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Denne teksten er skrevet for bruk KfK-kurs i Matematikk 2, 5-
10. Siden den er litt kjapt satt sammen kan det forekomme noen
småfeil (sikkert store også). Gi meg beskjed i så fall, så kan de
rettes opp.
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1 En introduksjon
1.1 Hva er ei likning?
Likninger er et viktig tema i matematikkundervisninga i grunnskolen. Vi skal holde oss til den
samme typen likninger. Det er likninger hvor vi er på jakt etter en, eller flere, verdier for en
ukjent størrelse. Det fins flere andre typer: differenslikninger og differensiallikninger er eksempler
elever møter i videregående skole. Da er den ukjente ei tallfølge eller et funksjonsuttrykk. Ei
likning har noe med et eller annet som er likt. Ligger ikke det i ordet? Vi kan kalle ei likning
for en påstand om likhet. La oss starte med å se på hva en påstand er.

Hva er en påstand?
En påstand vil påstå noe. Ofte benyttes ordet «utsagn» synonymt med «påstand». Det blir
også gjort i denne teksten. La oss se på noen eksempler på hva en påstand kan være.

• «Trondheim er en by»
• «Trondheim er Norges vakreste by»
• «1 + 2 = 3»
• «2 + 2 = 5»
• «Tallet fem er et primtall»

I våre tilfeller vil påstander enten være sanne eller usanne.

Ei likning er en påstand
Ei likning er en påstand, eller et utsagn, med en ukjent størrelse. Her er et eksempel:

2x+ 5 = 11

I denne påstanden er bokstaven x brukt for den ukjente størrelsen 1. En løsning av ei likning
finner vi når vi bestemmer den ukjente slik at påstanden er sann. I eksemplet vårt blir påstanden
sann når x = 3

Det kan vi se hvis vi ser på verdiene for hvert av uttrykkene med likhetstegn mellom. Hvis
x = 3 vil høyre side fortsatt være 11 Verdien på venstre side er da

2 · 3 + 5 = 11

Påstanden er sann når den ukjente verdien er 3.

Det er det samme vi gjør ved å prøve en verdi.
1Ja, dette kan de fleste fra før, men ofte skjuler det seg mye matematikk i det som kan virke som banaliteter.

Det kan derfor være greit å tenke gjennom sjøl om det virker opplagt.
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Eksempel 1

Vis at x = 2 er en løsning av likningen

2x2 + x = 12− x

Vi må undersøke om påstanden er sann når x = 2.
venstre side

2 · 22 + 2 = 2 · 4 + 2 = 8 + 2 = 10
høyre side

12− 2 = 10
Da ser vi at verdien av uttrykket venstresida er like stor som den på høyresida når x = 2.
Det betyr at x = 2 er en løsning.
Her kan vi legge merke til at det ikke er den eneste verdien som gjør påstanden sann.
Bare prøv det samme med x = −3. Vi sier at løsningsmengden til likninga er 2 og −3.
Det skriver vi slik: L = {−3, 2}

Betrakter vi likningene på denne måten er det egentlig som funksjoner. I dette tilfellet som en
avbilding fra alle reelle tall, R, over i mengden {sann,␣usann}.

1.2 Implikasjoner og ekvivalens
Hvis et utsagn er sant kan en ofte trekke slutninger ut fra det utsagnet. Det kan vi kalle en
hvis-så-slutning. Tar vi litt lett på de etniske definisjonene av «trønder» og «nordmann» kan
vi la disse påstandene være noen eksempler på det

• Hvis Arne er fjorten, er han en tenåring
• Hvis Arne er trønder, er han nordmann

Det hender at slike slutninger trekkes for raskt. Et eksempel er slutningen til Erasmus Montanus
fra Holbergs komedie av samme navn. Her gjennomfører Erasmus et «bevis» for at mora hans,
Mor Nille, er en stein.

Montanus: Morlille, jeg vil gjøre jer til sten.
Nille: Hørt slikt snakk. Det er min tro ikke mulig!
Montanus: Nu skal I få høre: En sten kan ikke flyve.
Nille: Nei, det er visst nok, unntagen når man kaster den.
Montanus: I kan ikke flyve.
Nille: Det er og sant.
Montanus: Ergo er morlille en sten!

Hva er feil i denne slutningen?

Implikasjon
En logisk slutning hvor et utsagn er sant hvis et annet er det, kalles en implikasjon. Vi markerer
dette med en implikasjonspil: =⇒ . Vi leser det som «Hvis utsagn A, så utsagn B» eller «utsagn
A medfører utsagn B».

Noen eksempler
• Arne er fjorten =⇒ Arne er en tenåring
• Arne er trønder =⇒ Arne er nordmann

Implikasjoner gjelder bare den ene veien. Se bare på denne påstanden.
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• Arne er nordmann =⇒ Arne er trønder
At det ikke stemmer kan vi markere slik

• Arne er nordmann ≠⇒ Arne er trønder
Implikasjonen A =⇒ B kan vi betrakte på to måter. Den ene er at hvis A er sann så er den
logiske konsekvensen at B også er sann. En konsekvens av det gir en annen måte å se det på:
Løsningsmengden til A vil være inneholdt i løsningsmengden til B. Det kan vi skrive slik

LA ⊂ LB

La oss se på løsningsmengden til påstanden «Arne er trønder =⇒ Arne er nordmann». Bytter
vi ut tilfellet Arne med hvem som helst kan vi omforme påstanden til «x er trønder =⇒ x er
nordmann» vil løsningsmengdene kunne skrives som

LA = {alle trøndere} ⊂ LB = {alle nordmenn}

Da kommer det klart fram at den ene mengden er den delmengde av den andre.

I noen tilfeller kan vi ha implikasjoner begge veier mellom påstandene. Det kaller en ekvivalens

Logisk ekvivalens
Har vi to utsagn, A og B, og implikasjonene A =⇒ B og B =⇒ A, sier vi at vi har en logisk
ekvivalens. Det markerer vi med en dobbelpil ( ⇐⇒ ). Dette leser vi som «hvis og bare hvis».
Her er noen ekvivalenser

• Arne er trønder ⇐⇒ Arne er fra Trøndelag
• x = 0 ∨ y = 0 ⇐⇒ x · y = 0
• 2x2 = 8 ⇐⇒ x2 = 4

Å løse likninger er å bevare ekvivalens
Vi har sett at ei likning er et utsagn og vi skal bestemme en, eller flere, ukjente verdier slik at
utsagnet blir sant. Da kan vi ikke forandre på det grunnleggende i det opprinnelige utsagnet.
Det må være en logisk ekvivalens i alle trinn for å komme fram til løsninga på likninga. La oss
se på et eksempel hvor hvert trinn er markert med ekvivalenssymboler. La oss se hvordan vi
egentlig burde skrive hvordan vi løser likninga 5x− 8 = 16 + x

5x− 8 = 16 + x

⇕
5x− 8 + 8− x = 16 + x− x+ 8

⇕
5x− x = 16 + 8

⇕
4x = 24

⇕
4x

4
=

24

4
⇕

x = 6
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Eksemplet viser at ekvivalensen bevares gjennom alle trinnene. Nå utelater vi stort sett ekvi-
valenspilene, men det er viktig å huske at de egentlig burde stått der og minnet oss på at
hvert trinn er ekvivalente påstander. Å løse likninger er det samme som å bevare ekvivalenser.
Da kan vi addere, subtrahere, dividere og multiplisere med samme konstant på begge sider av
likhetstegnet: ekvivalensen bevares. Legg merke til at ekvivalensen ikke gjelder hvis vi f. eks.
multipliserer med en variabel eller kvadrerer. Her er noen eksempler.

x− 1 = 0 (1.1)

La oss multiplisere med x på begge sider. Da får vi

x(x− 1) = 0 (1.2)

Implikasjonen gjelder, men påstandene er ikke ekvivalente. Vi har at

x− 1 = 0 =⇒ x(x− 1) = 0

x− 1 = 0 ⇍= x(x− 1) = 0

Løsningsmengden på den første påstanden, (1.1), er L1 = {1}, mens i den andre, (1.2), er
løsningsmengden L2 = {0, 1}. Her ser vi at

L1 ⊂ L2

Det samme kan skje ved kvadrering

x = 3 =⇒ x2 = 9

x = 3 ⇍= x2 = 9

Løsningsmengden til x = 3 er L = {3}, mens for x2 = 9 er løsningsmengden L = {−3, 3}.

I slike tilfeller må vi til slutt prøve med alle elementene i løsningsmengden for å undersøke
gyldigheten. Det er typisk når vi skal løse irrasjonale likninger. Vi kan ta med et eksempel på
det. Prøv gjerne oppgaven i eksemplet før du går videre.

Eksempel 2

Løs likninga √
4− x2 = x

ved regning

Når vi skal løse slike irrasjonale likninger ved regning må vi først ordne uttrykkene slik at vi
får rottuttrykket på ene sida av likhetstegnet. Her har vi det og vi kan kvadrere begge sider og
så løse likninga vi får
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(√
4− x2

)2

= x2

4− x2 = x2

2x2 = 4

x2 = 2

x =
√
2 ∨ x = −

√
2

I dette tilfellet bevarer vi ikke ekvivalensen i alle trinnene. Vi har at

√
4− x2 = x

⇓(√
4− x2

)2

= x2

⇕
4− x2 = x2

⇕
2x2 = 4

⇕
x2 = 2

⇕
x =

√
2 ∨ x = −

√
2

Løsningsmetoden benytter bare en implikasjon i det første trinnet. Det gjør at vi kan få falske
løsninger og vi må sjekke det vi har funnet.

Sjekker falske løsninger ved å sette inn i den opprinnelige likninga.

x = −
√
2 :

√
4− (−

√
2)2 =

√
2 Falsk løsning fordi høre side er = −

√
2

x =
√
2 :

√
4− (

√
2)2 =

√
2 ok!

Da sitter vi igjen med bare en løsning x =
√
2

Her er en oppgave som likner. Prøv på den før du ser på løsningsforslaget.

Oppgave 1

Løs likninga
2−

√
x+ 1 = 13− x

og finn ut i hvilket trinn ekvivalensen brytes.
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LÃ¸sningsforslag

Når vi skal løse slike irrasjonale likninger ved regning må vi først ordne uttrykkene slik
at vi får rottuttrykket på ene sida av likhetstegnet.

−
√
x+ 1 = 13− x− 2

Det neste er å kvadrere hver side. Det er i dette trinnet ekvivalensen brytes. Slik løses
likninga

(
−
√
x+ 1

)2

= (11− x)2

x+ 1 = 121− 22x+ x2

121− 22x+ x2 − x− 1 = 0

−23x+ 120 + x2 = 0 
x = 8 ∨ x = 15

Her er kanskje symbolet ∨ nytt for deg? Det kan leses som «eller». Nå må vi undersøke om
noen av disse løsningene er falske. Det gjør vi ved å sette inn verdiene i den opprinnelige
likninga (før vi kvadrerte og brøt ekvivalensen). Her er HS og VS forkortelser for høyre
og venstre side.

x = 8 HS: 2−
√
8 + 1 = −1 VS: 13− 8 = 5

x = 15 HS: 2−
√
15 + 1 = −2 VS: 13− 15 = −2

Vi ser at x = 8 er en falsk løsning og x = 15 er en ekte løsning.
Svar: Løsningen er x = 15

All likningsløsning ved regning handler om å utføre manipulasjoner som bevarer ekvivalens eller
være klar over at noen trinn er implikasjoner.

Implikasjoner og ekvivalens forklarer logikken bak løsning av likninger. De logiske slutningene
er viktig for at likningsløsning skal bli noe mer enn en instrumentell aktivitet. Samtidig kan
en undervisning med vektlegging av slik symbolbruk ende i samme problem for elevene. Vi
kjenner til «den nye matematikken» fra slutten av sekstitallet og framover. Da ble logikk og
bruk av logiske symboler sentrale tema. Noe som både ble for abstrakt for både elever og lærere.
Konsekvensen ble at undervisningen konsentrerte seg om korrekt bruk av symboler framfor å
få fram rimeligheten i de resonnementene som ligger til grunn for å løse ei likning.

La oss avslutte denne delen med en oppgave med påståtte ekvivalenser, men en eller annen
plass må det skjule seg en feil?
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Oppgave 2

Hva er feil her?

a = b | · a
⇕

a2 = ab |+ a2 − 2ab

⇕
a2 + a2 − 2ab = ab+ a2 − 2ab

⇕
2(a2 − ab) = a2 − ab

⇕
2 = 1
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2 Likningsløsning
2.1 Løse likninger er å finne den ukjente
Når vi blir bedt om å løse likninger er det å finne den ukjente. Ei likning som

2x+ 3 = 4− x

ser vi ofte blir skrevet som
2 ·□+ 3 = 4−□

i lærebøkene. Tanken er da at det skal stå det samme i boksene og at hver side skal ha samme
verdi. Oppgaven blir å finne den verdien som gjør at påstanden blir sann.

La oss prøve noen oppgaver hvor du tenker på hvordan du går fram for å finne den ukjente.

Oppgave 3

a) 6x− 1 = 59
b) 3x− 1 = 0
c) x2 = 9

2.2 Noen metoder for å løse likninger
Likningssløsning kan foregå på flere måter, hvor den ene egentlig er like god som den andre
hvis det bare er spørsmål om å finne det som er ukjent. Uansett er det lurt å kunne så mange
metoder som mulig. Her er noen måter vi kan løse likninger ved

• det-samme-på-begge-sider-metoden

• produktregelen

• tenke-bakover-metoden

• andregradsformelen

• fullstendige kvadraters metode

• grafisk løsning

• bruk av digitale verktøy

• prøve-og-feile-metode

• telle-metoden

• dekk-over-metoden

• modell-metoden

• numeriske metoder

I tillegg kommer metoder for å løse spesielle likninger som addisjons- og innsettingsmetoden
for løsning av likningssystem.

Ofte deles metodene inn i formelle og uformelle metoder hvor de formelle følger en matematisk
algoritme eller er akseptert som en tradisjonell skolematematisk metode. De uformelle metodene
kan bidra i stor grad til elevenes matematikkompetanse.

La oss se på noen måter å løse likninger.

Prøve og feile. En metode for å løse likninger er å prøve verdier for den ukjente for å se
hvordan det går. I de fleste tilfeller er ikke det den mest effektive måten, men kan bidra både
til å finne løsningen og bygge den matematiske kompetansen.
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Tellemetoden. Har vi ei likning som denne:

x− 6 = 4

går det an å telle seg fram til at x må være 10. Det er ikke en effektiv måte, men viser at eleven
har forstått både oppgaven og hva variabelen x står for.

Digitale verktøy og grafiske løsninger. Digitale verktøy som CAS-verktøy løser svært
kompliserte likninger. Et par eksempler som kan installeres på nesten alle smarttelefoner er
PhotoMath og Wolfram Alpha. Førstnevnte krever ikke at vi skriver inn likninga en gang. Det
er nok å bevege kameraet over oppgaven. Figur 2.1 viser et eksempel på bruken.

De digitale verktøyene benyttes som regel også til grafiske løsninger.

Figur 2.1: Photomath

Produktregelen bygger på en logisk slutning ut fra et produkt. Et produkt er lik null hvis
en, eller flere, av faktorene er lik null. For et produkt med to faktorer kan vi skrive det slik:

a · b = 0 ⇐⇒ a = 0 ∨ b = 0

Ei faktorisert likning kan vi løse ved å utnytte denne ekvivalensen.

Andregradsformelen er kanskje bedre kjent som abc-formelen? Den skal vi se mer på under
andregradslikninger.

De meste interessante metodene for grunnskolen er nok den generelle metoden, bruk av modeller
og dekk-over-metoden. La oss se litt nærmere på dem.

Generell metode
Den generelle metoden for likningsløsning går ut på prinsippet at vi ikke forandrer påstanden
om vi utfører addisjon, subtraksjon, divisjon eller multiplikasjon på begge sider av likhetstegnet.
For mange elever er metoden kjent som «flytte-bytte-regelen» hvor problemløsing, logisk tenking
og store deler av matematikkompetansen er holdt utenfor. Siden denne metoden er den mest
kjente skal vi ikke ta for oss den, men se på to nyttige metaforer som benyttes ved forklaring
av metoden. Ofte benyttes en metafor om ei skålvekt (se figur 2.2) den generelle metoden for
å løse lineære likninger.
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Figur 2.2: Skålvekt som metafor for likning

Skålvekta kan forklare mye, men negative tall er vanskelig å representere både på ei skålvekt
og i alle andre sammenhenger.

Oppgave 4

Benytt skålvektmetaforen til å forklare løsning av disse likningene.
a) 3x+ 2 = x+ 6
b) 3x+ 2 = 4

Hvilke styrker og svakheter finner du ved modellen?

Det er en grunn til populariteten til skålvekmetaforen. For den som er kjent med skålvekta
gir den en god illustrasjon for at likevekten opprettholdes når vi legger til, eller fjerner, like
mye på begge sider. Legg merke til starten av setningen. En forutsetning er at skålvekta er
kjent for elevene. Kanskje kan ei vippe, eller huske 1, være en like bra metafor? Det er noe
de yngste elevene kjenner. En annen begrensning ved modellen er, som tidligere nevnt, at den
bare holder for positive verdier for den ukjente. Nå fins det eksempler på utvidelser som prøver
å utvide metaforen med f. eks. gassballonger for å ta hensyn til positive og negative verdier.
Hvor hensiktmessig det er kan nok diskuteres.

En annen metafor er å benytte en boks, eller ei eske, som en konkretisering av en variabel.
Innholdet er ukjent og likningsløsing er å finne hva det må være. Vi kan ta likninga

2x+ 4 = 3x+ 2

som eksempel. Løst med den generelle metoden kan en måte å gjøre det på se slik ut

2x+ 4 = 3x+ 2 (2.1)
2x+ 2 = 3x (2.2)

2 = x (2.3)

Fra likning (1) til likning (2) er det trukket fra 2 på begge sider av likhetstegnet og ekvivalensen
er beholdt. I neste steg er det trukket fra 2x og vi ender opp med at x = 2. Logikken kan vi
vise med fyrstikkesker og fyrstikker slik som i figurene 2.3a, 2.3b og 2.3c. De samme stegene er
fulgt

1Jeg er usikker på hva det heter. Wikipedia har disse synonymene: dumphuske, vippe, bikkedisse, kaksedisse,
dibbedue eller humpedisse
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2x + 4 = 3x + 2

(a) Utgangspunkt

2x + 4 = 3x + 2

2x + 2 = 3x

(b) To fyrstikker bort

2x + 4 = 3x + 2

2 = x

(c) Tatt bort to esker

Figur 2.3: Fyrstikkeskemodellen

Oppgave 5

Benytt fyrstikkeskemodellen til å forklare løsning av disse to likningene.
a) 3x+ 2 = x+ 6
b) 3x+ 8 = 2
c) 3x+ 2 = 4

Hvilke styrker og svakheter finner du ved modellen?

Modell-metoden
Vi starter med en oppgave. Løs den før du leser videre

Oppgave 6

Ola og Kari er tilsammen 100 år. Ola er 6 år eldre enn Kari. Hvor gammel er Ola?

Nå skal vi se på hvordan oppgaven kan løses med modeller. Vi starter med en type modell hvor
lengde representer verdiene og det som er ukjent. Basert på opplysningene kan denne modellen
i figur 2.4 tegnes opp. Her er bredden av rektanglene det som viser verdien. Høyden har ikke
noen betydning.

Øverst i modellen er opplysningene tegnet opp. Det er lengden av rektanglene som representerer
størrelsene. Vi vet at Ola og Kari til sammen er 100 år. I linje tre er Ola sin alder erstattet med
Kari + 6. Da kan vi i linje fire slutte oss til at det doble av alderen til Kari er 94. Da må svaret
være at Kari er 47 år. Dette var en enkel modell, men mer kompliserte likninger kan også løses
på samme vis. Bare prøv!

En modell kan også tegnes som areal. Vi ser på denne oppgaven
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Figur 2.4: Modeller

Oppgave 7

Jan har 10 kr mer enn Ole. Kari har 20 kr mer enn Jan. Til sammen har de 100 kr. Hvor
mange kroner har Ole?

I figur 2.5 er det tegnet en arealmodell hvor arealet er 100, antall kroner de har til sammen.

Figur 2.5: Arealmodell

Vi skal fram til hvor mange kroner Ole har. I oppgaven får vi opplyst at Jan har 10 kroner mer.
I arealmodellen markerer vi 10 ruter. Når vi også vet at Kari har 30 kroner mer enn Ole kan
vi også markere 30 ruter. Ut fra oppgaven vet vi at summen Ole har er regnet med tre ganger.
Arealet som er igjen deler vi i tre like store deler. Vi ender opp med 20 ruter i hver del og kan
konkludere med at Ole må har 20 kroner. Der det er mulig kan geobrett med fordel benyttes
for illustrere det samme.

Dekk-over-metoden
La oss se på ei rasjonal likning. Det er ei likning hvor den ukjente er i nevneren på en brøk.
Mer om det kommer seinere. Her er et stygt eksempel.

6√
x2

4

= 3
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La oss nå dekke over den stygge nevneren med fingeren. Her erstatter jeg den med en firkant
og får

6

□ = 3

Hva må det stå i feltet vi har dekket over? Det er en mulighet og det er at □ = 2. Da vet vi at√
x2

4
= 2

Dekker vi til det som står under rottegnet ser likninga nå slik ut:

√
□ = 2

Da må det være slik at □ = 4 og vi kan skrive:

x2

4
= 4

Nå er det telleren i brøken sin tur til å dekkes over og vi får

□
4

= 4

Da ser vi at □, som da står for x2, må være lik 16 og da følger det at x = 4 ∨ x = −4

Legg merke til at hvis alle trinn skrives

2.3 Løsningsmengder
Vi starter med noen oppgaver.

Oppgave 8

a) 5x+ 5 = −x+ 11
b) 5x+ 2 = 3x+ 2
c) −3x− 4 = x− 4
d) x− 2 = 4 + x
e) 3− x = 2x− 3(x− 1)

Hvilke situasjoner endte du opp med da du løste oppgavene? Kjenner du igjen de som står i
tabellen under?

Likning Forklaring
x = k Her står k for en konstant og vi har funnet en

løsning
0 · x = k Vi skal finne en verdi av x som gjør at verdien

multiplisert med null skal bli en konstant. Det er
ikke mulig og likninga har ingen løsning

0 · x = 0 For hvilket tall multiplisert med null blir produktet
lik null? Det gjelder for alle verdier
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De verdiene av den ukjente som er løsninger til likninga kaller vi løsningsmengden.

Likninga 2x + 4 = 3x + 2 har én løsning, x = 2. Da skriver vi løsningsmengden som L = {3}.
Ei likning som x2 = 9 har to løsninger x = 3 ∨ x = −3 og vi skriver løsningsmengden som
L = {−3, 3}

Ser vi på likninga x− 2 = 4 + x vil ei løsning se slik ut

x− 2 = 4 + x

x− x = 4 + 2

0 · x = 6

Den siste linja ville mange ha skrevet som 0 = 6 og det gir samme svar: Det fins ingen løsning.
Egentlig kunne vi sett det i den opprinnelige likninga: Finn et ukjent tall som er slik at trekker
du fra 2 får du samme svaret som om du legger til fire.

Likninger hvor vi ender opp med 0 · x = k, her betyr k en hvilken som helst konstant, har ikke
noen løsning. Da sier vi at løsningsmengden er den tomme mengde. Den løsningsmengden har
fått sitt eget symbol: ∅.

Da har vi at

0 · x = k =⇒ ingen løsning

Løsningsmengden skriver vi slik:

L = ∅

I det siste tilfellet fra tabellen er løsningen at den ukjente kan være hva som helst. Hva som
helst innebærer i vårt tilfelle alle de reelle tallene. Vi kan skrive det som

0 · x = 0 =⇒ x ∈ R

Skrevet som løsningsmengde blir det

L = R

Likninga 3− x = 2x− 3(x− 1) fører oss til den situasjonen

3− x = 2x− 3(x− 1)

3− x = 2x− 3x+ 3

−x+ x = 3− 3

0 · x = 0
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Oppgave 9

For hvilke verdier av a har likningssystemet[
ax+ y = a (1)
x+ ay = a (2)

]
• en løsning
• ingen løsning
• uendelig mange løsninger?

Argumenter for svaret.

Likningssystemet består av to likninger med to ukjente, x og y. a er her en parameter. Et slikt
likningssystem kan vi løse på flere måter.

Addisjonsmetoden Vi tar utgangspunkt i de to likningene merket som (1) og (2) og kan
addere, eller subtrahere, de fra hverandre. Hver likning kan også endres til en ekvivalent likning.
Tar vi (1) - a·(2) får vi y − a2y = a− a2. Ved å ordne likninga kan det uttrykkes slik

y − a2y = a− a2

(1− a2) · y = a(1− a)

Her kan vi få tre forskjellige uttrykk

a Likning Løsninger
a = 1 0 · y = 0 uendelig mange løsninger
a = −1 0 · x = −2 ingen løsning
a ̸= ±1 en løsning

Innsettingsmetoden gir det samme. Ved å endre på (1) får vi y = a− ax. Det kan vi sette
inn i (2) og får: x+ a(a− ax) = a

Regner videre

x+ a(a− ax) = a

x+ a2 − a2x = a

(1− a2) · x = a− a2

(1− a2) · x = a(1− a)

De samme argumentene gjelder for denne likninga. Vi får samme svar som ved bruk av addi-
sjonsmetoden.
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3 Symboler
3.1 Bokstavenes inntog
I den historiske utviklinga av algebra har vi sett at algebra har gått fra verbale beskrivelser til
bruk av symboler. Utviklingen kan kan sammenfattes slik

reto-
risk verbale beskrivelser

synko-
pert

verbale beskrivel-
ser og noen symboler

sym-
bolsk

symboler for både kjen-
te og ukjente verdier

Den retoriske algebraen besto av verbale beskrivelser. Et eksempel på ei likning med løsning
kan vi hente fra Rhindpapyrusen

La oss finne den ukjente størrelsen hvis 7 mer enn 3 ganger kvadratet av størrelsen
er 19.

Her er min løsning:

For å finne denne ukjente kan vi trekke 7 fra 19 og dele det svaret med 3. Slik får
vi 4. Siden kvadratet er 4 må den ukjente størrelsen være 2.

I vår algebra med bruk av symboler ville vi ha skrevet

3x2 + 7 = 19

3x2 = 12

x2 = 4

x = 2

Legg merke til at på den tida regnet de ikke med negative tall.

Symbolene til Diofantos
Et eksempel på tidlige symbolbruk kan bidra til å vise hvilke utfordringer elever møter ved
innføring i algebra. Se bare på dette algebraiske uttrykket

KY β ∆Y γ Λ
0

M α

som i vår moderne versjon ser slik ut

2x3 + 3x2 − 1
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Dette er symbolene Diofantos (ca. 200-285 e.Kr) benyttet. Han var en av de siste betydelige
matematiker i den antikke greske kulturen. Han bodde i Aleksandria og skrev hovedverket
«Aritmetika». Det består av 13 bøker hvor seks er bevart på gresk (I - VI) og fire er nå funnet i
arabisk versjon (A,B,C og D). Verket handler om løsning av likninger. Diofantos er kjent for å
være en av de første som innførte symboler for en ukjent størrelse og for potenser av denne. De
likningene som er oppkalt etter han, Diofantiske likninger, er likninger hvor løsningsmengden
er hele tall.

Her er en forklaring på symbolene Diofantos benyttet

Beskrivelse Moderne symbol
ζ en ukjent størrelse x
∆y kvadratet av en ukjent størrelsesymbol x2

Ky kuben av den ukjente x3

0

M konstant
Λ subtraksjon −

De små greske bokstavene var symboler for heltallene slik at α = 1, β = 2 og γ = 3.

Symbolene kunne settes sammen slik at ∆y∆y sto for x4, ∆Ky sto for x5 og KyKy er det samme
som x6.

Symbolet ∆ har sin opprinnelse fra det greske dunamis som var en spesiell potens for kvadratet.
K kan vi kjenne igjen fra ordet kube som vi benytter i dag.

Diofantos benyttet ikke noe symbol for addisjon. Det ligger implisitt mellom hvert ledd med
mindre det står at neste ledd skal subtraheres. For den som er interessert i utfyllende opplys-
ninger, og diskusjoner rundt disse symbolene, anbefales (Cajori, 1993)

Denne korte innføringen i en annen symbolverden kan kanskje bidra til å vise at symbolene må
tillegges mening gjennom erfaring. Det åpenbare for den erfarne brukeren er ikke tilstede i de
symbolene vi benytter. Symbolbruken er konvensjoner vi har blitt enige om.

3.2 Bokstavbruk i algebra
The distinction between variables and constants [...] is sometimes difficult to grasp
clearly. It is not always understood that a constant, like a variable, is a symbol,
a linguistic expression, but with the important distinction that a constant has a
fixed designation, which remains unaltered throughout the discussion in which the
constant appears; whereas a variable designates ambiguously, so to speak, assuming
anyone of a range of values. It would, however, be a grave error to suppose that
the distinction between variables and constants reflects a corresponding distinction
in the domain of objects to which the variables and constants alike refer. Thus
to assert with reference, say, to real number theory that the variables “x” and
“y” designate variable numbers, whereas such constants as “2” and “π” designate
constant numbers, would be nonsense; or at least there is no known intelligible
theory which could accommodate so odd a notion as that of a variable number.

David Hilbert og Wilhelm Ackermann, Principles of Mathematical Logic, 1937
(Hilbert mfl., 1999, s. 168)

I algebra støter vi på en rekke forskjellige typer symboluttrykk. I de forskjellige algebraiske
objektene har symbolene forskjellig rolle. Det kan også bidra til utfordringer for elevene. Her
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er en kort oppsummering av forskjellige algebraiske objekter og bokstavbruken.

Algebraiske uttrykk er bygd opp av konstanter, heltall, variabler og operatorer. Opera-
torene består av addisjon, subtraksjon, multiplikasjon, divisjon og rasjonale eksponenter. Et
eksempel på et algebraisk uttrykk er

3a+ 4b2 − 7x

Legg merke til at et algebraisk uttrykk ikke en påstand.

Likninger er påstander hvor en ukjent, som oftest blir x benyttet, skal bestemmes slik at
utsagnet blir sant. Velkjente eksempler kan være

x

5
+ 3x− 9 = 7 x3 − 9x = 6

I tillegg til algebraiske uttrykk finner vi likhetstegnet.

Ser vi på likningen
ax2 + c = 0

finner vi tre bokstaver. For den ukjent benytter vi ofte bokstaven x. De andre bokstavene
representerer ikke ukjente størrelser. Vi kaller dem parametre. De kan velges fritt hvis det ikke
er gitt noen begrensninger for valgene vi kan ta. Likninga kan løses slik

ax2 + c = 0

ax2 = −c

x2 =
−c

a

x = ±
√

−c

a

Vi har da kommet fram til ei generell løsning hvor parametrene a og b kan representere hvilke
verdier som helst.

Parameter er opprinnelig bygd opp av para (παρα), som betyr «ved siden av» og metron, som
betyr «mål». Ofte er parametrene konstanter eller målestørrelser som kan påvirke resultatet.
Koeffisienter er også et ord som benyttes. Det ordet kommer fra latin coefficere som betyr
«medvirke». Ordbruken kan variere mellom de ulike fagene matematikk, fysikk, økonomi og
kjemi. Her er vi ikke så nøye på det.

Når vi nå skriver algebraiske uttrykk slik som

ax2 + bx+ c

skiller vi variablene fra parameterne ved at bokstavene først i alfabetet står for kjente størrelser,
mens de ukjente er plassert sist. Denne notasjonen ble introdusert av René Descartes (1596-
1650) i La Gèometrie (1637). La Gèometrie er en del av hovedverket hans Discours de la
méthode.
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Ulikheter er også utsagn hvor x skal bestemmes slik at utsagnet blir sant. Eksempler kan
være

2x− 5 ≤ 3
x

3
− 1 ≥ 4x− 2

Identiteter er algebraiske uttrykk som er identisk like. Kvadratsetningene er typiske identi-
teter

(a+ b)2 = a2 + 2ab+ b2

Bytter vi ut bokstavene med tall, vil vi få samme resultat uansett om vi benytter høyre eller
venstre side i identiteten til å regne ut. De to uttrykkene er identisk like. Manipulasjon av
algebraiske uttrykk er å omformulere til identiske uttrykk. Bokstavene får her en rolle som
plassholdere.

Formler er beskrivelser av sammenhenger mellom størrelser. Arealet omskrevet av en sirkel
med radius lik r kan vi finne slik

A = π · r2

Legg merke til at her innføres nok en bruk av bokstaver i form av konstanten π som står for en
verdi

Funksjoner viser samvariasjon mellom størrelser vi kaller argumentverdi og funksjonsverdi.
Uttrykket

y = f(x) = x2 − 4x

forteller at y er en funksjon av verdien x. Et funksjonsuttrykk x2 − 4 forteller hvordan vi kan
finne funksjonsverdien når vi kjenner argumentverdien.

Bokstavenes opptrer i flere roller. De kan stå for konstanter, ukjente, parametre, navn på
funksjoner og variabler. I tillegg benyttes bokstaver også som forkortelser for benevning. Leser
vi 4g har vi lært oss at det står for fire gram. Tolking av symboler hører inn under fagfeltet
semiotikk og er viktig for å sette seg inn i hvilke utfordringer elever støter på i matematikken.

3.3 Eleven og likhetstegnet
Vi skal starte med å se på en klassisk undersøkelse om elever og likhetstegnet (Carpenter
mfl., 2003; Falkner mfl., 1999). Elevene i undersøkelsen ble gitt dette spørsmålet (det var noen
varianter i språkbruken):

What number would you put in the box to make this a true number sentence?

8 + 4 = □+ 5

Elevene skulle altså finne ut hva som måtte stå i boksen for at utsagnet skulle bli sant. Nesten
tusen elever på skoler i USA deltok og resultatet er gjengitt i tabell 3.1.

Svarene overrasket mange: under ti prosent ga korrekt svar og andelen forandret seg ikke med
alderen til de spurte. Forsøket er gjentatt mange ganger og i andre land. Prøv gjerne det samme
med egne elever. Konklusjonen til Falkner mfl. (1999) er at elevene tolker likhetstegnet som
en operator. Akkurat som likhetstegnet en ofte finner på kalkulatorer betyr det «regn ut». På
kalkulatoren er likhetstegnet et ikon for å få regnet ut et eller annet. I likningene er det ikke
det.
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Tabell 3.1: Resultat

Response/Percent Responding
Grade 7 12 17 12 and 17

1 and 2 5 58 13 8
3 and 4 9 49 25 10
5 and 6 2 76 21 2

Det samme viser også Bergsten mfl. (1997) hos svenske elever. Elevene leser likhetstegnet som
«blir». At 5+2 «blir» 7. Det gjør at flere elever løser likninga 4+x = 13 enn likninga 13 = 4+x.
I følge Bergsten mfl. (1997) er det fordi de stopper opp ved at 13 ikke kan «bli noe annet enn
det er». Dette viser en tolkning av likhetstegnet som er problematisk når likninger står på
dagsorden.

Et par utdrag fra (Carpenter mfl., 2003) viser hvordan noen av elevene tenkte. Vi starter med
Lucy.

Ms. L Can you tell me what number you would put in the box to make this a
true number sentence?

Lucy [After a brief period] Twelve.
Ms. L How do you know it is 12?
Lucy Because that’s the answer, 8 and 4 are 12. See, I counted, 8 [pause] 9,

10, 11, 12. See, thats 12.
Ms.L What about this 5 over here? [pause] Pointing to the 5 in the number

sentence
Lucy That’s just there.
Ms. L Do you have to do anything with it?
Lucy No. It’s just there. It doesn’t have anything to do with the 8 and 4.
Ms. L What do you think it means?
Lucy I don’t know. I dont think it means anything. Maybe they just put it

there to confuse us. You know, sometimes Ms. J. puts extra numbers in
story problems to make us think about what to add or subtract.

Lucy tolker likhetstegnet som at svaret skal komme rett etter det. Randy har en litt annen
tolkning.

Randy It’s 17.
Ms. L How did you figure 17?
Randy Because I know that 8 and 4 is 12, and 5 more is 17.
Ms. L Why did you add all those numbers?
Randy Because it says to add. See. [Points to the two + symbols]
Ms. L Okay. But these two numbers are over here on this side of the equal sign

[points at the 8 + 4] and the 5 is over here [points at the 5].
Randy Yeah, but you have to add all the numbers. That’s what it says to do.

Randy tar alle tallene med i sin argumentasjon, men han utelater å tolke operatorene. Det kan
virke som om han er mest opptatt av å få benyttet alle tallene til noe. Disse to transkripsjonene
viser ulike tolkninger av likhetstegnet hvor ingen av tolkningene er korrekte. Feiltolkningene er
knytta til symbolbruk og dreier seg ikke om problemer med tall eller regneteknikker. Ingen slike
tolkninger oppstår av seg sjøl. Sannsynligvis har de har oppstått gjennom den matematikkun-
dervisningen elevene har tatt del i. Ofte benyttes likhetstegnet slik at svaret kommer rett etter.
Det har elevene lært.
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3.4 Likhetstegnet
Likhetstegnet benyttes til mangt og det kan være et problem. Vi finner det brukt som en
operator for å vise en utregning, som i 3 + 2 = 5. Det kan også benyttes for å vise like verdier,
tilordninger eller ekvivalenser. Her er en oversikt over noen tolkninger.

Eksempel Bruk Forklaring
3 + 2 = 5 operator Likhetstegnet er brukt som en kom-

mando som viser en utregning
3 + 2 = 4 + 1 likeverdi Likhetstegnet viser at begge sidene

har lik verdi
t = 5 tilordning En variabel tilordnes en størrelse. Vi

leser det som t «settes lik» 5. Ofte
skrives det også som t := 5 i flere
programmeringsspråk

f(x) = x2 + 1 tilordning Et funksjonsuttrykk tilordnes en
funksjon.

(a+ b)(a− b) = a2 − b2 identitet Likhetstegnet viser at de to sidene er
like for alle verdier av variablene

2x+ 4 = 3x+ 2 likning De to sidene er like for en, eller flere,
verdier av variablene.

Av tabellen kan vi se at likhetstegnet har fått en variert bruk siden det ble introdusert av
Robert Recorde i 1557. Du kan lese mer om det på Wikipedia.

Vi har sett at i likningene står likhetstegnet for en betinga likhet. Likheten oppfylles når vi
finner en ukjent som oppfyller betingelsen.

En identitet er en likhet uten betingelse. (a+ b)(a− b) = a2 − b2 oppfylles for alle verdier av a
og b. Egentlig fins et eget tegn til den bruken. Vi kunne skrevet

(a+ b)(a− b) ≡ a2 − b2

hvor ≡ står for «identisk med».

Når vi tilordner en verdi til en variabel mener vi også at den settes identisk lik, så vi kunne brukt
≡ til det også. Da kunne vi skrevet t ≡ 5. Den vanligste måten kommer fra programmering og
syntaksen som benyttes der er t := 5. I noen tilfeller vil vi også støte på t → 5.

Ved tilordning av funksjonsuttrykk benyttes også likhetstegnet. I programmeringsspråk og pro-
gramvare vil også denne tilordningen skje på med samme tegn som over.

Samme tegn har altså forskjellig betydning ut fra konteksten. Egentlig burde dette gå riktig
galt, men vi har nok vendt oss til en fleksibel bruk – kanskje uten å være helt klar over det?

3.5 Likhetstegnet og likningsløsning
En viktig forutsetning for likningsløsing er at elevene får en forståelse for likhetstegnet som
en beskrivelse av påstanden om at to uttrykk er lik hverandre. Hvis eleven ser dynamisk på
likhetstegnet som en operator hvor noe «blir» forhindrer det å se likningen som noe statisk som
«er» lik. For å hjelpe elevene å utvikle en ønska tolking av likhetstegnet, og andre symboler,
kan det være lurt å sette elevene i situasjoner hvor den eksisterende tolkinga utfordres.
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Et annet eksempel med utgangspunkt i oppgaven 8 + 4 = □ + 5 kan være å la elevene skrive
ned 12 med så mange summer de kan komme på for så å forklare at alle disse er like. Det gir
følgende forklaring

8 + 4︸ ︷︷ ︸
12

= 7 + 5︸ ︷︷ ︸
12

eller
8 +

∥
12

4 = 7 +
∥
12

5

Diskusjoner rundt hva symboler kan bety bør også kunne hjelpe. Det som er viktig for ma-
tematikklæreren er å være klar over hvilke problemer elevene kan møte for så å utnytte sin
undervisningskompetanse for å gjøre noe med det. Da kan tilpasningene i undervisning bli
gjort i hvert enkelt tilfelle.

Det som i alle fall er klart er at feil bruk bør unngås. Et eksempel er likhetstegnet for å vise
antall objekter. Figur 3.1 viser to eksempler på akkurat det.

Figur 3.1: Feil bruk av likhetstegnet
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4 Likninger i grunnskolen
4.1 Typer likninger i grunnskolen
Utvalget av likninger i grunnskolen vil begrense seg til

• lineære likninger
• rasjonale likninger
• andregradslikninger
• lineære likningssystem

Lineære likninger er likninger hvor den ukjente er av første orden. Vi finner ingen potenser
hvor den ukjente er grunntall. Disse kjenner vi fra før, men her er noen eksempler

• x+ 2 = 3
• ax+ b = cx+ d
• x+ y + z =

√
7

Rasjonale likninger er likninger med hvor den ukjente er i nevneren, slik disse eksemplene
viser

• 3
x−1

= 3

• 1
x+1

+ 2
x−1

= 3
x2−1

De to siste skal vi se litt nærmere på.

4.2 Lineære likningssystem
En samling av lineære likninger kalles et lineært likningssystem. Da skal alle de ukjente bestem-
mes slik at alle likningene blir sanne. Slike lineære likningssystem kan skrives på flere måter,
men et vanlig eksempel er dette

[
a · x+ b · y = c (1)
d · x+ e · y = f (2)

]
hvor x og y er de ukjente variablene og de andre bokstavene er parametre. Hver likning har da
fått sitt eget nummer for at vi enkelt kan referer til likninga.

Et typisk eksempel er denne uoppstilte likninga

Eksempel 3

Mor er 21 år eldre enn Sivert. Bestefar er tre ganger så gammel som mor. Om to år er de
alle til sammen 100 år. Hvor gammel er Sivert, mor og bestefar?

Benyttes innsettingsmetoden kan likningssystemet løses slik m = s+ 21 (1)
b = 3 ·m (2)
b+ 2 +m+ 2 + s+ 2 = 100 (3)


Nå setter vi inn (1) i (2) og (3). La oss også ordne litt på (3). Da får vi[

b = 3 · (s+ 21) (4)
b+ (s+ 21) + s = 94 (5)

]
25



Setter vi (4) inn i (5) får vi ei likning med en ukjent som vi kan løse som ei vanlig lineær likning.

3(s+ 21) + (s+ 21) + s = 94

3s+ s+ s = 94− 3 · 21− 21

5s = 10

s = 2

Da vet vi at Sivert er 2 år og at mor må være 23 år. Bestefar er da 69 år.

Et annet eksempel er å se på en oppgave som helst bør gjennomføres i praksis. Elevene får
utlevert to kombinasjoner med skruer og muttere. Delene bør være festet sammen. Ved hjelp
av ei vekt kan de måles massen. Oppgaven blir å finne massen av en mutter og en skrue uten
å skru fra de fra hverandre. Med noen pene tall kan vi gå ut fra at noen elever hadde kommet
fram til disse verdiene:

Eksempel 4

To skruer med tre muttere veier 16 gram. En skrue med to muttere veier 10 gram. Hvor
mye veier en mutter?

Kaller vi massen til en mutteren for m og massen til en skrue for s kan vi sette opp dette
likningssystemet.

[
2s+ 3m = 44 (1)
s+ 2m = 24 (2)

]
Benytter vi addisjonsmetoden og tar 2 · (2)− (1) får vi

2(s+ 2m)− (2s+ 3m) = 48− 44

2s+ 4m− 2s− 3m = 4

m = 4

Stegene i addisjonsmetoden kan vi også illustrere ved figur 4.1. Den tredje raden i figuren viser
2 ·(2). Da ser vi at det bare er en mutter som skiller den og den første raden. Altså må mutteren
veie 4 gram. Skruen må da veie 16 gram ut fra rad 2.

Figur 4.1: Muttere og skruer
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4.3 Andregradslikninger
Andregradslikninger inneholder minst en ukjent størrelse av høyst andre grad. Her er noen
eksempler

• x2 = 25

• 2x2 − 3x+ 6 = 0

• 3t2 − 4t = 0

• 34s2 + 45s = 98

Alle andregradslikningene kan vi skrive på formen

ax2 + bx+ c = 0

der a, b og c er konstanter. Her er bokstaven x brukt for den ukjente, men vi kan godt benytte
andre bokstaver slik som vi ser i eksemplene. Når vi skal løse andregradslikninger ønsker vi å
finne alle de verdiene for den ukjente som gjør at likning blir sann.

4.3.1 Et enkelt eksempel
Den enkleste andregradslikninga må være noe som dette

x2 = 25

Tidlig i historien ble det et behov for å løse slike likninger. Da var problemene av geometrisk
art og likninga oppsto for å finne sidene i et kvadrat med areal 25

25

x

x

Her er det åpenbare svaret at hver side i kvadratet må være 5 fordi 5 · 5 = 25, men hva om
arealet var 23? Hvilket tall multiplisert med seg sjøl blir 23? Vi får da denne likninga

x2 = 23

Svaret kaller vi kvadratrota av tjuetre og vi kan finne en tilnærma verdi:
√
23 ≈ 4.7958

I dag er det ikke så vanskelig å finne kvadratrota av et tall. Teknologien har gjort det enkelt.
Tidligere var det enten omstendig regning eller tabeller som ga svaret. Kvadratrota av et tall
er ofte irrasjonale tall og da er det heller ikke mulig å finne eksakte løsninger.

Definisjon 1 Den prinsipale kvadratrot

Hvis a ≥ 0 er
√
a det positive tallet som multiplisert med seg sjøl gir a

Ordet «rot» viser til en løsning av ei likning. Det vi kaller ei kvadratrot heter egentlig den
prinsipale kvadratrota og betegnes med symbolet √. Legg merke til at definisjonen stiller som
krav at a ≥ 0 og at

√
a ≥ 0. Da er (

√
a)

2
= a.
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Vi kan vende tilbake til likninga x2 = 25. Svaret vi fant var
√
25 = 5. Svaret på spørsmålet

«Hvilket tall multiplisert med seg sjøl blir lik 25?» kan også være −5:

(−5) · (−5) = (−5)2 = 25

Vi ser at (−5)2 = 25, men ut fra definisjonen er ikke −5 det samme som
√
25 fordi det stilles

som krav at
√
25 ≥ 0.

Svaret på likninga blir derfor slik:

x2 = 25

x = ±
√
25 = ±5

Vi kan lese det på denne måten: «Hvilket tall multiplisert med seg sjøl blir 25? Jo, det er både
pluss og minus kvadratrota av 25».

Her kan det være litt rot med hva vi legger i rot. Vi burde skille mellom den prinsipale kvad-
ratrota og kvadratrøtter fordi vi kan si at røttene til likninga over er ±

√
25. Vi kan til og med

kalle det for kvadratrøttene. Vanligvis er vel ikke dette noe stort problem, men det kan være
greit å være klar over ordbruken.

Rottegnet

Tegnet √ har sin opprinnelse i middelalderen og mange gir Christoff Rudolff (1525) æren.
Les mer på Wikipedia. Tegnet er sannsynligvis en forkortelse av bokstaven r som står for
radix – det latinske ordet for rot.
Det tallet som står inne i rottegnet kalles for radikanden.

Kan vi ta rota på begge sider?
Ofte kan en observere at elever og lærebøker løser denne oppgaven slik

x2 = 25
√
x2 =

√
25

x = ±5

Problemet er at den prinsipale kvadratrota til et tall alltid er positivt, så
√
25 er 5 og ikke −5.

Både 52 og (−5)2 er 25, men bare 5 er det samme som
√
25. Det er noe matematikerne har

blitt enige om. Det er nok minst to grunner til det. Opprinnelig var kvadratrota en geometrisk
tolking, f.eks. sidekanten i et kvadrat med areal 25. I geometrien er det bare det positive tallet
som kan være mål på en lengde. En annen grunn henger sammen med at vi bare ønsker oss ett
eneste svar. Kanskje har du vært borte i samme kravet til funksjoner? En funksjon skal ha en
eneste y-verdi til en x-verdi. Kvadratrota er også en funksjon og må ha samme krav. Det er slik
at vi ofte bruker funksjonsverdien videre og da må det stilles krav om at det bare er en verdi.

Når mange elever tror at
√
25 = ±5 kan det ha sitt opphav i undervisning, eller til og med

lærebøker, hvor de presenteres for løsningsstegene over. Det ser ut som om metoden er å ta
kvadratrota på begge sider og så blir svaret x = ±5. Vi kan ta kvadratrota på begge sider, men
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da kan vi ikke utelate flere kritiske steg som ikke er vist i denne løsningen. La oss se stegene
som mangler. Det å skrive

√
x2 =

√
25 og ha neste steg som x = ±5 er misvisende både fordi

√
x2 ̸= x og

√
25 ̸= ±5

√
x2 er egentlig lik absoluttverdien til x, |x|. Absoluttverdien av et tall er alltid den positive

varianten av tallet. Her er noen eksempler:

|5| = 5

|−5| = 5

Ofte defineres absoluttverdien akkurat slik som i vårt tilfelle:
√
x2 = |x|. La oss inkludere det i

løsningen vår. Da kan vi skrive det som:

x2 = 25
√
x2 =

√
25

|x| = 5

x = ±5

Skrivemåten over er korrekt, men det er enklere, og kanskje appelerer det mer til logikken, å
løse likninga slik:

x2 = 25

Hvilke tall er det som kvadrert blir 25? Jo, det er enten 5 eller -5. Det skriver vi slik

x = ±5

eller
L = {−5, 5}

eller slik
x = 5 ∨ x = −5

Her står symbolet ∨ for «eller»?

En annen variant er å løse likninga ved å faktorisere med konjugatsetningen og finne svaret
med produktsetningen.

x2 = 25

x2 − 25 = 0

x2 − 52 = 0

(x+ 5)(x− 5) = 0

x = 5 ∨ x = −5
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4.4 Generelle andregradslikninger
Andregradslikninger inneholder minst en ukjent størrelse av høyst andre grad. Ei generell andre-
gradslikning kan vi skrive på formen

ax2 + bx+ c = 0

Den generelle løsningen av alle andregradslikninger er ved formelen

x =
−b±

√
b2 − 4ac

2a

hvor a ̸= 0 og b2 − 4ac ≥ 0

Når vi løser andregradslikninger vil vi ofte finne to verdier for den ukjente. Vi kaller de ukjente
som løser likninga for røttene til likninga.

Hvis b = 0

I noen tilfeller kan andregradslikningene løses enklere uten bruk av formelen. Det gjelder i de
tilfellene hvor b = 0 og likninga er på formen

ax2 + c = 0

Løsningen av den likninga blir da

ax2 = c

x2 =
a

c

x = ±
√

a

c

Hvis c = 0

Er c = 0 løser vi likninga ved å faktorisere for så å benytte produktsetningen.

ax2 + bx = 0

x · (ax+ b) = 0

x = 0 ∨ ax+ b = 0

x = 0 ∨ x = − b

a

La oss prøve noen oppgaver

Oppgave 10

a) x2 − 100 = 0
b) x2 + 4x = 0
c) −x2 + 4x = 0

d) x2 − 7x+ 10 = 0
e) −6x2 + x+ 1 = 0
f) −6x2 + x− 1 = 0
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Oppgave 11

På ei steintavle fra Babylon (ca 2000 f.Kr.) står det: «Omkretsen til et kvadrat legges til
kvadratets areal. Summen blir 32. Hvor lang er kvadratets side?» Løs oppgaven.

LÃ¸sningsforslag

Vi kaller sida i kvadratet for s
Omkretsen blir da 4s
Arealet er s · s = s2

Da har vi

s2 + 4s = 32

s2 + 4s− 32 = 0

s = 4

Oppgave 12

For hvilke verdier av c har likninga

3x2 + 2x+ c = 0

• ingen løsning
• én løsning
• flere løsninger?

4.4.1 Summen og produktet av røttene
Vi har nå sett at andregradslikninger ofte gir to røtter (eller svar). Her er ett eksempel på det

x2 + x− 2 = 0

x =
−b±

√
b2 − 4ac

2a

=
−1±

√
12 − 4(−2)

2

=
−1± 3

2
x1 = 1

x2 = −2

La oss nå se summen og produktet av de to røttene

x1 · x2 = 1 · (−2) = −2

x1 + x2 = 1− 2 = −1
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Disse verdiene kan vi finne igjen i andregradslikninga vår

x2 − (−1) · x−2 = 0

La oss nå se på den generelle andregradslikninga for å se at dette stemmer for alle andre. Skriver
vi den generelle andregradslikninga som ax2 + bx+ c = 0 har vi sett at den har løsningene

x1 =
−b+

√
b2 − 4ac

2a
∨ x1 =

−b−
√
b2 − 4ac

2a

Nå ser vi på summen og produktet igjen. La oss starte med produktet og finne et generelt
uttrykk for det

x1 · x2 =

(
−b+

√
b2 − 4ac

2a

)
·
(
−b−

√
b2 − 4ac

2a

)
=

c

a

Når vi finner summen får vi

x1 + x2 =

(
−b+

√
b2 − 4ac

2a

)
+

(
−b−

√
b2 − 4ac

2a

)
= − b

a

I eksemplet vårt hadde vi ei ordna andregradslikning. Det betyr at a = 1

Ordner vi den generelle andregradslikninga får vi

x2 +
b

a
x+

c

a
= 0

Hva ser vi? Jo, at

• at produktet av røttene er det samme som konstantleddet

• at summen er lik førstegradskoeffisienten med motsatt fortegn

Da kan vi skrive den generelle andregradslikninga uttrykt ved røttene

x2 − (x1 + x2) · x+ (x1 · x2) = 0

Denne sammenhengen fører til at vi ganske greit kan sjekke om løsningene vi har funnet stem-
mer. Samtidig kan vi for en del enkle andregradslikninger benytte sammenhengen til å resonere
oss fram til løsningen.

4.5 Fullstendige kvadrat
Abū ’Abdallāh Muhammad ibn Mūsā al-Khwārizmī har vi tidligere møtt som en av grunnleg-
gerne av algebra. Se mer på Wikipedia.

Et kjent problem fra en av bøkene han skrev, Hisab al-ǧabr w’al al-muqābala, går ut på å finne
sidene i et rektangel hvor den ene sida er 10 lengdenheter kortere enn den andre og arealet er
39 målt med utgangspunkt i de samme enhetene. Kaller vi den korteste sida x vil den andre
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sida være x + 10. Produktet av lengdene av sidene gir oss arealet og vi ender opp med denne
andregradslikninga

x · (x+ 10) = 39

x2 + 10x = 39

Dette er et geometrisk problem (som de fleste algebraiske problemene på den tida) og vi kan
framstille det ved en figur som viser rektanglet med areal 39.

x2 10 · x

x

x

10

Nå skal vi se hvordan de arabiske matematikerne løste dette problemet. De tenkte seg det grå
arealet delt i to like store deler og flyttes litt rundt slik at vi ender opp med situasjonen i neste
figur.

x

5

x 5

Grunnen til å ville foreta denne oppdelinga er at det nå bare mangler en liten brikke i øverste
hjørne og så har vi et fått et kvadrat i stede for rektangelet vi starta med.

52

x

5

x 5

Arealet av kvadratet vi satte inn vet vi arealet av. Det er 52. Arealet av rektanglet vi starta
med var 39. Nå har vi fått et tillegg på 25 og hele kvadratet har et areal er 39 + 25 = 64. Da
har vi ei ny andregradslinking som er enklere å løse.
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(x+ 5)2 = 64

x+ 5 = 8

x = 3

Da har vi løst andregradslikninga og funnet ut at den korteste sida må være 3 lengdeenheter.

Denne metoden kalles kalles fullstendige kvadraters metode eller kvadratkomplettering.

La oss se på hva som ble gjort en gang til. Utgangspunktet var å finne sidene i et rektangel
med gitt areal. Det problemet ble gjort om til å finne sidene i et kvadrat hvor vi kunne beregne
arealet ut fra arealet av det opprinnelige rektanglet. Sidene i kvadratet er enklere å finne.

Den første kvadratsetningen viser hvordan vi kan finne arealet til et fullstendig kvadrat
a2 + 2ab+ b2 = (a+ b)2

Av den oppdelte figuren kan vi se at alle bitene til sammen danner et kvadrat. Her er det ikke
nødvendig å legge til noe. Det er fullstendig.

a · a

a · b b · b

a · ba

b

a b

a+ b

a+ b

Figuren viser den første kvadratsetningen, men vi kan også benytte den andre kvadratsetningen
a2 − 2ab+ b2 = (a− b)2

til å faktorisere. Nå kan vi støte på utfordringer ved å benytte arealmodeller. Som vi har sett
kan vi ikke representere negative tall som linjestykker. En utvidelse av tanken med fullstendige
kvadrat gjør at vi i mange til feller må forlate arealrepresentasjonen. Ser vi på det algebraiske
uttrykket så må det være på denne formen for å være et fullstendig kvadrat

□2 ± 2 ·□ ·□+□2

Bytt ut □ med ett tall og □ med et annet tall og uttrykket kan faktoriseres til et kvadrat. Her
er noen eksempler

x2 + 8x+ 16 = x2 + 2 · x · 4 + 42= (x+ 4)2

x2 + 14x+ 49 = x2 + 2 · x · 7 + 72= (x+ 7)2

x2 − 14x+ 49 = x2 − 2 · x · 7 + 72= (x− 7)2

x2 − 6x+ 9 = x2 + 2 · x · 3 + 32= (x− 3)2
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Det er slike kvadrat vi lager oss når vi benytter fullstendige kvadraters metode.

Vi ser på et eksempel igjen, likninga
x2 − 2x = 3

Skriver vi om den til x2 − 2x− 3 = 0 hadde det vært en mulighet for at det var et fullstendig
kvadrat, men uttrykket er ikke på formen a2 − 2ab+ b2. Hadde det siste leddet vært lik 1 ville
vi hatt et fullstendig kvadrat. Da ville uttrykket sett slik ut

x2 − 2 · x · 1 + 12

Litt omskrevet kan vi også si at et fullstendig kvadrat er på denne formen

x2 ± bx+

(
b

2

)2

I vårt tilfelle kan vi se at hvis
(
2
2

)2
= 1 ville det vært et fullstendig kvadrat. Nå kan vi lage oss

et fullstendig kvadrat ved å skrive om slik at deler av uttrykket blir et fullstendig kvadrat:

x2 − 2x+ 1︸ ︷︷ ︸
fullstendig kvadrat

+ −1︸︷︷︸
trekker fra det vi la til

= 3

Likninga over er ekvivalent med den vi starta med. Vi kunne også ha addert 1 på begge sider
av likhetstegnet slik det blir gjort her

x2 − 2x = 3

x2 − 2x+ 1 = 3 + 1

(x− 1)2 = 4

x− 1 = ±2

x = 3 ∨ x = −1

En generalisert løsning med fullstendige kvadraters metode følger samme steg. La oss løse
likninga x2 + bx = c

x2 bx

x

x

b

+

Vi deler opp arealet bx i to deler. Så flytter vi det ene.
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x2

x

x

b
2

b
2

Setter vi dette sammen kan vi se at vi mangler ett kvadrat for at hele figuren skal bli et kvadrat.
Det lille kvadratet vi mangler er et kvadrat med sidene b

2
.

x2

x

x

b
2

b
2

Gjentas det samme algebraisk blir det slik:

x · (x+ b) = c

x2 + bx = c

x2 + bx+

(
b

2

)2

= c+

(
b

2

)2

(
x+

b

2

)2

= c+

(
b

2

)2

x+
b

2
=

√
c+

(
b

2

)2

x = − b

2
+

√
c+

(
b

2

)2

Det er en generell løsning av likninga x2 + bx = c. Da er vi så nær den generelle formelen for
andregradslikninger at vi går løs på den også.

4.6 Utledning av formel for løsning av andregradslikning
Den generelle formelen kommer vi fram til på samme måte som om vi løser likninga med
fullstendige kvadraters metode. Prøv å følg trinnene under
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ax2 + bx+ c = 0

x2 +
b

a
+

c

a
= 0

x2 +
b

a
x+

(
b

2a

)2

−
(

b

2a

)2

+
c

a
= 0(

x+
b

2a

)2

−
(

b

2a

)2

+
c

a
= 0(

x+
b

2a

)2

− b2

(2a)2
+

c

a
= 0(

x+
b

2a

)2

=
b2

4a2
− 4ac

4a2

x+
b

2a
= ±

√
b2 − 4ac

4a2

x = − b

2a
±
√

b2 − 4ac

4a2

x =
−b±

√
b2 − 4ac

2a

Et annet alternativ er å starte med den generelle likninga og så multiplisere begge sider med
4a. Generelt har vi følgende løsning av de kvadratiske likningene:

ax2 + bx+ c = 0

4a2x2 + 4abx+ 4ac = 0

(2ax)2 + 2 · 2axb = −4ac

Vi lager et fullstendig kvadrat ved å legge til b2 på begge sider.

4a2x2 2axb

2axb b2

2ax

b

2ax b
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(2ax)2 + 2 · 2axb+ b2 = b2 − 4ac

(2ax+ b)2 = b2 − 4ac

2ax+ b = ±
√
b2 − 4ac

x =
−b±

√
b2 − 4ac

2a

Da har vi funnet at den generelle andregradslikninga

ax2 + bx+ c = 0

har løsningene

x =
−b±

√
b2 − 4ac

2a

Legg merke til radikanden (uttrykket som står under rottegnet). Radikanden kan ikke være
negativ. Det gir oss disse mulighetene for løsninger av andregradslikninger

• to løsninger når b2 − 4ac > 0

• én løsning når b2 − 4ac = 0

• ingen reelle løsninger når b2 − 4ac < 0

Den generelle formelen kan vi også komme fram til ved å benytte et CAS-verktøy. Se bare figur
4.2.

Figur 4.2: abc-formelen funnet ved CAS

4.7 Historie
Brahmagupta kjente til formelen, omtrent slik vi kjenner den. Hans oppskrift var som følger

Take absolute number on the side opposite to that on which the square and simple
unknown are. To the absolute number multiplied by four times the [coefficient] of
the square, add the square of the [coefficient of the] unknown; the square root of the
same, less the [coefficient of the] unknown, being divided by twice the [coefficient
of the] square is the [value of the] unknown.

(Katz, 1998, s. 226)

Eksemplet Brahmagupta brukte var løsningen på andregradslikninga

x2 − 10x = −9
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Now to the absolute number [-9] multiplied by four times the [coefficient of the]
square [-36], and added to the square [100] of the [coefficient of the] unknown,
(making 64), the square root being extracted [8], and lessened by the [coefficient of
the] unknown [-10], the remainder 18 divided by twice the [coefficient of the] square
[2] yields the value of the unknown 9.

(Katz, 1998, s. 227)

Brahmagupta nevner ikke den andre løsningen, som vi får ved den negative rota. Det han
skriver kan oversettes til vår algebra som formelen

x =

√
4ac+ b2 − b

2a
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5 Noen klassiske likninger
5.1 Noen klassiske likninger
Likninger har fascinert oss mennesker til alle tider. Her kommer noen klassikere.

Her er en oppgave hvor du vil få bruk for pytagoras sin setning.

Oppgave 13

Bambusproblemet stammer fra Kina og er et gammelt
og berømt problem.
En bambusstokk er 10 chih (kinesisk måleenhet) høy.
Stokken brekker, og toppen av stokken rører bakken 3
chih fra foten av stammen. Hvor høyt oppe på stam-
men er bruddet?

Det kan være lurt å tegne en figur. Kaller vi høyden for x vil resten av bambusstokken ha
lengde x− 10. Vi må også gå ut fra at stokken står vinkelrett på bakken.

x 10− x

3

32 + x2 = (10− x)2

9 + x2 = 100− 20x+ x2

20x = 91

x =
91

20
x = 4.55

Da blir svaret at bambusstokken knakk 4.55 chih fra bakken.

Mahāvīra var en indisk matematiker som skrev boka Gaṇitasārasan̄graha (eller Ganita Sara
Samgraha) omtrent i år 850. I tillegg til flere matematiske temaer har han samlet noen fine
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likninger. Du kan lese mer om ham på Wikipedia. Her en likning om elefanter hentet fra boka
til Mahāvīra.

Oppgave 14

En tredel av en elefantflokk og tre ganger kvadratroten av resten av flokken ruslet i en
fjellskråning, mens en hannelefant og tre hunnelefanter dukket seg i en dam i nærheten.
Hvor mange elefanter var det i alt i flokken?

Hva forteller oppgaven? Jo, kaller vi antall elefanter for n kan vi sette opp denne likninga

1

3
· n+ 3 ·

√
2

3
· n+ 4 = n

Den kan vi løse på følgende måte

1

3
· n+ 3 ·

√
2

3
· n+ 4 = n

1

3
· n− n+ 3 ·

√
2

3
· n+ 4 = 0

−2

3
· n+ 3 ·

√
2

3
· n+ 4 = 0

Setter vi nå z =
√

2
3
· n kan vi skrive om likninga til

−z2 + 3 · z + 4 = 0

Den kan vi løse som ei vanlig andregradslikning

−z2 + 3 · z + 4 = 0

z =
−3±

√
32 − 4 · (−1) · 4
2 · (−1)

z =
−3± 5

−2

z1 = 4 ∨ z2 = −1

Nå kan vi finne ut hva n er ved at z =
√

2
3
· n. Den negative løsningen kan vi se bort fra.

√
2

3
· n = 4

2

3
· n = 16

n =
16 · 3
2

= 24

Da vet vi at det var 24 elefanter i flokken.
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Bhāskara var også en indisk matematiker fra Bijapur som levde fra i tidsrommet 1114–1185.
Les mer om ham på Wikipedia. Han er kjent for å kle oppgavene i en poetisk språkdrakt. Se
bare denne oppgaven.

Oppgave 15

I en innsjø full av røde gjess og traner, ser en toppen av en lotusblomst en halv alen over
vannflata. Litt etter tar vinden fatt i den så den driver sakte bortover, til den synker
under vannflata 2 alen borte. Si meg, matematiker, dybden av vannet.

Her kan det være lurt å tegne en figur som viser vannoverflata, bunnen og hele blomsten med
stilk. Kaller vi dybden av vannet for d, kan en figur se slik ut.

2

d

0.5

d+ 0.5

Antar vi at stilken er rettvinklet på vannoverflata kan vi regne ut dybden, d, på denne måten.

d2 + 22 = (d+ 0.5)2

d2 + 22 = d2 + d+ 0.25

d2 − d2 − d = 0.25− 22

−d = −3.75

d = 3.75

Dybden av vannet er 3.75 alen

Yang Hui var en kinesisk matematiker som levde på 1200-tallet. Du kan lese mer om ham
på Wikipedia. Han viste hvordan vi kunne løse oppgaven under.

Oppgave 16

Arealet av et rektangel er 864. Differansen mellom lengden og bredden er 12.

Den likner på de andre, men framgangsmåten han benytter er litt annerledes. Yang Hui tegnet
opp denne figuren hvor han benyttet det opprinnelige rektanglet fire ganger.
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864

864

864

864

l

l

l

l

b

b

b

b

Ut fra figuren visste han at hele arealet av kvadratet måtte være
864 · 4 + 12 · 12 = 3600

Arealet er kvadratet av sidene. Da kan vi løse likninga.

(l + b)2 = 3600

l + b =
√
3600

l + b = 60

Oppgaven gir at l − b = 12 og da må l = 36 og b = 24.

Vi ville nok heller løst oppgaven reint algebraisk ved å oversette påstanden «Arealet av et
rektangel er 864. Differansen mellom lengden og bredden er 12» til dette likningssystemet.

[
l − b = 12
l · b = 864

]
Da har vi to likninger med to ukjente og kan sette den ene inn i den andre for å finne den
ukjente.

(b+ 12) · b = 864

b2 + 12b = 864

Kanskje kjenner du igjen formen på likninga og problemet? Minner ikke det om arealet vi så
på under fullstendige kvadrater (se side 32)?

Denne andregradslikninga kan vi løse ved å lage et fullstendig kvadrat

b2 + 12b = 864

b2 + 2 · b · 6 + 62 = 864 + 62

(b+ 6)2 = 900

b+ 6 = 30

b = 24
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Da vet vi at b = 24 og l = 36.

Vi kunne også benyttet abc-formelen som sier at løsningen på ei generell andregradslikning

ax2 + bx+ c = 0 finnes ved x =
−b±

√
b2 − 4ac

2a
. Ikke la bokstaven b forvirre deg.

Setter vi inne får vi i vårt tilfelle

b2 + 12b− 864 = 0 =⇒ b1 = −36 ∨ b2 = 24

Her gjelder bare den positive verdien. Igjen har vi at b = 24 og l = 36
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6 Numeriske løsninger
Programmering egner seg godt til å løse likninger ved numeriske løsninger. Det er algoritmer
som kan kan benyttes. Vi kan se på noen av dem.

6.1 Bruk av rå kraft
I programmering utnyttes ofte regnekapasiteten i flere sammenhenger. Brute force er det en-
gelske uttrykket når den rå krafta er nøkkelen til løsninger. Kanskje kjenner du uttrykket i
forbindelse med hacking? Ved å prøve alle mulige kombinasjoner for f.eks. et passord kan det
føre til at det rette finnes. Det blir vanskeligere å lykkes med et slikt forsøk hvis antall tegn
er stort og flere varianter av hvert tegn benyttes, men med enkle passord kan den rå krafta gi
resultater.

Her gjelder det å prøve mange muligheter for å se om noen kan gi resultatet vi ønsker. Vi ser
på et eksempel.

Eksempel 5

Finn nullpunktene til f gitt ved

f(x) = x4 + 2x3 − 37x2 + 10x+ 168

når du vet at alle nullpunktene er heltallsverdier og at de ligger i intervallet x ∈ ⟨−20, 20⟩

Å finne nullpunktene til en funksjon er det samme som å løse likninga f(x) = 0. Vi må løse
likninga

x4 + 2x3 − 37x2 + 10x+ 168 = 0

Den er ikke så enkel å løse ved regning, men vi kan prøve med alle x-verdiene i intervallet. I
dette eksemplet er det mulig å ta fram papir og blyant, men litt programmering egner seg nok
bedre. Programkode 6.1 viser hvordan.

1 # definerer funksjonen f
2 def f(x):
3 return x**4+2*x**3-37*x**2+10*x+168
4
5 # finner nullpunktene
6 for i in range (-20,20):
7 if f(i) == 0:
8 print("Nullpunkt: x= ",i)

Programkode 6.1: Brute force

I dette eksemplet defineres funksjonen først. Så finner vi nullpunktene ved å lage ei for-sløyfe.
Det som er rykket inn vil gjentas så lenge betingelsen i sløyfa holder.

for i in range (-20,20): gjør at i først settes til −20, så utføres det som står rykket inn,
før verdien til i økes med 1 og blir til −19. Det hele gjentas opp til 20.

Inne i for-sløyfa er det en if-setning som undersøker om funksjonsverdien er lik null. Er den
det skrives verdien ut. Kjører vi dette programmet blir resultatet
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Nullpunkt: x= -7
Nullpunkt: x= -2
Nullpunkt: x= 3
Nullpunkt: x= 4

Ved å sjekke alle heltallene har programmet gitt oss fire nullpunkt. Nå vet vi at en slik fjerde-
gradsfunksjon kan ha maksimalt fire nullpunkt, så her har vi alle løsningene. Oppgaven fortalte
oss også at det bare var heltallsløsninger, men hva om vi ikke hadde den opplysningen. Vi kunne
fått programmet til å sjekke flere verdier og med flere desimaler. La oss prøve det

Eksempel 6

Løs likninga
4x+ 6 = 2x+ 9

Nå er dette ei enkel likning som vi vet har løsningen x = 1.5, men metoden vil gjelde for alle
likninger. Her er en programkode som sjekker mange verdier og gir oss en mulig løsning.

1 def h(x):
2 return 4*x+6
3
4 def v(x):
5 return 2*x+9
6
7 for i in range (-1000, 1000):
8 x = i/10
9 if v(x) == h(x):

10 print("Løsning x = ",x)

Programkode 6.2: Mange verdier

I dette eksemplet definerer vi høyre og venstre side som funksjoner. Som i programkode 6.1 er
det ei for-sløyfe, men i dette tilfellet er det mange fler verdier. I eksemplet har vi gått ut fra
at løsningen er mellom -1000 og 1000. Inne i sløyfa finner vi x = i/10. Vi kan se hva som skjer
ved å sette opp en tabell for de første verdiene.

Gjentakelser 1 2 3 ... 2000
i -1000 -999 -998 ... 999
x -100 -99.9 -99.8 ... 99.9

I programkode 6.2 vil vi få undersøkt alle x-verdiene fra -100.0 og opp til 99.9. For hver x-verdi
sjekkes det om høyre- og venstre side har samme verdi. Resultatet blir

Løsning x = 1.5

Vi kunne godt utvidet dette intervallet og brukt flere desimaler uten at programmet bruker så
mye mer tid. Det kan være en fin øvelse. En annen metode er å sette en toleranse for svaret.

1 toleranse = 0.0015
2
3 def h(x):
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4 return 3*x+4
5
6 def v(x):
7 return 6*x+2
8
9 for i in range (-10000, 10000):

10 x = i/1000
11 if abs(v(x) - h(x)) < toleranse:
12 print("Løsning x = ",x)

Programkode 6.3: Toleranse

Programkode 6.3 gir et eksempel hvor toleransen er satt, etter litt justering, til 0.0015. Da gir
programmet dette resultatet.

Løsning x = 0.667

I if abs(v(x)- h(x))< toleranse undersøkes det om absoluttverdien av forskjellen mellom
høyre- og venstre side er mindre enn verdien som er satt for toleransen. Absoluttverdien gir
alltid den positive verdien av subtraksjonen. Verdiene kan endres slik at vi får et mer nøyaktig
resultat, men den er verken særlig effektiv eller nøyaktig.

6.2 Halveringsmetoden
Halveringsmetoden er en mer effektiv metode for å finne nullpunkt innen et intervall. Vi kan
ta utgangspunkt i likninga vi så på sist. Etter å ha ordna på den ser den slik ut

3x− 2 = 0

Ved å se på venstre side som et funksjonsuttrykk, f(x) = 3x − 2, skal vi nå prøve å finne
nullpunkt i intervallet x ∈ [0, 2]. Vi setter a0 = 0 og b0 = 2.

Halveringsmetoden går ut på å halvere intervallet og undersøke i hvilken halvdel nullpunktet
ligger.

Da finner vi x-verdien midt mellom ytterpunktene

x0 =
a0 + b0

2
= 1

Hvis nullpunktet ligger til venstre på x-aksen vil f(a0 og f(x0) ha forskjellig fortegn. Ligger
nullpunktet til høyre vil f(b0 og f(x0) ha forskjellig fortegn.

Egentlig er det ganske opplagt at det må være slik. Mer matematiske kan det skrives som et
teorem kalt skjæringssetningen

Teorem 1 Skjæringssetningen

La f være en kontinuerlig funksjon i intervallet [a, b].
Hvis f(a) og f(b) har ulikt fortegn, fins det ett eller flere nullpunkt for f i intervallet
[a, b].
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Da starter vi med å se på disse funksjonsverdiene.

f(a0) = f(0) = 3 · 0− 2 = −2

f(x0) = f(1) = 3 · 1− 2 = 1

f(b0) = f(2) = 3 · 2− 2 = 4

Utregningene viser at nullpunktet må være i intervallet [a0, x0] og sette den øvre grensa til
b1 = x0 = 1. Framgangsmåten gjentas ved at vi finner midtpunktet mellom de nye verdiene

x1 =
a0 + b1

2
= 0.5

Igjen må vi finne i hvilken halvdel av intervallet nullpunktet er

f(a0) = f(0) = 3 · 0− 2 = −2

f(x1) = f(0.5) = 3 · 0.5− 2 = −0.5

f(b1) = f(1) = 3 · 1− 2 = 1

Denne gangen ser vi at nullpunktet befinner seg til høyre for x1 på x-aksen. Da flytter vi venstre
ytterpunkt til x1, slik at a1 = x1.

Algoritmen kan vi gjenta til vi er fornøyd med svaret. Halveringsmetoden er omstendelig ved
regning, men med programmering er det en metode som går raskt.

0 10.75

0.5 x

y

Figur 6.1: Grafen til f(x) = 3x− 2

I Python vil denne algoritmen kunne skrives som i programkode 6.4.
1 def f(x):
2 return 3*x-2
3
4 a = 0
5 b = 2
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6 t = 0.00001
7
8 m = (a + b)/2
9

10 while abs(f(m)) > t:
11 if f(a)*f(m) < 0:
12 b = m
13 else:
14 a = m
15
16 m = (a + b)/2
17
18 print("Løsning x = ", m)

Programkode 6.4: Halveringsmetoden

Her er det satt en tolreranseverdi som stopper programmet når forskjellen mellom verdien til
nullpunktet er mindre enn toleranseverdien: while abs(f(m))> t:

Ved å telle antall gjennomganger av sløyfa finner vi at sløyfa gjentas 16 ganger. Resultatet blir

Løsning x = 0.6666669845581055

Programkoden kan gjøres mer elegant ved omskriving til en funksjon som gjør det samme.
1 def halveringsmetoden(a,b,toleranse):
2 m = (a + b)/2
3 while abs(f(m)) > toleranse:
4 if f(a)*f(m) < 0:
5 b = m
6 else:
7 a = m
8
9 m = (a + b)/2

10 return m
11
12 def f(x):
13 return 3*x-2
14
15 print("Løsning x = ", halveringsmetoden(0,1,0.000001))

Programkode 6.5: Halveringsmetoden

Begge alternativer følger samme framgangsmåte.

Halveringsmetoden

En algoritme for å finne et nullpunkt til en kontinuerlig funksjon f i intervallet [a, b].
Gjenta prosessen inntil f(m) ≈ 0

• Finn m = a+b
2

• Hvis f(a) og f(m) har ulikt fortegn: La b = m
• Hvis f(a) og f(m) har likt fortegn: La a = m

m er et estimat for nullpunktet i intervallet.
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6.3 Regula falsi
Regula falsi er en gammel metode for å løse likninger. Den kalles også false position method.
Navnet kommer av at vi antar en mulig løsning, og så ser hvor mye den avviker fra den korrekte,
for til slutt å justere den antatte verdien. Metoden benyttes for å løse lineære likninger.

Dette er en metode som ble benyttet i stor grad tidligere. Katz (1998) viser til hvordan metoden
ble brukt i det gamle Egypt, hvor vi finner den nevnt i problem 26 i Rhind-papyrusen (fra 1550
f. Kr.). Problemet som skal løses i moderne notasjon er x+ 1

4
x = 15. I papyrusen beskrives ikke

hvordan algoritmen ble oppdaget eller hvorfor den virker, men det viser at egypterne kjente til
den og tok den for gitt.

Eves (1990) skriver:

Many of the 110 problems in the Rhind and Moscow papyri show their practical
origin by dealing with questions regarding the strength of bread and of beer, with
feed mixture for cattle and domestic fowl, and with the storage of grain. Many of
these require nothing more than a simple linear equation and are generally solved
by the method later known in Europe as the rule of false position

(Eves, 1990, p. 54)

Et tips for å krydre undervisningen av likninger kan være å benytte disse gamle metodene
(Winicki, 2000).

Historien viser at det kan skilles mellom to typer av regula falsi: Enkel falsk posisjon (eng.
simple false position) og dobbel falsk posisjon (eng. dobble false position). Vi kan se på begge.

6.3.1 Simple false position
Eksemplet Eves (1990) viser til for denne metoden, kan vi se illustrere den første.

Likninga som skal løses er
x+

x

7
= 24

Metoden går ut på å velge en verdi for x. Velger vi x = 7 får vi 7 + 7
7
= 8. Den tilfeldig valgte

x-verdien gir ikke en god løsning på likninga. Svaret vi får må multipliseres med tre for å få
det ønska svaret 24. Metoden forteller da at vår valgte x-verdi også må multipliseres med tre
for å gi en løsning. Da får vi 7 · 3 = 21 som løsning.

Diofantos benyttet også teknikken til mer avanserte likninger (Katz, 1998, s. 181). Det samme
gjorde Leonardo de Pisa, bedre kjent som Fibonacci. Han brukte metoden ofte i boka si Liber
Abbaci (Katz, 1998, s. 307)

La oss se på et eksempel til som kan forklare framgangsmåten.

Eksempel 7

Løs likninga
x+

x

7
= 17− x

Løst på vanlig måte får vi
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x+
x

7
= 17− x

x+
x

7
+ x = 17

15

7
· x = 17

x =
17 · 7
15

=
119

15
≈ 7.933

Nå kan vi se på hvordan denne likninga ville bli løst ved denne metoden.

Skriver om
x+

x

7
= 17− x ⇔ 2x+

x

7
= 17

Vi starter med å anta en tilfeldig verdi for den ukjente. La oss si x = 10. Da får at venstre side
blir 2 · 10 + 10

7
= 150

7
≈ 21.43. Verdien vi har valgt er for høy. Den må multipliseres med 0.7933

for å få svaret. En løsning på oppgaven vil derfor være

10 · 0.7933 ≈ 7.9333

Det var ikke dårlig med en så enkel metode!

Enkel falsk posisjon

Simple false position eller regula falsi kan løse likninger av typen

ax = b

hvis a og b er kjent. Metoden går ut på å anta en x-verdi x′ som vil gi løsninga ax′ = b ′.
Korrekt svar på likninga kan vi da finne ved å justere

x =
b

b ′ · x
′

6.3.2 Double false position
En utvidelse av metoden er den doble falske hvor vi antar to verdier for løsningen. Vi kan se
hvordan den kan benyttes til å løse samme oppgave.

For enkelhets skyld skriver vi om igjen likninga som en funksjon slik at vi har

f(x) = 2x+
x

7
− 17 =

15

7
· x− 17

Nå blir det å løse likninga det samme som å finne nullpunktet til f .

Vi starter med å anta en tilfeldig verdi for den ukjente. La oss igjen si x1 = 10. Det gir

f(10) =
31

7
= 4.428571428571

Så velger vi en verdi til x2 = 2. Får

f(2) = −89

7
= −12.714285714286
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Metoden forteller at svaret må være:

x =
31
7
· 2−

(
−89

7

)
· 10

31
7
−

(
−89

7

) =
119

15
≈ 7.933

Svaret blir korrekt, men hvorfor?

Forklaringen bygger på noe som kalles lineær interpolering. Vi tegner grafen til funksjonen.

x2 = 2

f(x2)

x1 = 10

f(x1)

x x

y

Figur 6.2: Grafen til f(x) = 15
7
· x− 17

I figur 6.2 finner vi to formlike trekanter farget med grått og kan sette opp disse forholdene

x− x2

f(x2)
=

x1 − x

f(x1)

med litt omregning kan vi finne

x =
f(x1) · x2 − f(x2) · x1

f(x1)− f(x2)

Det var akkurat den formelen som ble brukt for i eksemplet.

Dobbel falsk posisjon

Metoden kan benyttes til å finne nullpunktene til funksjoner på formen

f(x) = ax+ c

Løsningen vil da være gitt ved

x =
f(x1) · x2 − f(x2) · x1

f(x1)− f(x2)

Metoden gir en eksakt løsning for slike lineære likninger.

Her blir det en del utregninger og da kan programmering være til hjelp. Programkode 6.6 viser
hvordan. Her blir det lagt inn to verdier og så får vi skrevet ut svaret.
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1 # to tilfeldig valgte verdier
2 x1 = 10
3 x2 = 2
4
5 def f(x):
6 return 15/7*x - 17
7
8 x = (f(x1)*x2 - f(x2)*x1)/(f(x1) - f(x2))
9

10 print("Løsning x = ",x)

Programkode 6.6: Dobbel falsk posisjon

En utvidelse av metoden Metoden vi har sett på kan også kalles sekantmetoden siden vi
fant nullpunktet til sekanten mellom de to punktene. I tilfellet vårt hvor vi hadde en lineær
funksjon fant vi derfor nullpunktet eksakt, men hva om vi ikke hadde en lineær funksjon?

En utvidelse av metoden er å gjenta det samme i flere iterasjoner. Se bare på figur 6.3. Vi velger
to punkter, x1 og x2. Det er en forutsetning at nullpunktet er i intervallet mellom det to valgte
punktene. Da vet vi også at funksjonsverdiene f(x1) og f(x2) har motsatt fortegn.

x1

x2

x′ x

y

Figur 6.3: Grafen til f(x) = x3 − 3 · x+ 1

Vi benytter metoden vi allerede har sett på å finner en tilnærma løsning x′. Som vi ser er ikke
dette en god tilnærming, men vi kan undersøke om nullpunktet ligger til høyre eller venstre
for verdien vi har funnet. Hvis funksjonsverdiene til x′ og x2 har forskjellig fortegn vet vi, ved
skjæringssetningen, at nullpunktet må ligge mellom x′ og x2. Stemmer ikke det må nullpunktet
ligge mellom x′ og x1. Det vet vi fordi forutsetningen er at det er et nullpunkt i intervallet
[x2, x1].

På figuren ser vi at f(x′) < 0 og at f(x2) > 0. De har forskjellig fortegn og nullpunktet må
ligge mellom. Nå velger vi verdien x′ for x2 og benytter metoden på nytt. I vårt eksempel ser
vi at vi nærmer oss nullpunktet. Ved flere iterasjoner vil vi kunne komme nærmere.

Å gjøre dette ved regning er tidkrevende, men slike gjentakelser av algoritmer er noe som
egner seg godt for programmering. Et eksempel på hvordan vi kan skrive et program er gitt i
programkode 6.7. I denne koden er det satt ei toleransegrense for svaret. Når forskjellen mellom
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nullpunktet og denne grensa er mindre eller lik null avsluttes programmet. I koden vilkaar
= abs(f(x0))> e er vilkaar en boolsk verdi som enten er sann eller usann. Den bestemmer
om while-sløyfa skal utføres.

1 # Definerer funksjonen
2 def f(x):
3 return x**3 - 3*x +1
4
5 def regula_falsi(x1, x2, e):
6 vilkaar = True
7 while vilkaar:
8 x0 = (f(x1)*x2 - f(x2)*x1)/(f(x1) - f(x2))
9

10 if f(x0)*f(x2) < 0:
11 x1 = x0
12 else:
13 x2 = x0
14
15 vilkaar = abs(f(x0)) > e
16 return x0
17
18 # nøyaktighet
19 toleranse = 0.00001
20 # Startverdiene
21 x2_s = 0
22 x1_s = 1
23
24 # Sjekker startverdiene
25
26 if f(x2_s)*f(x1_s) > 0:
27 print("Nullpunktet ligger ikke mellom de valgte verdiene.")
28 else:
29 print("Løsningen er x = :", regula_falsi(x1_s,x2_s,toleranse))

Programkode 6.7: Regula falsi

Denne koden egner seg godt for rekursive funksjonskall. Programkode 6.8 viser hvordan det
kan tas i bruk.

1 # Definerer funksjonen
2 def f(x):
3 return x**3 - 3*x +1
4
5 def regula_falsi(x1, x2, e):
6 x0 = (f(x1)*x2 - f(x2)*x1)/(f(x1) - f(x2))
7 if abs(f(x0)) < e:
8 return x0
9 elif f(x0)*f(x2) < 0:

10 return regula_falsi(x0,x2,e)
11 else:
12 return regula_falsi(x1,x0,e)
13
14 # nøyaktighet
15 toleranse = 0.00001
16 # Startverdiene
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17 x2_s = 0
18 x1_s = 1
19
20 # Sjekker startverdiene
21
22 if f(x2_s)*f(x1_s) > 0:
23 print("Nullpunktet ligger ikke mellom de valgte verdiene.")
24 else:
25 print("Løsningen er x = :", regula_falsi(x1_s,x2_s,toleranse))

Programkode 6.8: Rekursiv versjon
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