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Her har jeg samla sammen en del om integraler. Det meste av det vi har vært
gjennom på samlingene skal du finne her.

Vi rakk ikke å se på analysens fundamentalsetning, som viser hvorfor sam-
menhengen mellom derivasjon og integrasjon stemmer. Det kan du lese om
her.

Ellers kan jeg ikke garantere at det ikke er noen skrivefeil her og der. Si fra
hvis dere finner enten det eller noe annet som bør korrigeres.

Teksten er skrevet med LATEX.

Creative Commons Navngivelse-IkkeKommersiell-DelPåSammeVilkår 4.0 Internasjonal Offentlige Lisens
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1 Introduksjon

1.1 Hvorfor integraler?

Elever spør ofte «hvorfor skal vi lære det her?». I temaet integralregning,
eller integrasjon, kan det være enklere å forklare elevene enn i andre tilfeller.
Integralregninga kan i mange tilfeller knyttes direkte til praktiske tilfeller.
Gjennom integraler kan vi finne størrelsen av areal eller finne farten når vi
vet avstanden. Når integrasjon er direkte knytta til praktiske tilfeller skyldes
nok det også opphavet til denne delen av matematikken: En ønsket å forklare
fysiske fenomener. Derivasjon er nært beslekta med integrasjon. Kanskje har
du også sett at derivasjon kan knyttes til praktiske situasjoner. Nå skal vi
snart se at integrasjon er en «omvendt» derivasjon. Mer om det seinere, men
her er en liten forsmak

1.2 Arealet under grafen

Å knytte integralregning til arealet under en kurve er en «klassisk» innfalls-
vinkel. Integralregning kan gi svaret på denne oppgaven.
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Oppgave 1

Hva er arealet av området avgrensa av grafen til funksjonen, y-aksen og linja
x = 4?
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Før vi finner svaret på oppgaven skal vi se litt mer på noen grunnleggende
ideer for integrasjon.

1.3 En inndeling av arealet

La oss finne arealet avgrenset av en graf og x-aksen til noen enkle grafer.

Oppgave 2

Finn arealet avgrenset av grafen til f(x) = 4, x-aksen og linja x = 5

Her er grafen tegnet i et koordinatsystem.
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Oppgaven bør være overkommelig. Arealet er 20. Svaret kan vi se som et
arealet dannet av de 20 rutene. Vi finner det ved multiplikasjon av sidene i
rektanglet: 5 ¨ 4.

En tankegang som vi skal ta med oss videre er at arealet kunne vi også funnet
ved å dele inn i mindre deler. I figur 1.1 ser vi hvordan vi finner det samme
arealet ved å dele i lengden 5 i flere deler

10 ¨
1

2
¨ 4 = 20

20 ¨
1

4
¨ 4 = 20

Sjøl om ikke det var den mest effektive måten å finne arealet på i dette tilfel-
let, skal vi se at framgangsmåten er viktig for tankegangen bak integrasjon.

Oppgave 3

Finn arealet avgrenset av grafen til f(x) = 4
5
x, x-aksen og linja x = 5
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Figur 1.1: Inndelinger
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Grunnen til at denne funksjonen er valgt er at arealet må bli halvparten av
det forrige vi så på, altså 10. Vi vet arealet, men la oss prøve å finne det ved
en oppdeling i rektangler. Her er arealet delt inn i fjorten deler.
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Å regne ut arealet av rektanglene lar vi teknologien ta seg av. Stor sett alle
graftegnere har en kommando for slike beregninger. I figure 1.2 ser vi hvordan
Wolfram 1 har funnet arealet til å være 9.29. Vi har en god tilnærming til
arealet under grafen.

Figur 1.2: Arealet av fjorten rektangler

Vi prøver med femti inndelinger i GeoGebra. Etter å ha definert funksjonen
som f er kommandoen

SumUnder[f, 0, 5, 50]

I figur 1.3 blir arealet nå beregna til 9.8.

Desto flere inndelinger jo nærmere kommer vi til arealet. Dette minner kan-
skje om grenseverdier? Vi skal se at det er akkurat det, men foreløpig kan vi
kalle det bare det bestemte integralet fra 0 til 5 av funksjonen f(x) = 4

5
x. Vi

skriver det slik
1http://mathworld.wolfram.com/RiemannSum.html
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Figur 1.3: Arealet av femti rektangler

ż 5

0

f(x) dx

Vi kaller dette et bestemt integral. Her har vi en startverdi, x = 0 og en
sluttverdi, x = 5. Det er arealet under funksjonen f vi skal finne. Til slutt
er det markert at x er variabelen ved at det står dx.

Integralregning består i å finne integraler. Et første steg er da å se på inte-
grasjon som det motsatte av derivasjon: antiderivasjon

1.4 Antiderivasjon

Vi skal også se at å integrere vil si å kunne finne uttrykket til en funksjon
når vi vet uttrykket til den deriverte. Å finne den deriverte funksjonen kaller
vi å derivere. Vet vi den deriverte funksjonen og skal finne den opprinnelige,
kaller vi det integrasjon.
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f (x) f 1(x)

derivasjon

integrasjon

En typisk oppgave kan da være

Oppgave 4

Gitt f 1(x) = 2x. Finn f(x).

Med litt erfaring fra derivasjon kan vi finne svaret hvis vi kjenner igjen at

f(x) = x2 ùñ f 1(x) = 2x

Skriver vi dette med integraltegn får vi
ż

2x dx = x2

1.5 Vi finner arealet ved integralregning

Nå tilbake til oppgave 3 hvor vi endte opp med at arealet kunne skrives som
et integral. En omskriving av oppgaven blir da

Oppgave 5

Finn
ż 5

0

4

5
x dx

Vi starter med å se bort fra grensene og konsentrerer oss om å finne

ż

4

5
x dx
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Altså: Finn f(x) når vi vet at f 1(x) = 4
5
x

Her må vi nok bare prøve oss fram, men noen avgrensninger kan vi allerede
ta. Vi vet at det må være et andregradsuttrykk.

(x2)1 = 2x

Vi vet også at vi kan multiplisere uttrykket med en konstant.

(k ¨ x2)1 =
4x

5

Da gjelder det bare å prøve seg litt fram og finne ut at k = 2
5
.

(
2

5
¨ x2)1 =

2

5
¨ 2 ¨ x =

4

5
x

Vi har da funnet at
ż

4

5
x dx =

2

5
¨ x2

Den opprinnelige oppgaven hadde grenser som markerte hvor arealet startet
og sluttet. Grensene for integralet betyr at vi må sette inn grenseverdiene og
finne differansen. Vi skriver det slik

ż 5

0

4

5
x dx =

[
2

5
¨ x2

]5
0

=
2

5
¨ 52 ´

2

5
¨ 02

= 10 ´ 0

= 10

Legg merke til hvordan verdiene for grensene settes inn og regnes ut.

Etter denne utregninga vet vi at arealet er 10. Tilnærmingene vi fant var
gode.

Integralet kan vi også få hjelp til å finne med et CAS-program. Her er det
samme funnet med GeoGebra

Kommandoen i GeoGebra er

Integral[<funksjonsnavn>,<variabel>,<start>,<slutt>]
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Figur 1.4: Integralet funnet i GeoGebra

1.6 Svaret på den opprinnelige oppgaven

I starten skulle vi finne ut arealet av området avgrensa av grafen til funksjo-
nen, y-aksen og linja x = 4 i denne figuren

1 2 3 4 5

1

2

3

4

5

x

y

Uttrykket til funksjonen er f(x) = 1
4
x2 + 1 og det oppgaven er den samme

som å finne integralet

ż 4

0

(
1

4
x2 + 1

)
dx

Vi kan finne arealet ved hjelp av GeoGebra på denne måten
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Figur 1.5: Integralet funnet i GeoGebra
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2 En definisjon av et integral

2.1 En tilnærming til arealet under grafen

Nå er vi allerede kjent med oppdelingen av arealet. Vi har allerede blitt kjent
med at vi kan finne arealet under grafen ved en oppdeling. Det vi har gjort
er å dratt tilbake til tida da Arkimedes levde (287 - 212 f. Kr.). Du husker
kanskje at han kom fram til en verdi av π på en måte som ikke er ulik
den vi nå skal se på. Denne metoden, som på engelsk kalles «the method of
exhaustion», brukte han også andre formål.

Vi skal nå se litt nærmere på teknikken og til slutt definere integralet som
en sum.

La oss se på funksjonen f(x) = ´x2 + 4

Tegner vi grafen til den mellom 0 og 2 vil den se slik ut:

1 2

1

2

3

4

x

y

Figur 2.1: Nullpunkt

Se på figuren og prøv å finne arealet ved et overslag.
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Oppgave 6

Finne arealet avgrenset av grafen til f(x) = ´x2 + 4 og aksene i koordinat-
systemet ved å benytte rutenettet.

Det kan være upresist å prøve å måle opp arealet, men tankegangen vi har
sett er at desto flere rektangler vi deler opp området i, jo bedre tilnærming
får vi.

1 2

1

2

3

4

5

x

y

Figur 2.2: Findelt areal

Figuren viser at en slik oppdeling gir en ganske god tilnærming til arealet.
Nå skal vi se at det vil kunne fortelle det samme som det bestemte integralet

2.2 En Riemansum

Slike inndelinger av arealet og summen av delarealene har fått navnet Rie-
mansummer etter den tyske matematikeren Rieman1. La oss se på et eksem-
pel hvor vi deler inn arealet i seks deler. Hver enhet er da delt i tre deler. Se
figur 2.3.

1Georg Friedrich Bernhard Riemann, 1826 – 1866
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Figur 2.3: Arealet delt i seks deler

Nå skal vi prøve å finne arealet ved å legge sammen arealet av alle disse
rektanglene. Første spørsmål blir da hvordan skal vi regne ut arealene av
rektanglene.

I figur 2.3 er det seks enheter opp til to. Den siste har høyde lik null, så den
ser vi ikke så tydelig. Hvert rektangel er da 2

6
= 1

3
bredt. Høyden i hvert

rektangel bestemmes av funksjonsverdien, slik at det første rektanglet får
bredde 1

3
og høyde f(1

3
). Neste rektangel har samme bredde, men høyden 2

3
.

Summen av arealet til alle rektanglene kan vi nå skrive som:

S =
1

3
¨ f

(
1

3

)
+

1

3
¨ f

(
2

3

)
+

1

3
¨ f

(
3

3

)
+

1

3
¨ f

(
4

3

)
+

1

3
¨ f

(
5

3

)
+

1

3
¨ f

(
6

3

)
=

1

3
¨

[
f

(
1

3

)
+ f

(
2

3

)
+ f

(
3

3

)
+ f

(
4

3

)
+ f

(
5

3

)
+ f

(
6

3

)]
=

1

3
¨

6
ÿ

k=1

f

(
2k

6

)

Summetegnet er kanskje nytt for deg? Det er en effektiv måte å skrive sum-
mer på ved å innføre en variabel. Her er det k. Summen får vi ved å gjenta
uttrykket etter summetegnet for k = 1, k = 2 og så videre, helt til k = 6.
For de med erfaring fra programmering kalles dette ei FOR-sløyfe.
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Regner vi ut får vi
1

3
¨

6
ÿ

k=1

f

(
2k

6

)
=

125

27

Da har vi funnet et tilnærma areal for området under grafen!

Heldigvis kan vi få hjelp til slike utregninger med digitale verktøy. Se figur 2.4
for hvordan syntaksen er i GeoGebra og TI-Nspire.

(a) TI-Nspire
(b) Geogebra

Figur 2.4: Summer med CAS

Med denne inndelinga i seks deler har vi funnet en tilnærming til arealet som
er 125

27
« 4.63. Hvordan stemmer det med det du fant ut ved å telle ruter?

Det var en tilnærming. Deler vi opp i flere deler vil den bli bedre.

2.3 En finere oppdeling

Hva om vi deler opp i flere rektangler? Det er bare å regne ut summer. Her
er noen samlet i tabellen under:
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Antall rektangler Sum Areal

6 1
3

¨
ř6

k=1 f
(
2k
6

)
125
27

= 4.6296

7 2
7

¨
ř7

k=1 f
(
2k
7

)
232
49

= 4.7347

10 2
10

¨
ř10

k=1 f
(
2k
10

)
123
25

= 4.92

20 2
20

¨
ř20

k=1 f
(
2k
20

)
513
100

= 5.13

50 2
50

¨
ř50

k=1 f
(
2k
50

)
3283
625

= 5.2528

n 2
n

¨
řn

k=1 f
(
2k
n

)
Nederst ser du et generelt uttrykk for n rektangler, nemlig

2

n
¨

n
ÿ

k=1

f

(
2k

n

)

2.3.1 Hva om vi har uendelig mange rektangler?

Jeg nevnte at jo flere, jo bedre. Det beste må da være uendelig mange. Hva
skjer hvis vi øker antall rektangler til uendelig mange? Hvordan kan vi finne
ut det? Jo, vi kan sette inn større og større verdier for n og se hva som skjer,
men det gir bare en antydning. Som ellers når noe «går mot uendelig» er det
grenseverdier som gir oss svaret.

Vi skal se at
lim
nÑ8

2

n
¨

n
ÿ

k=1

f

(
2k

n

)
=

16

3

Igjen ber vi om litt hjelp og ber et CAS-verktøy finne svaret for oss.
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(a) TI-Nspire

(b) Geogebra

Figur 2.5: Grenseverdiene med CAS

2.4 Arealet ved integrasjon

Arealet kan vi også finne med det bestemte integralet

ż 2

0

(´x2 + 4) dx

Det regner vi ut slik

ż 2

0

(´x2 + 4) dx =

[
´
x3

3
+ 4x

]2
0

= ´
23

3
+ 4 ¨ 2 ´ 0

= ´
8

3
+

24

3

=
16

3

Funksjonsuttrykket vi finner ved integrasjon kan vi se stemmer. Det er bare å
derivere, så kan vi kontrollere det. Seinere skal vi se på regler som gjør denne
jobben for oss. Så langt skal vi konsentrere oss om konklusjonen: Integralet
gir samme svar som når vi delte i uendelig mange rektangler.

2.5 Det bestemte integralet

Det er grenseverdien for denne summen ved en oppdeling i uendelig mange
rektangler vi kaller det bestemte integralet.
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a b

şb

a
f(x)dx

x

y

Figur 2.6: Et bestemt integral

Vi så et spesielt tilfelle, men vi kan tenke oss at f er en hvilken som helst
kontinuerlig funksjon, som er definert i området. Bredden på hvert rektangel
er ∆x. Da gjelder samme argument som i det spesielle tilfellet og vi kan
skrive

Definisjon 1

ż b

a

f(x)dx = lim
nÑ8

∆x ¨

n
ÿ

k=1

f (xk) der ∆x =
b ´ a

n
og xk = a+ k ¨ ∆x

La oss se om det stemmer for vårt tilfelle. I eksemplet er a = 0 og b = 2 .
Det gir

∆x =
2 ´ 0

n
=

2

n

xk = a+ k ¨ ∆x vil vi da kunne skrive som

xk = 0 + k ¨
2

n
=

2k

n

2.5.1 Det bestemte integralet og areal

Ut fra definisjonen kan vi også observere at det bestemte integralet ikke alltid
direkte gir arealet under kurven. Blir funksjonsverdien negativ for et rektan-
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´2

20
ş

´2

x dx = ´2

0
ş

´2

x dx = 2

x

y

Figur 2.7: Areal og integral

gel vil dette få negativt fortegn. Vi kan se på et lite eksempel med funksjonen
f(x) = x. Figur 2.7 viser grafen til funksjonen. Hva er funksjonsuttrykket
til funksjonen hvor den deriverte er lik x? Svaret er integralet og et bestemt
integral kan fortelle oss arealet. Vi kan også benytte f. eks. GeoGebra til det
samme. Da finner vi

Integral[x, -2, 2] Ñ 0
Integral[x, 0, 2] Ñ 2
Integral[x, -2, 0] Ñ ´2

Her kan vi observere en viktig sammenheng mellom areal og integral: ligger
det avgrensa området under x-aksen vil integralet gi størrelsen av arealet
med negativt fortegn.

Dette ser vi stemmer med definisjonen av det bestemte integralet.

2.5.2 Det bestemte integralet og antiderivasjon

Nå har vi allerede funnet integraler som
ż 2

0

(´x2 + 4) dx

Da fant vi en funksjon ut fra den deriverte. Det bestemte integralet kan også
defineres ut fra antiderivasjon.
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Definisjon 2

Hvis F og f er kontinuerlige funksjoner i intervallet [a, b] og F 1(x) = f(x)
for alle x P xa, by har vi at

ż b

a

f(x) dx =
[
F (x)

]b
a
= F (b) ´ F (a)

Vi kaller a og b for integrasjonsgrenser.
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3 Ubestemte integral

3.1 En definisjon av ubestemte integral

Den antideriverte av en funksjon f kaller vi F og vi har da at

F 1(x) = f(x)

Da kan vi definere det ubestemte integralet med denne definisjonen

Definisjon 3
ş

f(x) dx = F (x) + C, hvor C er en konstant

Den deriverte funksjonen gir alle stigningstallene til tangentene. Er funksjo-
nen en konstant, vil alle stigningstallene være lik null. Når vi antideriverer
vil alle funksjonene på formen F (x) + C derfor være lik f(x).

Se på hva som skjer når vi deriverer disse funksjonene

f(x) = x2 + 3 ùñ f 1(x) = 2x

g(x) = x2 + 7 ùñ g1(x) = 2x

Uansett hva konstantleddet er får vi den samme deriverte. Derfor er

ż

2x dx = x2 + C

3.2 Integralregning med digitale verktøy

Digitale verktøy kan finne både bestemte og ubestemte integral for oss. Så
langt har vi funnet integralet ved å tenke antiderivasjon, som vi gjorde i dette
tilfellet

ż

(´x2 + 4) dx = ´
x3

3
+ 4x+ C
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Figur 3.1 viser hvordan vi kan finne integraler med forskjellige CAS-versktøy.

(a) WolframAlpha

(b) Geogebra (c) TI-Nspire

Figur 3.1: Integraler funnet med CAS

3.2.1 WolframAlpha

WolframAlpha er både en app for smarttelefoner og ei nettside. De har tatt
mål av seg å kunne finne svar på det meste og det inkluderer naturligvis å
finne integraler. Det er bare å begynne å skrive, så kommer forslag opp. Den
korteste inntastinga for å finne dette integralet er:

int -x^2+4

3.2.2 GeoGebra

I GeoGebra kan vi finne integraler i CAS-modulen. Kommandoen for ube-
stemte integral er

integral[-x^2+4]

3.2.3 TI-Nspire

TI-Nspire fins for iPad, PC og Mac og inneholder både CAS, regneark, tekst-
behandler, statistikk og mye mer. Kommandoene kan skrives med vanlig ma-
tematisk notasjon, som figur 3.1c viser.
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3.2.4 Praktisk bruk

Dette må prøves. Prøv å benytt verktøyet til å finne en regel for integrasjon
ved å gjøre neste oppgave.

Oppgave 7

Benytt et CAS-verktøy og finn disse integralene.

a
ş

x dx

b
ş

x2 dx

c
ş

x3 dx

d
ş

x4 dx

e
ş

x5 dx

Kan du finne en regel for integrasjon av xn?

Fant du en regel? Nå kan du sjekke om den stemmer ved å gjøre oppgaven
under.

Oppgave 8

Benytt et CAS-verktøy og finn disse integralene.

a
ş

x31 dx

b
ş

1
x9 dx

c
ş ?

x dx

d
ş

1
x
dx

e
ş

17x5 dx
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3.3 Noen regler for integrasjon

Til nå har vi prøvd oss fram eller benyttet digitale verktøy for å finne inte-
graler. Akkurat som for derivasjon fins det regler her også.

Definisjon 4

Hvis a er en konstant har vi at
ż

a dx = ax+ C

Definisjon 5

Hvis n P Rzt´1u har vi at
ż

xn dx =
1

n+ 1
xn+1 + C

Definisjon 6

Hvis a er en konstant har vi at
ż

a ¨ f(x) dx = a ¨

ż

f(x) dx

Definisjon 7
ż

[f(x) + g(x)] dx =

ż

f(x) dx+

ż

g(x) dx

Definisjon 8
ż

[f(x) ´ g(x)] dx =

ż

f(x) dx ´

ż

g(x) dx
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Oppgave 9

Finn integralene ved å benytte reglene. Kontroller svaret med et CAS-
verktøy.

a
ş

(3x4 + 5x2 + x ´ 9) dx

b
ş

(6x7 ´ 9x3 + 17) dx

3.4 Noen ord og uttrykk

ş

(x + 4) dx = 1
2x

2 + 4x + C

integrand
x er variabelen

integrasjonskonstant

Figur 3.2: Et integral
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4 Analysens fundamentalsetning

4.1 Analysens fundamentalsetning

Vi holder oss til figur 4.1 hvor vi har markert et areal under grafen avgrenset
av to vertikale linjer, a og x.

Vi legger til en liten positiv verdi ∆x til x. Hele arealet avgrenset av grafen,
linja x+∆x og a er nå A(x+∆x). Husk at ∆x er en liten verdi. Da har vi
at

A(x+∆x) ´ A(x) « f(x) ¨ ∆x

A(x+∆x) ´ A(x)

∆x
« f(x)

Så lar vi ∆x gå mot null

lim
∆xÑ0

A(x+∆x) ´ A(x)

∆x
= f(x)

Er det noe kjent med venstre side i uttrykket? Joda, det er definisjonen av
den deriverte og vi har vist at:

A1(x) = f(x)
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a x

f(x)

x+∆x

A(x)

x

y

Figur 4.1: Et integral
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5 Noen praktiske eksempler

5.1 Omsetting i en bedrift

I dette eksemplet skal vi se på sammenhengen mellom integralet og en sum.
Vi gjør det ved å se på denne oppgaven

Oppgave 10

En bedrift omsetter for 200 millioner kr i 2015 og regner med å øke omset-
tingen med 15 millioner kr per år.
Finn den samla omsettingen i perioden fra og med 2015 til og med 2020 ved

a. å summere år for år
b. å benytte integralregning

Ved summering Her kan vi gjøre det på den enkle måten ved å summere
ledd for ledd.

2015 2016 2017 2018 2019 2020 sum
200 215 230 245 260 275 1425

Et alternativ hvis det hadde vært mange ledd er å se det som ei aritmetisk
rekke hvor det første leddet er 200 og det øker med 15 for hvert ledd. Da har
vi at a1 = 200 og d = 15

Vi kan finne summen av alle leddene ved å benytte formelen for summen av
ei aritmetisk rekke

Sn =
n

2
(a1 + an)

Det siste leddet kan vi finne ved at
an = a1 + (n ´ 1) ¨ d ùñ a6 = 200 + 5 ¨ 15 = 275

Nå kan vi benytte formelen og få

S6 =
6

2
(200 + 275) = 1425

Naturligvis kan vi også skrive det med en summeformel og benytte et verktøy
for å finne svaret

6
ÿ

i=1

(200 + (i ´ 1) ¨ 15) = 1425
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Benytter vi GeoGebra kan vi skrive Sum[200+(i-1)*15, i, 1, 6 ] og få
samme svar.

Svar: Summert år for år vil omsettingen bli 1474 millioner kroner

Ved integralregning Nå må vi ha en funksjon som gir sammenhengen
mellom år og omsetting. Setter vi år 2015 lik t = 0, kaller funksjonen for o,
har vi

o(t) = 200 + 15 ¨ t

Her er Do = [0, 6]

Fra definisjonen av integralet som en sum av uendelig fin inndeling i rektang-
ler vet vi at integralet gir oss arealet under grafen. I figuren er det markert
med gul farge.

1 2 3 4 5 6 7

220

250

280

t

o(t)

Vi regner ut det bestemte integralet

ż 6

0

(200 + 15 ¨ t) dt = 1470

Svar: Integralregning gir en samla omsetting på 1470 millioner kroner
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Hva skiller de to beregningene?

Oppgaven illustrerer på en fin måte forskjellene mellom kontinuerlig og steg-
vis vekst. Noe av det samme finner vi ved renteregning eller befolkningsøk-
ning. Bankene bruker (som regel? her er jeg ikke sikker...) en stegvis vekst
for å beregne rente. Får vi 5% rente pro anno betyr det at en regner 5% av
beløpet som har stått i det året. Tas pengene ut etter kortere tid beregnes det
etter et forhold som sier noe om hvor lang tid pengene har stått i brøkdeler
av året. Slik regner vi også når det gjelder f. eks. befolkningsøkning.

Integralregning gir oss et verktøy til å benytte en vekstmodell hvor vi betrak-
ter veksten som kontinuerlig, dvs. veksten skjer hele tida. Vi har introdusert
integralregning ved å se på summen av rektangler under grafen.

1 2 3 4 5 6 7

220

250

280

t

o(t)

Integralregning er verktøyet som finner arealet under grafen. Nå er det spørs-
mål om det var det arealet eller arealet av alle rektanglene vi skulle finne.
Bare virkeligheten kan gi svaret. Kanskje noen i bedriften vet det?
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5.2 Volumet av ei kule

r

Oppgave 11

Vis at volumet V av ei kule med radius, r, er gitt ved

V =
4

3
πr3

Vi starter med å tenke at vi deler kula inn i mange små skiver slik det er
gjort i figur 5.1. Etter å ha delt ser vi på ei av skivene.

Figur 5.1: Kula delt i små skiver

Vi plasserer kula slik at sentrum er i origo i et koordinatsystem vil figur 5.2
vise ei av skivene fra to sider. Her er R radius i skiva med sentrum i punktet
x. Den har arealet A(x).

Benytter vi pytagorassetningen kan vi skrive

x2 +R2 = r2

R2 = r2 ´ x2
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Arealet av skiva kan da uttrykkes ved

A(x) = πR2 = π(r2 ´ x2)

r

xO

RR

A(x)

Figur 5.2: Et tverrsnitt

Volumet av kula kan vi da finne ved å integrere og regne ut

V =

ż r

´r

A(x) dx =

ż r

´r

π(r2 ´ x2)

= π

[
r2x ´

1

3
x3

]r
´r

= π

(
r2r ´

1

3
r3 ´

(
r2(´r) ´

1

3
(´r)3

))
= π

(
2r3 ´

2

3
r3
)

=
4

3
πr3

Da er det vist at volumet av ei kule kan uttrykkes som

V =
4

3
πr3
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5.3 Volumet av en trekanta pyramide

Oppgave 12

Vis at volumet V av en rett trekanta pyramide med grunnflate G og høyde
H er gitt ved

V =
1

3
Gh

Da er det alltid lurt å starte med en god figur. Her er en.

g

g(x)

t(x)

t

h

x

Oppgaven vår vil være å finne et uttrykk for grunnflata i et hvilket som helst
snitt gjennom pyramiden. I figuren tenker vi oss lagt i et koordinatsystem
med origo i punktet hvor høyden skjærer grunnflata. Da kan vi finne disse
forholdene

t(x)

h ´ x
=

t

h

g(x)

h ´ x
=

g

h

Det gir oss

t(x) =
t

h
¨ (h ´ x)

g(x) =
g

h
¨ (h ´ x)
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Arealet av snittflata kan vi skrive som

A(x) =
1

2
g(x)t(x) =

1

2
¨
g

h
¨ (h ´ x) ¨

t

h
¨ (h ´ x)

=
1

2
gt ¨

1

h2
(h ´ x)2

= G ¨
1

h2
(h ´ x)2

Da kan vi finne volumet av pyramiden ved integrasjon

V =

ż h

0

G ¨
1

h2
(h ´ x)2 dx =

1

3
hG
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A Vedlegg

Derivasjon er et håndverk, integrasjon er en kunst. - Viggo
Brun (1885 -1978)

A.1 Hvor kommer integraltegnet fra?

Figur A.1: Tysk fri-
merke med Leibniz

I et handskrevet manuskript datert 29. oktober 1675
introduserer Leibniz symbolet

ş

. Opprinnelsen er
bygd på den lange formen av bokstaven s. På den
tida var det en skrivemåte som ble mye benyttet,
blant annet av Leibniz.

Først elleve år etter brukt han dette symbolet på
trykk. Det skjedde i en artikkel i Acta eruditorum
i 1686 og ble brukt åtte ganger. På trykk så inte-
graltegnet litt annerledes ut enn hva vi er vant med
i dag. Det var mer amputert, som en f. Vi kjenner
tegnet igjen som den lille s i det gotiske alfabetet.
Først i Leibnizens Mathematische Schriften (1885)

er den formen vi kjenner tatt i bruk på trykk.

Jacob Bernoulli brukte første gang uttrykket integral. Johan Bernoulli foreslo
bokstaven I som symbol for integrasjon i et brev til Leibniz, men til slutt ga
han etter for Leibniz sitt forslag1.

1Opplysningene er hentet fra Cajori (1993), ei bok som kan anbefales for den som vil
vite mer om matematisk notasjon.
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