei likning med en ukjent som vi kan lgse som ei vanlig lineger likning.

3(s+21)+(s+21)+s=9
3s+s+s=94-3-21-21

5s =10

s=2

Da vet vi at Sivert er 2 ar og at mor ma veere 23 ar. Bestefar er da 69 ar.

Et annet eksempel er & se pa en oppgave som helst bor gjennomfgres i praksis. Elevene far
utlevert to kombinasjoner med skruer og muttere. Delene bgr veere festet sammen. Ved hjelp
av ei vekt kan de males massen. Oppgaven blir & finne massen av en mutter og en skrue uten
a skru fra de fra hverandre. Med noen pene tall kan vi ga ut fra at noen elever hadde kommet
fram til disse verdiene:

Eksempel 4

To skruer med tre muttere veier 16 gram. En skrue med to muttere veier 10 gram. Hvor
mye veier en mutter?

Kaller vi massen til en mutteren for m og massen til en skrue for s kan vi sette opp dette
likningssystemet.

2s+3m = 44 (1)
s+2m = 24 (2)

Benytter vi addisjonsmetoden og tar 2 - (2) — (1) far vi

2(s +2m) — (2s+3m) = 48 — 44
2s+4m —2s—3m =4

m=4

Stegene i addisjonsmetoden kan vi ogsa illustrere ved figur 4.1. Den tredje raden i figuren viser
2-(2). Da ser vi at det bare er en mutter som skiller den og den forste raden. Altsd ma mutteren
veie 4 gram. Skruen ma da veie 16 gram ut fra rad 2.

Figur 4.1: Muttere og skruer
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4.3 Andregradslikninger

Andregradslikninger inneholder minst en ukjent stgrrelse av hgyst andre grad. Her er noen
eksempler

e 22=25

e 222 -3x+6=0
« 32 —4t=0

o 34s% + 455 =98

Alle andregradslikningene kan vi skrive pa formen
az® +br +c=0

der a,b og c er konstanter. Her er bokstaven x brukt for den ukjente, men vi kan godt benytte
andre bokstaver slik som vi ser i eksemplene. Nar vi skal lgse andregradslikninger gnsker vi a
finne alle de verdiene for den ukjente som gjor at likning blir sann.

4.3.1 Et enkelt eksempel

Den enkleste andregradslikninga méa vaere noe som dette
2° =25

Tidlig i historien ble det et behov for a lgse slike likninger. Da var problemene av geometrisk
art og likninga oppsto for a finne sidene i et kvadrat med areal 25

x 25

X

Her er det apenbare svaret at hver side i kvadratet ma veere 5 fordi 5 -5 = 25, men hva om
arealet var 237 Hvilket tall multiplisert med seg sjgl blir 237 Vi far da denne likninga

z? =23
Svaret kaller vi kvadratrota av tjuetre og vi kan finne en tilnserma verdi:
V23 ~ 4.7958

I dag er det ikke sa vanskelig a finne kvadratrota av et tall. Teknologien har gjort det enkelt.
Tidligere var det enten omstendig regning eller tabeller som ga svaret. Kvadratrota av et tall
er ofte irrasjonale tall og da er det heller ikke mulig & finne eksakte lgsninger.

Definisjon 1 Den prinsipale kvadratrot

Hvis a > 0 er y/a det positive tallet som multiplisert med seg sjol gir a

Ordet «rot» viser til en lgsning av ei likning. Det vi kaller ei kvadratrot heter egentlig den
prinsipale kvadratrota og betegnes med symbolet /- Legg merke til at definisjonen stiller som

krav at a > 0 og at y/a > 0. Da er (va)’ = a.
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Vi kan vende tilbake til likninga 22 = 25. Svaret vi fant var /25 = 5. Svaret pa spgrsmaélet
«Hvilket tall multiplisert med seg sjgl blir lik 257» kan ogsa veaere —5:

(=5) (=) = (~5)* = 25
Vi ser at (—5)2 = 25, men ut fra definisjonen er ikke —5 det samme som /25 fordi det stilles
som krav at /25 > 0.
Svaret pa likninga blir derfor slik:

22 =25

r==xV20==+5

Vi kan lese det pa denne maten: «Hvilket tall multiplisert med seg sjol blir 257 Jo, det er bade
pluss og minus kvadratrota av 25».

Her kan det veere litt rot med hva vi legger i rot. Vi burde skille mellom den prinsipale kvad-
ratrota og kvadratretter fordi vi kan si at rgttene til likninga over er ++/25. Vi kan til og med
kalle det for kvadratrgttene. Vanligvis er vel ikke dette noe stort problem, men det kan veere
greit & veere klar over ordbruken.

Rottegnet

Tegnet ,/ har sin opprinnelse i middelalderen og mange gir Christoff Rudolff (1525) eeren.
Les mer pa Wikipedia. Tegnet er sannsynligvis en forkortelse av bokstaven r som star for
radix — det latinske ordet for rot.

Det tallet som star inne i rottegnet kalles for radikanden.

Kan vi ta rota pa begge sider?

Ofte kan en observere at elever og laerebgker lgser denne oppgaven slik

x> =25
V1?2 = /25
xr =45

Problemet er at den prinsipale kvadratrota til et tall alltid er positivt, s& v/25 er 5 og ikke —5.
Béde 5% og (—5)% er 25, men bare 5 er det samme som v/25. Det er noe matematikerne har
blitt enige om. Det er nok minst to grunner til det. Opprinnelig var kvadratrota en geometrisk
tolking, f.eks. sidekanten i et kvadrat med areal 25. I geometrien er det bare det positive tallet
som kan veere mal pa en lengde. En annen grunn henger sammen med at vi bare gnsker oss ett
eneste svar. Kanskje har du veert borte i samme kravet til funksjoner? En funksjon skal ha en
eneste y-verdi til en x-verdi. Kvadratrota er ogsa en funksjon og ma ha samme krav. Det er slik
at vi ofte bruker funksjonsverdien videre og da ma det stilles krav om at det bare er en verdi.

Nar mange elever tror at /25 = £5 kan det ha sitt opphav i undervisning, eller til og med
lzerebgker, hvor de presenteres for lgsningsstegene over. Det ser ut som om metoden er a ta
kvadratrota pa begge sider og sa blir svaret x = +5. Vi kan ta kvadratrota pa begge sider, men
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da kan vi ikke utelate flere kritiske steg som ikke er vist i denne lgsningen. La oss se stegene
som mangler. Det a skrive v 22 = /25 og ha neste steg som x = £5 er misvisende bade fordi

\/ﬁ#xog
V25 # £5

Va2 er egentlig lik absoluttverdien til x, |z|. Absoluttverdien av et tall er alltid den positive
varianten av tallet. Her er noen eksempler:

5] =5
-5 =5

Ofte defineres absoluttverdien akkurat slik som i vart tilfelle: V22 = |z|. La oss inkludere det i
lgsningen var. Da kan vi skrive det som:

z? =25
Va2 = /25
lz| =5

r =45

Skrivematen over er korrekt, men det er enklere, og kanskje appelerer det mer til logikken, a
lgse likninga slik:
z® =25

Hvilke tall er det som kvadrert blir 257 Jo, det er enten 5 eller -5. Det skriver vi slik
r = +bH

eller

eller slik

Her star symbolet V for «eller»?

En annen variant er a lgse likninga ved a faktorisere med konjugatsetningen og finne svaret
med produktsetningen.

2 =25
22 —25=0
2 —52=0

(x+5)(x—5)=0
r=5Vx=-5
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4.4 Generelle andregradslikninger

Andregradslikninger inneholder minst en ukjent storrelse av hgyst andre grad. Ei generell andre-
gradslikning kan vi skrive pa formen

ax’+br+c=0

Den generelle lgsningen av alle andregradslikninger er ved formelen

_ —b=E Vb? — 4dac

2a

X

hvor a # 0 og b* — 4ac > 0

Nar vi lgser andregradslikninger vil vi ofte finne to verdier for den ukjente. Vi kaller de ukjente
som lgser likninga for rgttene til likninga.

Hvis b =0

I noen tilfeller kan andregradslikningene lgses enklere uten bruk av formelen. Det gjelder i de
tilfellene hvor b = 0 og likninga er pa formen

ar® +c=0
Lgsningen av den likninga blir da
ar’ =c
a
7 =~
c

Hvis ¢ =0

Er ¢ = 0 Igser vi likninga ved & faktorisere for sa a benytte produktsetningen.

ax’® +bxr =0
z-(ax+b) =0
r=0Var+b=0

b
r=0Vzxr=——
a

La oss prgve noen oppgaver

Oppgave 10
a) 2 —100 =0 d) 2?2 =Tz +10=0
b) 22 +4x =0 e) —6x2+z+1=0
c) —z*+4x =0 f) =622 +x—1=0
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Oppgave 11

Pé ei steintavle fra Babylon (ca 2000 f.Kr.) star det: «Omkretsen til et kvadrat legges til
kvadratets areal. Summen blir 32. Hvor lang er kvadratets side?» Lgs oppgaven.

LA sningsforslag

Vi kaller sida i kvadratet for s
Omkretsen blir da 4s

Arealet er 5-5 = 52

Da har vi

s%+4s =32
s2+45—-32=0
s=4

Oppgave 12

For hvilke verdier av ¢ har likninga
32+ 2z +¢c=0

e ingen lgsning
e ¢én lgsning
o flere lgsninger?

4.4.1 Summen og produktet av rgttene

Vi har na sett at andregradslikninger ofte gir to rgtter (eller svar). Her er ett eksempel pa det

¥+ —-2=0
—b =+ Vb? — 4ac
T 2a
e = 12 — 4(-2)
N 2
_ —1+£3
2
Il—l
1'2:—2

La oss na se summen og produktet av de to rgttene

1‘1'1}2:1-(—2):—2
.’E1+$2:1—2=—1
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Disse verdiene kan vi finne igjen i andregradslikninga var

La oss na se pa den generelle andregradslikninga for & se at dette stemmer for alle andre. Skriver
vi den generelle andregradslikninga som ax? + bx + ¢ = 0 har vi sett at den har lgsningene

_—b+\/b2—4acvx —b—/b? — 4dac

2a L= 2a

x

Na ser vi pa summen og produktet igjen. La oss starte med produktet og finne et generelt
uttrykk for det

vy — <_b+¢m> ‘ (_b_m)

c
2a 2a a

Nar vi finner summen far vi

—b+Vb? — 4dac —b—Vb? — 4dac b
T + To — 2% +

2a a

I eksemplet vart hadde vi ei ordna andregradslikning. Det betyr at a = 1

Ordner vi den generelle andregradslikninga far vi

b c
P4 -r+-=0
a a
Hva ser vi? Jo, at
o at produktet av rgttene er det samme som konstantleddet
o at summen er lik fgrstegradskoeffisienten med motsatt fortegn

Da kan vi skrive den generelle andregradslikninga uttrykt ved rattene

2 — (r1 +x9) -2+ (21 -22) =0

Denne sammenhengen forer til at vi ganske greit kan sjekke om lgsningene vi har funnet stem-
mer. Samtidig kan vi for en del enkle andregradslikninger benytte sammenhengen til & resonere
oss fram til lgsningen.

4.5 Fullstendige kvadrat

Abu ’Abdallah Muhammad ibn Musa al-Khwarizm1 har vi tidligere mgtt som en av grunnleg-
gerne av algebra. Se mer pa Wikipedia.

Et kjent problem fra en av bgkene han skrev, Hisab al-gabr w’al al-muqgabala, gar ut pa a finne
sidene i et rektangel hvor den ene sida er 10 lengdenheter kortere enn den andre og arealet er
39 malt med utgangspunkt i de samme enhetene. Kaller vi den korteste sida z vil den andre
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sida veere x + 10. Produktet av lengdene av sidene gir oss arealet og vi ender opp med denne
andregradslikninga

z - (z 4 10) = 39
2% + 10z = 39

Dette er et geometrisk problem (som de fleste algebraiske problemene pa den tida) og vi kan
framstille det ved en figur som viser rektanglet med areal 39.

T 10

Na skal vi se hvordan de arabiske matematikerne lgste dette problemet. De tenkte seg det gra
arealet delt i to like store deler og flyttes litt rundt slik at vi ender opp med situasjonen i neste
figur.

x )

Grunnen til a ville foreta denne oppdelinga er at det na bare mangler en liten brikke i gverste
hjerne og sa har vi et fatt et kvadrat i stede for rektangelet vi starta med.

52

xr )

Arealet av kvadratet vi satte inn vet vi arealet av. Det er 52. Arealet av rektanglet vi starta
med var 39. Na har vi fatt et tillegg pa 25 og hele kvadratet har et areal er 39 + 25 = 64. Da
har vi ei ny andregradslinking som er enklere a lgse.
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(z +5)* = 64
T+5=28
r=3
Da har vi lgst andregradslikninga og funnet ut at den korteste sida ma vaere 3 lengdeenheter.
Denne metoden kalles kalles fullstendige kvadraters metode eller kvadratkomplettering.

La oss se pa hva som ble gjort en gang til. Utgangspunktet var a finne sidene i et rektangel
med gitt areal. Det problemet ble gjort om til a finne sidene i et kvadrat hvor vi kunne beregne
arealet ut fra arealet av det opprinnelige rektanglet. Sidene i kvadratet er enklere & finne.

Den fgrste kvadratsetningen viser hvordan vi kan finne arealet til et fullstendig kvadrat

a® + 2ab + b* = (a + b)?

Av den oppdelte figuren kan vi se at alle bitene til sammen danner et kvadrat. Her er det ikke
ngdvendig a legge til noe. Det er fullstendig.

a a-a a-b
>a+b
b a-b b-b
a b
~
a+b

Figuren viser den forste kvadratsetningen, men vi kan ogsa benytte den andre kvadratsetningen
a® —2ab + b* = (a — b)?

til & faktorisere. Na kan vi stgte pa utfordringer ved & benytte arealmodeller. Som vi har sett
kan vi ikke representere negative tall som linjestykker. En utvidelse av tanken med fullstendige
kvadrat gjgr at vi i mange til feller ma forlate arealrepresentasjonen. Ser vi pa det algebraiske
uttrykket sa ma det veere pa denne formen for a veere et fullstendig kvadrat

= R I I

Bytt ut [ | med ett tall og [J med et annet tall og uttrykket kan faktoriseres til et kvadrat. Her
er noen eksempler

2+ 8r+16=2"+2 24+ 4°=( 2
4 +49 =2 +2-2- T+ 7=

- (z

T (

r+4
x+7)?

V]

=4 +49=2>—-2. 2 -7+ 7=

22 —6r+9=2>+2-2-3+3*= 2

)
)
=)
x —3)

34



Det er slike kvadrat vi lager oss nar vi benytter fullstendige kvadraters metode.
Vi ser pa et eksempel igjen, likninga

22 —2x =3

Skriver vi om den til 22 — 22 — 3 = 0 hadde det veert en mulighet for at det var et fullstendig
kvadrat, men uttrykket er ikke pa formen a? — 2ab + b?. Hadde det siste leddet veert lik 1 ville
vi hatt et fullstendig kvadrat. Da ville uttrykket sett slik ut

22 =201+ 12

Litt omskrevet kan vi ogsa si at et fullstendig kvadrat er pa denne formen

b 2
240 —
x x+(2>
2

I vart tilfelle kan vi se at hvis (5)2 = 1 ville det veert et fullstendig kvadrat. Na kan vi lage oss

et fullstendig kvadrat ved a skrive om slik at deler av uttrykket blir et fullstendig kvadrat:
?—2r+1 + —1 =3
———— ~—
fullstendig kvadrat trekker fra det vi la til

Likninga over er ekvivalent med den vi starta med. Vi kunne ogsa ha addert 1 pa begge sider
av likhetstegnet slik det blir gjort her

w2 -2 =3
r?—2r+1=3+1

(r—1)=4

r—1==42

r=3Vxy=-1

En generalisert lgsning med fullstendige kvadraters metode folger samme steg. La oss lgse
likninga 2% + bx = ¢

Vi deler opp arealet bz i to deler. Sa flytter vi det ene.
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NS

; I
2

Setter vi dette sammen kan vi se at vi mangler ett kvadrat for at hele figuren skal bli et kvadrat.
Det lille kvadratet vi mangler er et kvadrat med sidene %

b
x 2
X ;1;2
b
2
Gjentas det samme algebraisk blir det slik:
z-(x+0b)=c

2+ br=c

Det er en generell lgsning av likninga 22 + bx = c. Da er vi sa neer den generelle formelen for
andregradslikninger at vi gar lgs pa den ogsa.

4.6 Utledning av formel for lgsning av andregradslikning

Den generelle formelen kommer vi fram til pa samme méate som om vi lgser likninga med
fullstendige kvadraters metode. Prgv a folg trinnene under



ax’ +bxr+c=0

b b? — 4ac
a:—l—%:j: 12
b b2 — dac
T T 4q?
_ —bE VB —dac
2a

Et annet alternativ er & starte med den generelle likninga og sa multiplisere begge sider med
4a. Generelt har vi folgende lgsning av de kvadratiske likningene:

ar’ +br+c¢=0
40’z + 4abx + dac =0
(2ax)? + 2 - 2azb = —4dac

Vi lager et fullstendig kvadrat ved & legge til b pa begge sider.

b2

2ax

2ax b
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(2az)* + 2 - 2azb + b* = b* — dac
(2ax + b)* = b* — dac
2aqx + b = +vb? — dac
bt VP —dae

2a

T

Da har vi funnet at den generelle andregradslikninga
az® +br +c =0

har lgsningene
_ —bE Vb —4ac

2a

X

Legg merke til radikanden (uttrykket som star under rottegnet). Radikanden kan ikke vaere
negativ. Det gir oss disse mulighetene for lgsninger av andregradslikninger

« to lgsninger nar b*> — 4ac > 0
e én lgsning nar b? — 4ac =0
o ingen reelle lgsninger nar b*> — 4ac < 0
Den generelle formelen kan vi ogsa komme fram til ved a benytte et CAS-verktgy. Se bare figur

4.2.

[ 5 O \2 40 c02)
cnmp]eteSquarcly-.r‘ tb xte=0x) » a- |\ _— F—_—
\ 2-a 4-a

b |2 |:-I-(r"e' .a"Jz_] '
—_—
| 2-a 4-a |

R e
|:J,-}- 4 g ¢ .;,1_) 3
—_—and 4 @ - H7=0

|
solve| a- {.

| .2 ,
NI 4 a c—b 5 |

» m———and 4+ @* - 5" =0 or x°
2-a 2-a

Figur 4.2: abc-formelen funnet ved CAS

4.7 Historie

Brahmagupta kjente til formelen, omtrent slik vi kjenner den. Hans oppskrift var som fglger

Take absolute number on the side opposite to that on which the square and simple
unknown are. To the absolute number multiplied by four times the [coefficient| of
the square, add the square of the [coefficient of the] unknown; the square root of the
same, less the [coefficient of the] unknown, being divided by twice the [coefficient
of the] square is the [value of the] unknown.

(Katz, 1998, s. 226)

Eksemplet Brahmagupta brukte var lgsningen pa andregradslikninga

22— 10x = -9
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Now to the absolute number [-9] multiplied by four times the [coefficient of the]
square [-36], and added to the square [100] of the [coefficient of the] unknown,
(making 64), the square root being extracted [8], and lessened by the [coefficient of
the] unknown [-10], the remainder 18 divided by twice the [coefficient of the| square
[2] yields the value of the unknown 9.

(Katz, 1998, s. 227)

Brahmagupta nevner ikke den andre lgsningen, som vi far ved den negative rota. Det han
skriver kan oversettes til var algebra som formelen

Vdac+ b2 =D

2a

Tr=
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5 Noen klassiske likninger

5.1 Noen klassiske likninger

Likninger har fascinert oss mennesker til alle tider. Her kommer noen klassikere.

Her er en oppgave hvor du vil f& bruk for pytagoras sin setning.

Oppgave 13

Bambusproblemet stammer fra Kina og er et gammelt
og bergmt problem.

En bambusstokk er 10 chih (kinesisk maleenhet) hgy.
Stokken brekker, og toppen av stokken rgrer bakken 3
chih fra foten av stammen. Hvor hgyt oppe pa stam-
men er bruddet?

N, e St Wk

W
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=
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S R PR o D 3 =) o e e 0N

Det kan veere lurt & tegne en figur. Kaller vi hgyden for z vil resten av bambusstokken ha
lengde x — 10. Vi ma ogsa ga ut fra at stokken star vinkelrett pa bakken.

3 +2% = (10— z)?
9+ 22 =100 — 20z + 22

202 = 91
91
720
v =455

Da blir svaret at bambusstokken knakk 4.55 chih fra bakken.

Mahavira var en indisk matematiker som skrev boka Ganitasarasangraha (eller Ganita Sara
Samgraha) omtrent i ar 850. I tillegg til flere matematiske temaer har han samlet noen fine
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likninger. Du kan lese mer om ham pa Wikipedia. Her en likning om elefanter hentet fra boka
til Mahavira.

Oppgave 14

En tredel av en elefantflokk og tre ganger kvadratroten av resten av flokken ruslet i en
fjellskraning, mens en hannelefant og tre hunnelefanter dukket seg i en dam i naerheten.
Hvor mange elefanter var det i alt i flokken?

Hva forteller oppgaven? Jo, kaller vi antall elefanter for n kan vi sette opp denne likninga

2
n+3- §~n+4:n

W

Den kan vi lgse pa folgende mate

+
W
I
3

_l’_
I
I
o

W
3

|

3
_I._
o

3 3 3

_l’_
o
!
(@»)

Setter vi na z = % -n kan vi skrive om likninga til
—22+3-2+4=0

Den kan vi lgse som ei vanlig andregradslikning

—2243.244=0

Bk /P -4 (—1)-4
a 2-(-1)
=345

)

21 =4V 29 = —1

z

Na kan vi finne ut hva n er ved at z = M% -n. Den negative lgsningen kan vi se bort fra.

Da vet vi at det var 24 elefanter i flokken.
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Bhaskara var ogsa en indisk matematiker fra Bijapur som levde fra i tidsrommet 1114-1185.
Les mer om ham pa Wikipedia. Han er kjent for a kle oppgavene i en poetisk sprakdrakt. Se
bare denne oppgaven.

Oppgave 15

I en innsjg full av rgde gjess og traner, ser en toppen av en lotusblomst en halv alen over
vannflata. Litt etter tar vinden fatt i den sa den driver sakte bortover, til den synker
under vannflata 2 alen borte. Si meg, matematiker, dybden av vannet.

Her kan det veere lurt a tegne en figur som viser vannoverflata, bunnen og hele blomsten med
stilk. Kaller vi dybden av vannet for d, kan en figur se slik ut.

05 [~
2

d d+ 0.5

Antar vi at stilken er rettvinklet pa vannoverflata kan vi regne ut dybden, d, pa denne maten.

d?+ 2% = (d+0.5)*
P+ =d*+d+025
&> —d®>—d=025—2?
—d=-3.75
d=3.75

Dybden av vannet er 3.75 alen

Yang Hui var en kinesisk matematiker som levde pa 1200-tallet. Du kan lese mer om ham
pa Wikipedia. Han viste hvordan vi kunne lgse oppgaven under.

Oppgave 16

Arealet av et rektangel er 864. Differansen mellom lengden og bredden er 12.

Den likner pa de andre, men framgangsmaten han benytter er litt annerledes. Yang Hui tegnet
opp denne figuren hvor han benyttet det opprinnelige rektanglet fire ganger.
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b 864
864 l

l 864
864 b

b [

Ut fra figuren visste han at hele arealet av kvadratet matte vaere
864 -4+ 12 - 12 = 3600

Arealet er kvadratet av sidene. Da kan vi lgse likninga.

(14 b)* = 3600

[+ b= v3600
[+b=60

Oppgaven gir at [ — b =12 og da ma | = 36 og b = 24.

Vi ville nok heller lgst oppgaven reint algebraisk ved & oversette pastanden «Arealet av et
rektangel er 864. Differansen mellom lengden og bredden er 12» til dette likningssystemet.

I—b = 12

[-b = 864
Da har vi to likninger med to ukjente og kan sette den ene inn i den andre for a finne den
ukjente.

(b+12) - b = 864
b2 + 12b = 864

Kanskje kjenner du igjen formen pa likninga og problemet? Minner ikke det om arealet vi sa
pa under fullstendige kvadrater (se side 32)?

Denne andregradslikninga kan vi lgse ved a lage et fullstendig kvadrat

b’ 4 12b = 864
b>+2-b-6+ 6% = 864 + 6

(b+6)* =900

b+6 =30

b=24
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Da vet vi at b =24 og [ = 36.

Vi kunne ogsa benyttet abc-formelen som sier at lgsningen pa ei generell andregradslikning

—b+Vb? — 4dac

ar® + br + ¢ = 0 finnes ved x = 5
a

. Ikke la bokstaven b forvirre deg.

Setter vi inne far vi i vart tilfelle

?+120—864 =0 = by = —36V by =24

Her gjelder bare den positive verdien. Igjen har vi at b = 24 og [ = 36
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6 Numeriske Igsninger

Programmering egner seg godt til a lgse likninger ved numeriske lgsninger. Det er algoritmer
som kan kan benyttes. Vi kan se pa noen av dem.

6.1 Bruk av ra kraft

I programmering utnyttes ofte regnekapasiteten i flere sammenhenger. Brute force er det en-
gelske uttrykket nar den ra krafta er ngkkelen til lgsninger. Kanskje kjenner du uttrykket i
forbindelse med hacking? Ved a prgve alle mulige kombinasjoner for f.eks. et passord kan det
fore til at det rette finnes. Det blir vanskeligere & lykkes med et slikt forsgk hvis antall tegn
er stort og flere varianter av hvert tegn benyttes, men med enkle passord kan den ra krafta gi
resultater.

Her gjelder det & prgve mange muligheter for & se om noen kan gi resultatet vi gnsker. Vi ser
pa et eksempel.

Finn nullpunktene til f gitt ved
f(z) = z* + 22° — 372® + 10z + 168

nar du vet at alle nullpunktene er heltallsverdier og at de ligger i intervallet z € (—20, 20)

A finne nullpunktene til en funksjon er det samme som & lgse likninga f(z) = 0. Vi ma lgse
likninga
z* +22° — 372° + 10z 4 168 = 0

Den er ikke sa enkel a lgse ved regning, men vi kan prgve med alle x-verdiene i intervallet. I

dette eksemplet er det mulig a ta fram papir og blyant, men litt programmering egner seg nok
bedre. Programkode 6.1 viser hvordan.

* Kk 4+ Kk *k*x3-3T**x*x2+10*xx+168

N

(-20,20):
0:

oo ~J O Ot

Programkode 6.1: Brute force
I dette eksemplet defineres funksjonen fgrst. Sa finner vi nullpunktene ved a lage ei for-slgyfe.
Det som er rykket inn vil gjentas sa lenge betingelsen i slgyfa holder.

for i 1in range (-20,20): gjgr at i forst settes til —20, sa utfores det som star rykket inn,
for verdien til i gkes med 1 og blir til —19. Det hele gjentas opp til 20.

Inne i for-slgyfa er det en 1 f-setning som undersgker om funksjonsverdien er lik null. Er den
det skrives verdien ut. Kjgrer vi dette programmet blir resultatet
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Nullpunkt: x= -7
Nullpunkt: x= -2
Nullpunkt: x= 3
Nullpunkt: x= 4

.

Ved a sjekke alle heltallene har programmet gitt oss fire nullpunkt. Na vet vi at en slik fjerde-
gradsfunksjon kan ha maksimalt fire nullpunkt, sa her har vi alle lgsningene. Oppgaven fortalte
oss ogsa at det bare var heltallslgsninger, men hva om vi ikke hadde den opplysningen. Vi kunne
fatt programmet til & sjekke flere verdier og med flere desimaler. La oss prgve det

Eksempel 6

Logs likninga
dr+6=2x+9

Na er dette ei enkel likning som vi vet har lgsningen x = 1.5, men metoden vil gjelde for alle
likninger. Her er en programkode som sjekker mange verdier og gir oss en mulig lgsning.

NNQJCIE R

(-1000, 1000):

©O© 0 N S ot

(x):

—_
fa)
o

Programkode 6.2: Mange verdier

I dette eksemplet definerer vi hgyre og venstre side som funksjoner. Som i programkode 6.1 er
det ei for-slgyfe, men i dette tilfellet er det mange fler verdier. I eksemplet har vi gatt ut fra
at lgsningen er mellom -1000 og 1000. Inne i slgyfa finner vi x = i/10. Vi kan se hva som skjer
ved & sette opp en tabell for de forste verdiene.

Gjentakelser 1 2 3 ... 2000
i -1000 -999 -998 ... 999
X -100  -99.9 -99.8 ... 999

I programkode 6.2 vil vi fa undersgkt alle x-verdiene fra -100.0 og opp til 99.9. For hver x-verdi
sjekkes det om hgyre- og venstre side har samme verdi. Resultatet blir

Lesning x = 1.5

Vi kunne godt utvidet dette intervallet og brukt flere desimaler uten at programmet bruker sa
mye mer tid. Det kan veere en fin gvelse. En annen metode er & sette en toleranse for svaret.
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(-10000, 10000):
= /1000
(v(x) = h(x)) <
(

Programkode 6.3: Toleranse

Programkode 6.3 gir et eksempel hvor toleransen er satt, etter litt justering, til 0.0015. Da gir
programmet dette resultatet.

Lesning x = 0.667

[if abs(v(x)- h(x))< toleranse undersgkes det om absoluttverdien av forskjellen mellom
hgyre- og venstre side er mindre enn verdien som er satt for toleransen. Absoluttverdien gir
alltid den positive verdien av subtraksjonen. Verdiene kan endres slik at vi far et mer ngyaktig
resultat, men den er verken sarlig effektiv eller ngyaktig.

6.2 Halveringsmetoden

Halveringsmetoden er en mer effektiv metode for a finne nullpunkt innen et intervall. Vi kan
ta utgangspunkt i likninga vi s& pa sist. Etter & ha ordna pa den ser den slik ut

3r—2=0
Ved & se pa venstre side som et funksjonsuttrykk, f(z) = 3z — 2, skal vi na prgve & finne
nullpunkt i intervallet = € [0,2]. Vi setter ag = 0 og by = 2.

Halveringsmetoden gar ut pa a halvere intervallet og undersgke i hvilken halvdel nullpunktet
ligger.

Da finner vi x-verdien midt mellom ytterpunktene

ao+b0
2

=1

g =
Hvis nullpunktet ligger til venstre pa x-aksen vil f(ag og f(zo) ha forskjellig fortegn. Ligger
nullpunktet til hgyre vil f(by og f(x¢) ha forskjellig fortegn.

Egentlig er det ganske opplagt at det ma veere slik. Mer matematiske kan det skrives som et
teorem kalt skjeringssetningen

La f veere en kontinuerlig funksjon i intervallet [a, b].
Hvis f(a) og f(b) har ulikt fortegn, fins det ett eller flere nullpunkt for f i intervallet
[a, b].
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Da starter vi med a se pa disse funksjonsverdiene.

flag) = F(0)=3-0-2= -2
flao)=f(1)=3-1-2=1
f(bo)=f(2)=3-2-2=4

Utregningene viser at nullpunktet ma veere i intervallet [ag, o] og sette den gvre grensa til
by = xo = 1. Framgangsmaten gjentas ved at vi finner midtpunktet mellom de nye verdiene

a0+61

5~ 0.5

Ir =

Igjen ma vi finne i hvilken halvdel av intervallet nullpunktet er

flag) = f(0)=3-0-2=—2
f(z1) = f(05) =3-05—-2=—-05
fo)=f1)=3-1-2=

Denne gangen ser vi at nullpunktet befinner seg til hgyre for x; pa x-aksen. Da flytter vi venstre
ytterpunkt til xq, slik at a; = 2.

Algoritmen kan vi gjenta til vi er forngyd med svaret. Halveringsmetoden er omstendelig ved
regning, men med programmering er det en metode som gar raskt.

Figur 6.1: Grafen til f(z) = 3z — 2

I Python vil denne algoritmen kunne skrives som i programkode 6.4.

=~ W N

ot
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0.00001

(f(m)) >
(a)xf(m) < @:

Programkode 6.4: Halveringsmetoden

Her er det satt en tolreranseverdi som stopper programmet nar forskjellen mellom verdien til
nullpunktet er mindre enn toleranseverdien: while abs(f(m))> t:

Ved a telle antall gjennomganger av slgyfa finner vi at slgyfa gjentas 16 ganger. Resultatet blir

Lgsning x = 0.6666669845581055

Programkoden kan gjgres mer elegant ved omskriving til en funksjon som gjgr det samme.

(2,0,

—_

)/2
(F(m)) >
(a)*f(m) < @:

U= W N

o N O

15 (0,1,0.000001))

Programkode 6.5: Halveringsmetoden

Begge alternativer fglger samme framgangsmate.

Halveringsmetoden

En algoritme for & finne et nullpunkt til en kontinuerlig funksjon f i intervallet [a, b].
Gjenta prosessen inntil f(m) &~ 0

e Finnm = “TH’

« Hvis f(a) og f(m) har ulikt fortegn: La b = m

o Hvis f(a) og f(m) har likt fortegn: La a = m
m er et estimat for nullpunktet i intervallet.
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6.3 Regula falsi

Regula falsi er en gammel metode for a lgse likninger. Den kalles ogsa false position method.
Navnet kommer av at vi antar en mulig lgsning, og sa ser hvor mye den avviker fra den korrekte,
for til slutt a justere den antatte verdien. Metoden benyttes for a lgse linesere likninger.

Dette er en metode som ble benyttet i stor grad tidligere. Katz (1998) viser til hvordan metoden
ble brukt i det gamle Egypt, hvor vi finner den nevnt i problem 26 i Rhind-papyrusen (fra 1550
f. Kr.). Problemet som skal lgses i moderne notasjon er x + 41133 = 15. I papyrusen beskrives ikke
hvordan algoritmen ble oppdaget eller hvorfor den virker, men det viser at egypterne kjente til
den og tok den for gitt.

Eves (1990) skriver:

Many of the 110 problems in the Rhind and Moscow papyri show their practical
origin by dealing with questions regarding the strength of bread and of beer, with
feed mixture for cattle and domestic fowl, and with the storage of grain. Many of
these require nothing more than a simple linear equation and are generally solved
by the method later known in Europe as the rule of false position

(Eves, 1990, p. 54)

Et tips for a krydre undervisningen av likninger kan veere & benytte disse gamle metodene
(Winicki, 2000).

Historien viser at det kan skilles mellom to typer av regula falsi: Enkel falsk posisjon (eng.
simple false position) og dobbel falsk posisjon (eng. dobble false position). Vi kan se pa begge.

6.3.1 Simple false position
Eksemplet Eves (1990) viser til for denne metoden, kan vi se illustrere den forste.

Likninga som skal lgses er
x
— =24
T+ -

Metoden gar ut pa a velge en verdi for x. Velger vi x = 7 far vi 7 + ; = 8. Den tilfeldig valgte
x-verdien gir ikke en god lgsning pa likninga. Svaret vi far ma multipliseres med tre for a fa
det gnska svaret 24. Metoden forteller da at var valgte x-verdi ogsd ma multipliseres med tre
for & gi en lgsning. Da far vi 7- 3 = 21 som lgsning.

Diofantos benyttet ogsa teknikken til mer avanserte likninger (Katz, 1998, s. 181). Det samme
gjorde Leonardo de Pisa, bedre kjent som Fibonacci. Han brukte metoden ofte i boka si Liber
Abbaci (Katz, 1998, s. 307)

La oss se pa et eksempel til som kan forklare framgangsmaten.

Lgs likninga

x—i—%:l?—x

Lost pa vanlig mate far vi
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x+£:17—x

. 7
I+?+$:17
1—75-.7::17
17-7 119 _
x:1—5:1—5z7.933

Na kan vi se pa hvordan denne likninga ville bli lgst ved denne metoden.

Skriver om

T T
—=1T—2&2 = =17
:1:+7 x x—l—7

Vi starter med & anta en tilfeldig verdi for den ukjente. La oss si x = 10. Da far at venstre side
blir 2-10 + % = @ ~ 21.43. Verdien vi har valgt er for hgy. Den ma multipliseres med 0.7933
for a fa svaret. En lgsning pa oppgaven vil derfor vaere

10-0.7933 ~ 7.9333

Det var ikke darlig med en sa enkel metode!

Enkel falsk posisjon

Simple false position eller regula falsi kan lgse likninger av typen
ar =10

hvis a og b er kjent. Metoden gar ut pa a anta en x-verdi z’ som vil gi lgsninga ax’ = b’.
Korrekt svar pa likninga kan vi da finne ved a justere

6.3.2 Double false position

En utvidelse av metoden er den doble falske hvor vi antar to verdier for lgsningen. Vi kan se
hvordan den kan benyttes til & lgse samme oppgave.

For enkelhets skyld skriver vi om igjen likninga som en funksjon slik at vi har

x 15
=t —1T=—"-2—1
f(x) x+7 7 - 7

Na blir det a lgse likninga det samme som & finne nullpunktet til f.

Vi starter med & anta en tilfeldig verdi for den ukjente. La oss igjen si 7 = 10. Det gir

31
f(10) = = = 4.428571428571

Sa velger vi en verdi til x5 = 2. Far

£(2) = —2 — —12.714285714286
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Metoden forteller at svaret ma veere:

.o (=8).10 119 _

7-(=%)

Svaret blir korrekt, men hvorfor?

Forklaringen bygger pa noe som kalles lineer interpolering. Vi tegner grafen til funksjonen.

f(x1)

f(x2)

/

Figur 6.2: Grafen til f(z) =2 .2 —17

I figur 6.2 finner vi to formlike trekanter farget med gratt og kan sette opp disse forholdene

T — To 1 — X

flas) — flz1)

med litt omregning kan vi finne

(@) - 2o — faa) - 21
f(z1) = f(z2)

Det var akkurat den formelen som ble brukt for i eksemplet.

Dobbel falsk posisjon

Metoden kan benyttes til & finne nullpunktene til funksjoner pa formen

xr =

flz)=ax+c
Lgsningen vil da veere gitt ved

f(x1) - w9 — f(22) - 11
f(z1) — f(z2)

Metoden gir en eksakt lgsning for slike linezere likninger.

Tr =

Her blir det en del utregninger og da kan programmering veere til hjelp. Programkode 6.6 viser
hvordan. Her blir det lagt inn to verdier og sa far vi skrevet ut svaret.
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Programkode 6.6: Dobbel falsk posisjon

En utvidelse av metoden Metoden vi har sett pa kan ogsa kalles sekantmetoden siden vi
fant nullpunktet til sekanten mellom de to punktene. I tilfellet vart hvor vi hadde en lineser
funksjon fant vi derfor nullpunktet eksakt, men hva om vi ikke hadde en lineser funksjon?

En utvidelse av metoden er & gjenta det samme i flere iterasjoner. Se bare pa figur 6.3. Vi velger
to punkter, x; og 5. Det er en forutsetning at nullpunktet er i intervallet mellom det to valgte
punktene. Da vet vi ogsé at funksjonsverdiene f(x1) og f(zs) har motsatt fortegn.

\

Y

X2

Figur 6.3: Grafen til f(z) =2 -3 -z +1

Vi benytter metoden vi allerede har sett pa a finner en tilnsgerma lgsning x’. Som vi ser er ikke
dette en god tilnserming, men vi kan undersgke om nullpunktet ligger til hgyre eller venstre
for verdien vi har funnet. Hvis funksjonsverdiene til 2’ og x5 har forskjellig fortegn vet vi, ved
skjeeringssetningen, at nullpunktet ma ligge mellom 2’ og z5. Stemmer ikke det ma nullpunktet
ligge mellom 2’ og x;. Det vet vi fordi forutsetningen er at det er et nullpunkt i intervallet

(g, 21].

P& figuren ser vi at f(2') < 0 og at f(x2) > 0. De har forskjellig fortegn og nullpunktet ma
ligge mellom. N& velger vi verdien 2z’ for x5 og benytter metoden pa nytt. I vart eksempel ser
vi at vi naermer oss nullpunktet. Ved flere iterasjoner vil vi kunne komme naermere.

A gjore dette ved regning er tidkrevende, men slike gjentakelser av algoritmer er noe som
egner seg godt for programmering. Et eksempel pa hvordan vi kan skrive et program er gitt i
programkode 6.7. I denne koden er det satt ei toleransegrense for svaret. Nar forskjellen mellom
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nullpunktet og denne grensa er mindre eller lik null avsluttes programmet. I koden vilkaar
= abs(f(x0))> e er vilkaar en boolsk verdi som enten er sann eller usann. Den bestemmer
om while-slgyfa skal utfgres.

© 00

= 0.00001

W N =S

=~

Ot

QD

-~

1
1
1
2
2
2
2
2
2
2
2
2
29

~
Ne)

Programkode 6.7: Regula falsi

Denne koden egner seg godt for rekursive funksjonskall. Programkode 6.8 viser hvordan det
kan tas i bruk.

= 0.00001




17
18
19
20
21
22
23
24
25

Programkode 6.8: Rekursiv versjon
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