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1.1 Geometri — Hva er det?

Ordet geometri kommer fra gresk og betyr rett oversatt «jordmaling». Geometri er en av vare
eldste vitenskaper og handler om egenskaper, storrelser og sammenhenger til figurer og legemer.

Les mer her Wikipedia: Geometri og SNL: Geometri

1.2 Viktige begrep

Punkter og linjer

Et punkt i geometrien er en ide om en fast posisjon uten utstrekning. Vi markerer et punkt
med en prikk eller et kryss og benytter store bokstaver for a sette navn pa punktene.

Ei rett linje illustreres som en strek og har utstrekning i en dimensjon. Linja fortsetter uendelig
i begge retninger. Vi kan tenke pa ei linje som uendelig mange punkter.

Et linjestykke er den delen av av ei linje som ligger mellom to endepunkter. Figuren under viser
linjestykket AB.

linje

/ linjestykke

A

C\ stréale

En strale er en del av ei linje som er avgrensa av ett endepunkt. En strale er ogsa uendelig lang.

Vinkler

Vinkler er viktige i geometrien. En vinkel er dannet av to vinkelbein

A
C

Vinkelen over dannes av vinkelbeina AB og AC. Vi kan enten gi vinkelen et navn ved en
bokstav eller benytte punktene. Symbolet / benyttes som ordet «vinkelen» slik at ZCAB
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betyr «vinkelen dannet av vinkelbeina gjennom punktene C, A og B». Det er vanlig & skrive
navnene pa punktene i rekkefglge mot klokka, men ikke alle folger den regelen. Her har ogsa
ZC AB fatt navnet o som er den greske bokstaven alfa. Ofte benyttes sma greske bokstaver
eller bokstavene fra «u» i alfabetet.

For a beskrive egenskapene til vinkler benytter vi en del begrep. Her er noen definisjoner som
dukker opp.

Definisjon 1 Navn pa vinkler

a. En rett vinkel er 90°

b. En like vinkel er 180°

c. En spiss vinkel er mellom 0° og 90°

d. En stump vinkel er mellom 90° og 180°

Rett vinkel Komplementsvinkler Nabovinkler

Definisjon 2 To vinkler

a. Komplementvinkler er to vinkler som til sammen er 90°
b. Supplementsvinkler er to vinkler som til sammen er 180°
c. Nabovinkler er supplementsvinkler med felles vinkelbein

Plangeometri og symbolbruk

Et plan har en utstrekning i to dimensjoner, akkurat som et ark vi tegner pa. Vi kan kalle det
plangeometri nar vi betrakter punkter, linjer og figurer i ett og samme plan.

D C

A B

For figurene vi tegner i planet benytter vi symbolet A for ordet «trekant» og [ for «firkant».
Med utgangspunkt i figuren over kan vi skrive AABD nar vi mener «trekanten dannet av
punktene A, B og D. For «firkanten dannet av A,B, C og D» kan vi skrive JABCD.



Symboler

o /A — vinkel A

o NABC — trekant ABC

« JABCD - firkant ABCD

e AB 1 CD - AB er vinkelrett pa CD
o« AB || CD — AB er parallell med CD
e |AB| - lengden av AB

Geometrisk sted

Uttrykket geometrisk sted dukker ofte opp i geometrien

Definisjon 3 Geometrisk sted

En samling punkter hvor alle har de samme geometriske egenskapene.

Et typisk geometrisk sted vil veere sirkelen.

Alle punktene som utgjor sirkelen ligger like langt fra punktet som vi kaller sentrum. Med
uendelig mange punkt far vi det vi kaller en sirkel. Alle punktene har den samme geometriske
egenskapen: de ligger i samme avstand fra ett punkt.

Eksempler pa andre geometriske steder
o parallelle linjer til ei gitt linje
o midtnormalen til et linjestykke
o halveringslinja til en vinkel
o parabelen



2.1 FEuklid fra Aleksandria

Euklid regnes som en av grunnleggerne av geometrien. Det som gjor han fortsatt aktuell for
oss i dag er maten han bygget opp argumentasjonen sin.

Euklid ble fgdt omtrent 300 fvt., men vi vet lite om ham. Se Wikipedia: Euklid for mer.

2.2 Oppbygging

Elementene kalles boka, eller bgkene, som Fuklid skrev. Den er bygd opp ved at han starter
med noen definisjoner, postulater og allmenne regler (eng. Common notions). Ut fra disse
argumenterer han for gyldigheten av proposisjoner (ordet kommer fra det latinske propositio,
som betyr forslag).

definisjoner

postulater > pl“OpOSiSj oner

allmenne regler

Definisjonene til Euklid kan virke litt merkelig pa oss i dag. Her er noen eksempler:

Definisjon 1 Et punkt er det som ikke har noen del.
Definisjon 2 Og ei linje er en lengde uten bredde.
Definisjon 3 FEi rett-linje ligger jevnt med punkter pa seg selv.

Definisjonene kan veere vanskelige for oss, men han forsgker a klargjore alle begrepene i boka
fgr han gar i gang. De definerte begrepene benytter han for a sette fram fem postulater:

Postulat 1. En rett-linje kan trekkes fra et punkt til et annet.
Postulat 2. En endelig rett-linje kan forlenges til en vilkarlig lang rett- linje.
Postulat 3. Rundt ethvert punkt kan man konstruere en sirkel med vilkarlig stor radius.

Postulat 4. Alle rette vinkler er like store.
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Postulat 5. Nar en rett-linje skjeerer to andre rett-linjer slik at summen av de to indre vinklene
pa samme side er mindre enn to rette vinkler, vil de to rett-linjene mgtes pa den siden
av den fgrste rett-linjen hvor summen av de to indre vinklene var mindre enn to rette
vinkler, nar rett-linjene forlenges mot det uendelige.

Oversettelse henta fra Preben Lie, UiO

Dette er de fem postulatene til Euklid hvor det siste kalle parallellpostulatet. Parallellpostulatet
forteller at to parallelle linjer ikke skjeerer hverandre. Det er noe som kan diskuteres og godtas
ikke dette postulatet ender vi opp i det som kalles ikke-euklidsk geometri. I var sammenheng
godtar vi det femte postulatet og holder oss til euklidsk geometeri.

\
\

//

Euklid benytter seg ogsa av det han kaller allmenne regler eller common notions, som det heter
i engelske oversettelser av Elementene.

CN 1. Ting som er like samme ting er ogsa like hverandre.

CN 2. Og hvis like ting blir lagt til like ting, sa er ogsa totalene like.

CN 3. Og hvis like ting blir trukket fra like ting, vil ogsa restene veere like.
CN 4. Og ting som sammenfaller er like hverandre.

CN 5. Og hele er stgrre enn delene.

2.3 Argumentasjon

Vi kan se pa hvordan Euklid benyttes alt dette for & argumentere for den fgrste proposisjonen
sin. Euklids Elementer er det mulig & kjgpe i bokhandelen, men det er ogsa noen versjoner pa
tilgjengelig pa nettet. Her er lenka til en anerkjent utgave Elementene: Clark University.

Et utdrag derfra viser hvordan Euklid kommer fram til sin forste proposisjon om hvordan vi
kan konstruere en likesida trekant.


http://aleph0.clarku.edu/~djoyce/java/elements/bookI/bookI.html

FEuclid's Elements
Book "1

‘Proposition 1

To construct an equilateral triangle on a given finite straight line.

Let AB be the given finite straight line.

It is required to construct an equilateral triangle on the straight line AB.

C Describe the circle BCD with center A and radius AB. Again describe the circle ACE with center B LPost3
and radius BA. Join the straight lines CA and CB from the point C at which the circles cut one another —_
to the points A and B.
Now, since the point A is the center of the circle CDB, therefore AC equals AB. Again, since the point LDef.15

D A B E B is the center of the circle CAE, therefore BC equals BA.
But AC was proved equal to AB, therefore each of the straight lines AC and BC equals AB.
And things which equal the same thing also equal one another, therefore AC also equals BC. CN.1
Therefore the three straight lines AC, AB, and BC equal one another.
Therefore the triangle ABC is equilateral, and it has been constructed on the given finite straight line LDef20
AB.
QEF.

Euklid bygger opp en argumentasjon basert pa det han har slatt fast tidligere og viser, trinn for
trinn, hvordan den likesida trekanten kan konstrueres. En slik argumentasjon kan vi ikke kreve
av elever i grunnskolen, men strukturen ber veere basert pa a logisk bygge opp en argumentasjon
som holder.

2.4 Noen aktuelle proposisjoner fra Euklid

Mye av det vi mgter i skolematematikken, og seerlig i geometri, har sin opprinnelse i Elementene.
Vi kan se pa noen av dem

Proposisjon 15

I den engelske utgaven heter det: «If two lines cut one another, they make the vertical angles
equal to one anothery.

D E C

B

Tar vi utgangspunkt i figuren forteller proposisjonen forteller at /CEA = Z/DEB og /BEC =
LAED.

Vi kan forst vise at Z/CEFA = ZBED.



D E v C

B

La de rette linjene AB og C'D skjeere hverandre i punktet F.

Den rette linja AF danner supplementsvinklene Z/C'EA og ZAED med den rette linja
CD. Det betyr at u + v = 180°.

Den rette linja DE danner supplementsvinklene ZAED og /BED med den rette linja
AB. Det betyr at ZBED + v = 180°.

Da har vi at ZBED = ZCEA.

Euklid formulerer det som at bade summen av Z/CFEA og ZAED og summen av ZAED
og ZBED er to rette vinkler (altsa supplementsvinkler). Trekker vi fra ZAED fra begge
summene far vi at ZBED = ZCFEA.

Vi kan gjennomfgre samme argumentasjon for a vise at LZAED = ZCEB.

Proposisjon 32

In any triangle, if one of the sides is produced, then the exterior angle equals the sum of the
two interior and opposite angles, and the sum of the three interior angles of the triangle equals
two right angles.

Vi formulerer det som: Vinkelsummen i en trekant tilsvarer to rette vinkler, altsa 180°
Dette beviser Euklid i boka si. Se Elementene: Proposition 32.

Han starter med a tegne denne figuren:
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N 7/a ’

B C D

Séa bygger han opp beviset gjennom & vise til de allmenne reglene (CN), postulater og tidligere
beviste proposisjoner. Her er en direkte oversettelse

La ABC vere en trekant, og la en av sidene, BC, utvides til D.
Jeg sier da at den ytre vinkelen AC'D er lik summen av de to indre, og motsatte vinklene,
CAB og ABC, og at summen av de tre indre vinklene i trekant ABC, BCA og C'AB,
er lik to rette vinkler.
Trekk ei linje CE parallell med den rette linja AB gjennom punktet C' (P. 31).
Da siden AB er parallell med C'E og AC skjaerer begge to, vil de to vinklene BAC' og
ACE veere like store (P. 29).
Igjen, da siden AB er parallell med C'E, og den rette linja BD skjeerer begge, vil vinkel
ECD vere lik vinkel ABC' (P. 29).
Men, det er ogsa vist at vinkel AC'E er lik vinkel BAC'. Derfor vil hele vinkel AC'D veere
lik summen av vinklene BAC og ABC'.
Legg vinkel ABC' til begge. Da vil summen av vinklene AC'D og AC'B veere lik summen
av de tre vinklene ABC, BCA og CAB (CN. 2)
Men, summen av vinklene AC'D og ACB er lik to rette vinkler. Derfor er summen av
vinklene ABC, BC'A og C' AB ogsa lik to rette vinkler (P. 13).
Derfor vil summen av vinklene i enhver trekant veere lik summen av to rette vinkler (CN.
1)

O

Vinkelsummen i en trekant kan vises pa flere mater. Denne figuren kan ogsa veaere et utgangs-
punkt. Her er linja ¢ ei linje som er parallell med AB gjennom C.

A B

Da kan vi ta i bruk proposisjon 15 og vise at det ma bli 180°.
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3.1 Kongruens

Kongruens, og at figurer er kongruente, er noe et ord vi mgter i geometrien. Ordet stammer fra
det latinske congruentia som betyr «samsvary eller «stgter sammeny». En mye brukt definisjon
er denne:

Definisjon 4 Kongruens

To figurer er kongruente dersom de har samme form og stgrrelse

Det betyr at figurene som kan legges oppa hverandre, og dekke hverandre den ngyaktig, er
kongruente. Da vil alle vinkler og lengder veere like.

Kongruens er et sentralt tema i geometrien og et sentralt mal i leereplanen hvor vi finner dette
kompetansemalet i LK20.

Kompetansemal etter 9. trinn
Mal for opplaeringa er at eleven skal kunne

o utforske eigenskapane ved ulike polygon og forklare omgrepa formlikskap og kongruens

Som vi ser er det et mal at elevene skal kunne forklare begrepene kongruens og formlikhet. I
leereplanen er det nevnt polygon (mangekanter). Vi tar trekanten som utgangspunkt.

3.2 Kongruente trekanter

Vi kan tegne to trekanter med like store vinkler og like lange sider.

D

I de to trekantene AABC og ADFEF finner vi de samme vinklene Zu, Zv og Zw. I tillegg
er sidene parvis like lange, dvs. |AC| = |DF|, |AB| = |DE| og |BC| = |EF|. Klipper vi ut
trekantene kan vi legge dem oppa hverandre og de vil ngyaktig dekke hverandre. Trekantene er
kongruente. Det fins et eget symbol for «kongruent» og vi kan skrive det slik:

ANABC = ADEF

For a avgjgre om to trekanter er kongruente har vi noen hjelpemidler i form av kongruensset-
ninger. Oppfylles kravene i disse teoremene vil trekantene veere kongruente. Legg merke til at
om alle kravene oppfylles sa er bade formen pa trekanten og stgrrelsen bestemt.
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To trekanter er kongruente hvis de har parvis like lange sider

C F
& E
D
A
B
Greier vi a vise at to trekanter har de samme lengdene pa sidene kan vi med side-side-side-
postulatet sla fast at trekantene er kongruente.

To trekanter er kongruente hvis de har to parvis like lange sider med samme vinkel mellom
de to sidene.

B

Ofte kan det veere lurt a tenke seg at trekantene skal konstrueres med de kravene som star.
Starter vi med ei gitt side, setter av den gitte vinkelen og markerer lengden pa det andre
vinkelbeinet, sa er bade form og stgrrelse pa trekantene bestemt.

To trekanter er kongruente hvis de har to vinkler som er like store og den mellomliggende
siden mellom toppunktene er like lange.

Med to vinkler hvor begge har ett felles vinkelbein bestemmes trekanten og stemmer det for to
trekanter ma de veere kongruente.

Legg ogsa merke til at hvis vi vet at to vinkler i en trekanter er parvis like store, sa vil den tredje
vinkelen veere like store i trekantene. Nar vi vet det har vi ogsa vinkel-vinkel-side-postulatet.

12



To trekanter er kongruente hvis de har to vinkler som er like store og en side som er like
lange.

Egentlig blir det bare en presisering av vinkel-side-vinkel-postulatet.

To trekanter er kongruente hvis to sider er like lange og den motstaende vinkelen til den
lengste siden er like stor i begge trekanter.

B

Den setningen kan det veaere vanskeligere a se for seg, men igjen kan det veere greit a tenke pa
hvordan vi kan konstruere en trekant med de gitte kravene.

En oppgave som et eksempel

Kongruenssetningene benyttes til a vise kongruens. En typisk oppgave kan vaere omtrent som
den under.

Oppgave 1

I figuren under er AC' = CD og BC = C'E. Argumenter for at AABC = ADEC.
E

D

13



Lgsningsforslag

Oppgaven gir at |[AC| = |CD| og |BC| = |CE|.
E

A
B

De to linjene AD og BFE skjeerer hverandre i punktet C' og danner vinklene ZBC'A og
ZFECD som blir toppvinkler.

Side-vinkel-side-postulatet forteller at: To trekanter er kongruente hvis de har to
parvis like lange sider med samme vinkel mellom de to sidene.

Her er |AC| = |CD| og |BC| = |CE]|. Vinklene er toppvinkler og ZBCA = ZECD.
SVS-postulatet er oppfylt og trekantene er kongruente:

ANACB = ADCE O

Oppsummering

« SVS (Side-Vinkel-Side) - de har like lange sider som danner en like stor vinkel.
Engelsk: SAS (Side-Angle-Side)

o SSS (Side-Side-Side) - de har like lange sider

« VSV (Vinkel-Side-Vinkel) - de har to like store vinkler og ei side som er like lang.
Engelsk: ASA (Angle-Side-Angle)

e SSV (Side-Side-Vinkel) - to like lange sider og motstaende vinkel til den lengste
sida like. Engelsk: SSA (Side-Side-Angle)

3.3 Likebeinte trekanter
Kongruens benytter vi ofte i bevis. Na kan vi se pa hvordan vi kan bevis egenskaper ved
likebeinte trekanter ved hjelp av kongruens.

Den likebeinte trekanten er en spesiell type trekant vi ofte stgter pa i geometrien. Slik ser den
ut:



Definisjon 5 Likebeint trekant

I en likebeint trekant er to sider like lange

Figuren viser en likebeint trekant AABC hvor lengden av AC' og BC er lik. De kalles ofte
beina i trekanten og AB kalles grunnlinja.

De likebeinte trekantene har noen egenskaper det kan veere greit a kjenne til.
o vinklene ved grunnlinja er like store

e hgyden deler grunnlinja i to like lengder

Vinklene ved grunnlinja er like store

Vi kan vise at LZABC = ZCAB.

Vi starter med utgangspunkt i figuren over og finner midtpunktet pa AB som vi gir
navnet D.

15



A D B

Fra D tegner vi inn linjestykket DC'. Na vet vi at lengden av AD er den samme som DB.
Vi kan skrive det som | AD |=| DB |.
Da vil vi ved SSS, alle sidene er like lange, ha at

ANADC = ABDC

Det betyr at ZABC = ZCAB .

Vi kan ogsa vise at hvis de to vinklene ved grunnlinja er like store, sa ma beina veere like
lange. Vi starter med & tegne en trekant med to like store vinkler ved grunnlinja

C

-
A D B

I trekanten feller vi ned en normal fra C til grunnlinja AB og kaller punktet den skjeerer
grunnlinja for D. Vi vet at ZDAC = ZDBC, at ZCDA = /ZCDB = 90° og at CD er ei

16



felles side. Da kan vi ved VVS pasta at
ANADC = ABDC

Det betyr at lengden av AC' og lengden av BC' ma veere like og at AABC' er likebeint.
O

Hgyden deler grunnlinja i to like lengder

Hgyden fra C er linjestykket som star vinkelrett pa grunnlinja. Ut fra forrige bevis kan vi
konkludere med at den deler grunnlinja i to like store deler, men vi kan ogsa vise det ut fra den
forste figuren.

Tar vi utgangspunkt i forste figur har vi vist at AADC = ABDC. Det betyr at ZADC =
ZBDC og at de to vinklene til sammen vil veere 180°. Da ma begge vaere 90° og vi har
vist at C'D 1L AB, altsé er C'D hgyden i AABC.

O

3.4 Kongruensavbildninger — isometri

Kongruente figurer kan flyttes pa uten at noe skjer med formen. Flyttingen kan vi kalle for
kongruensavbildninger og skje pa flere mater.

 speiling

e rotasjon

« parallellforskyving
o glidespeiling

Kongruensavbildninger kan vi ogsa kalle for isometrier.

17



Speiling

En speiling krever ei speilingslinje som figuren skal speiles over. Hvert punkt pa figuren skal
ligge like langt fra speilingslinja som i den speilte figuren. I figuren under kan vi se to speilte
figurerer og speilingslinja. Legg merke til hvordan punktene ligger like langt fra speilingslinja.

Vi kan formulere det mer matematisk ved a starten med en trekant AABC og ei speilingslinje.
Avstanden fra A til et nytt punkt A’ skal veere like langt. Avstanden fra A til speilingslinja
vil veere normalen fra punktet til til linja. Det nye punktet A’ kan vi derfor plassere i samme
avstand pa den samme normalen. Gjentar vi det samme for de andre punktene vil vi fa speilingen

ANA'B'C'.

Vi kan definere hva speiling er pa samme mate

Definisjon 6 Speiling

En speiling om ei rett linje [ skjer ved at et vilkarlig punkt P avbildes som P’ pa motsatt
side av [. P og P’ har samme avstand fra [. Linja PP’ star vinkelrett pa [

Rotasjon

Det ligger i navnet: En rotasjon roterer, eller «snur» noe.

18
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Geometriske figurer kan vi betrakte som en samling av mange punkter. Hvert punkt i figuren
blir rotert i en rotasjon. Da ma vi vite hvor mye punktene roterer og vi ma ogsa ha ett punkt
de roterer ut fra.

Figuren under viser AABC og punktet O. Starter vi med punkt A og roterer det med 30° om
punkt O far vi punktet A’. Det samme kan vi gjore for alle punktene i AABC og ende opp
med AA'B'C".

C

Bl

Som vi ser ma vi vite rotasjonsvinkelen og vi ma vite hvilket punkt vi roterer om.

Definisjon 7 Rotasjon

En rotasjon er bestemt ved et punkt og en vinkel. Vi kaller det rotasjonssentrum, O,
og rotasjonsvinkel, v. Et vilkarlig punkt P avbildes som P’ slik at |[PO| = |P'O| og
/POP’' = .

Parallellforskyving

Punkter kan ogsa flyttes langs ei linje. Flytter vi alle like langt og parallelt med linja ender vi
opp med en parallellforskyving.

19



Vi méa kjenne retningen og hvor langt punktene skal flyttes. En vektor er en stgrrelse med en
retning. Kjenner vi den vet vi hvordan vi kan avbilde punktene. Vektorer dukker ofte opp i
matematikken og notasjonen er et navn med ei pil over: .

Har vi en trekant og en slik vektor kan vi flytte pa den. I figuren har vi AABC' og 4. Vektoren
forteller oss retningen og hvor langt hvert punkt skal flyttes.

C/

A B

A B

£

Da ender vi opp med den nye trekanten AA’B’C" og vi har gjennomfgrt en parallellforskyving.

Definisjon 8 Parallellforskyving

En parallellforskyving er bestem av en retning og en lengde: u. Et vilkarlig punkt P
avbildes som P’ slik at PP’ er parallell med og like lang som .
Vi kaller @ forskyvningsvektoren.

Glidespeiling

En glidespeiling er en sammensetning av en parallellforskyving og en speiling. Starter vi med
ANABC og speiler den ender vi opp med AA’B'C’. En parallellforskyving gjer at vi far AA” B"C".
Til sammen blir det en glidespeiling.

c’ C
AT ~
B/( ,,,,,,,,, 3 ,,,,,, 4%
B o
2//
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Definisjon 9 Glidespeiling

Glidespeiling er en speiling og en parallellforskyving hvor forskyvingsvektoren er parallell
med speilingslinja.
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Formlikhet — ordet forteller hva det betyr. To figurer er formlike nar de har samme form.
Tidligere har vi veert innom kongruens. Da kreves det bade samme form og samme stgrrelse.
Na er det bare formen som er det viktige.

P~
Y

De to tegningene viser samme figur, men stgrrelsene er forskjellige. Hver detalj har samme form
og figurene er formlike. Ved en skalering, at vi forstgrrer eller forminsker, kan vi lage den ene
av den andre.

4.1 Formlike trekanter

To trekanter vil veere formlike hvis de har de samme vinklene.

F

Vi skriver det slik:
NABC ~ ADEF

4.2 Sidene i formlike trekanter

Nar trekantene er formlike er den ene en skalering av den andre. Det utnytter vi ofte til & finne
ukjente sider.

Tar vi utgangspunkt i de to trekantene, og passer pa at vi velger sider som er vinkelbein til de
like store vinklene, har vi at
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|AB| = k - | DE|
|AC| = k - |DF]
|BC| = k - |EF]

hvor k er en malestokk. Sidelengdene vil bestemmes av malestokken. Hvis & > 1 vil det vaere
en forstorrelse og hvis k£ < 1 en forminskelse.

Her er det ogsa mulig a skrive om og fa

[CAl _ |AB| _ |€B] _

= = =k
|FD| |DE| |FE|

Forholdene kan vi sette opp pa mange mater, men her er det viktig & passe pa at vi far parvis
samhgrende sider. Et godt tips kan vaere a sette opp trekantene ved siden av hverandre som
over. Da kan vi ogsa f.eks. se at

ICA| _|CA|-k _|DF|
IAB| ~ |AB|-k _ |DE|

Altsa at forholdet mellom to sider i en trekant vil veere det samme som forholdet med de
samhgrende sidene i den andre trekanten.

Detter er noe vi utnytter nar vi skal lgse oppgaver.

4.3 Noen typiske oppgaver

Vi kan se pa noen typiske oppgaver hvor formlikhet utnyttes.

Oppgave 2

Vi skal bestemme bredden av ei elv mellom punktene A og B. Vi maler avstandene AC
=33 m, CE = 18 m og ED = 12 m.
B

Hva er bredden AB av elva?
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Lgsningsforslag

Trekantene ANACE ~ AECD fordi

o LACB = ZECD siden de er toppvinkler

o L/CAB=Z/ZCED =90°
Nar to vinkler er de samme ma ogsa den tredje vinkelen veere like stor.
Da kan vi sette opp to forhold som ma vaere like hverandre:

|AB| _ |ED|
|AC|  |EC]|
Vi regner ut:
|AB|  |ED|
|AC| — |EC)|
4B _ 12
33 18
12
AB|=33.-— =22

Svar: Bredden av elva er 22 m

Her er en oppgave henta fra eksamen i grunnskolen varen 2011

Oppgave 3

Historien forteller oss at Thales fra Milet (gresk filosof som levde om-
trent 600 fvt.) imponerte alle da han bestemte hgyden av Keopspy-
ramiden i Egypt. Han malte opp pyramiden og fant ut at grunnflata
var kvadratisk med sidekanter lik 230 m. Sa tok han & satte opp en
pinne litt bortenfor pyramiden og kunne male skyggene som bade
pyramide og pinnen kastet. Figuren under viser lengden av pinnen som NM og lengden
av skyggen pinnen kastet som N P. Lengden av skyggen fra pyramiden er EC'

c |

N P

Thales malte skyggen til pyramiden og fant FC' = 431 m. Pinnen han satte opp var to
meter hgg og skyggen til den var 7.5 m.
Ta utgangspunkt i figuren til Thales og finn hgyden av pyramiden.
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Lgsningsforslag

Det er lurt a starte med en god figur

230 m

Thales kunne vise at det er to formlike trekanter gitt at solvinkelen er omtrent den
samme. Da har vi at AACT ~ ANPM. Det gjgr at vi kan finne hgyden ved & sette opp
forhold mellom sidelengdene i de to trekantene.

Vi vet at sidekanten i Keopspyramiden er 230 m. Pyramiden er reguleer (ikke skeiv), og
da blir avstanden AF = 23—0.

AT NM
AC NP
h 2
1154+431 7.5
2
h =546 - — = 145.6
7.5

Svar: Hgyden er 145.6 meter

4.4 Transversalsetningen

Transversalsetningen er en setning, eller et teorem, som dukker opp i flere sammenhenger.
Vi far bruk for den nar vi skal fullfgre en del bevis samtidig som den viser noen interessante
geometriske sammenhenger. Skal vi bevise det vi allerede har brukt om forholdet mellom sidene
i formlike trekanter far vi bruk for denne setningen.

Hva er en transversal?

Forst ma vi bli enige om hva vi mener med en transversal. Store norske leksikon forklarer
at en transversal er «linje som skjeerer én bestemt kurve eller flere kurver.». Se SNL. I var
sammenheng kan vi bytte ut «kurve» med «linje». En transversal blir da ei rett linje som
skjeerer ei, eller flere, andre rette linjer.
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Er to linjer som skjeeres av en transversal parallelle far vi en transversal vi kan kalle en paral-
lelltransversal.

a

Vi kommer til & se pa parallelltransversaler i trekanter og kan gi denne definisjonen.

Definisjon 10 Transversal

Ei linje som skjeaerer to eller flere linjer.

Da er vi klare til & se pa transversalsetningen

Transversalsetningen

Vi starter med en figur.

. m

Med utgangspunkt i figuren kan vi formulere denne setningen.
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La m og [ veere to linjer som skjeerer over vinkelbeina til en vinkel med toppunkt A. [
skjeerer det ene vinkelbeinet i B og det andre i C' og m skjeerer det ene vinkelbeinet i D
og det andre i F.

Da gjelder at

s 4Bl 14C]

|AD| ~ |AE]
Transversalsetningen forteller oss at hvis linjene [ og m er parallelle sa gjelder det at % = %.
Den forteller ogsa det motsatte: Hvis % = Ii—gl, sa ma linjene [ og m veaere parallelle. Det er

derfor ekvivalenstegnet er benyttet.

Bevis

For vi gar i gang med beviset kan det vaere greit & merke seg skriveméaten
a(ANADC)

Det betyr arealet av trekant ADC og vil bli brukt for & spare litt plass.

Vi tegner linjestykkene DC' og BE og far denne figuren.
A

m

Vi antar at [ || m og har da at
BC | DE = o(ADEB) = a(ADCE)

Begge trekantene har samme grunnlinje og samme hgyde fordi de to linjene er parallelle.
Na kan vi se pa flere arealer og observere at

a(AADE) — a(ADEB) = a(AABE)

a(AADE) — a(ADCE) = a(AADC)
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Nér vi vet at «(ADEB) = a(ADCE) betyr det at
a(AADC) = a(AABE)

AABC og AADC har samme hgyde. Det betyr at forholdet mellom lengdene av grunn-
linjene i de to trekantene ma veere det samme som forholdet mellom arealene. Det gir
|AB|  a(AABC) o(AABC)  |AC]
|AD|  a(AADC)  o(AABE)  |AE|

Sidene i formlike trekanter

Tar vi utgangspunkt i transversalsetningen kan vi na bevise at forholdene mellom sidene i to
formlike trekanter gjelder.

Figuren under viser to formlike trekanter

ANABC ~ ADEF

A B
De er formlike siden vinkelene er parvis like store og vi har at

|AB| B |BC| B |AC|
DE| ~ |EF| _ |DF|

Dette kan bevises med transversalsetningen.

De to trekantene er formlike og flyttes slik at vi far denne figuren.
F
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Fra transversalsetningen har vi at

|AB|  |AC|

|DE|  |DF|
Vi kan ogsa flytte trekantene slik at vi far denne figuren

C F
A B
D E

Transversalsetningen gir

|AC|  |BC]

|DF| — |EF]

Da har vi vist at

|AB| _ |BC| |AC]
|DE|  |EF| |DF

Ut fra at vi vet
|AB| B |BC| B |AC|

|DE|  |EF| |DF

kan vi ogsa se at
|DE| |EF| |DF|

[AB|  |BC|  |AC]

eller

|AC|  |DF)|
|AB|  |DE)|
og alle mulige andre varianter av forhold.

Tips: Tegn opp trekantene ved siden av hverandre og hold tunga rett i munnen. Matpapir kan
veere lurt hjelpemiddel.
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5 Pytagoras

Pytagoras ble fadt pa den greske gya Samos omtrent 570 f. Kr. og har gitt navnet til denne
lzeresetningen eller teoremet. Et teorem er et matematisk pastand som er bevist. Han syslet med
langt flere studier enn akkurat dette, blant annet musikk og fysikk. Faktisk var det ikke han
som fgrst fant denne setningen heller. I dag vet vi at andre kulturer kjente til dette forholdet
lenge for Pytagoras.

5.1 Leaeresetningen til Pytagoras

Pytagoras sin leeresetning kan vi formulere pa flere mater. Her er en vanlig formulering.

I en rettvinkla trekant er arealet av kvadratet med side lik hypotenusen lik summen av
arealene av kvadratene med sider lik hver katet.

c
c

B

c
c
C & A
a a

a

Figuren illustrerer setningen hvor vi har at
& =a’+ b

Setningen kan formuleres pa flere mater. Et alternativ er denne:

I en rettvinkla trekant er kvadratet av lengden av hypotenusen lik summen av
kvadratene av lengdene til katetene.

Ut fra definisjonene kan vi ogsa formulere den omvendte pytagorassetningen:
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Hvis summen av arealene av kvadratene pa to sider er lik arealet av kvadratet pa den
siste sida er trekanten rettvinkla

Den siste setningen krever et eget bevis som vi skal se pa seinere, men fgrst na skal vi se pa
noen bevis for at pytagorassetningen stemmer.

5.2 Bevis av setningen

Det fins svaert mange bevis for Pytagoras sin setning. Wikipedia: Pythagorean theorem viser
noen og har lenker til andre varianter. Her kommer noen av de vanligste.

Chou Pei

Chou Pei Suan Ching, eller Zhou Bi Suan Jing, er en av de eldste kinesiske bgkene. Direkte
oversatt er det pa norsk: Den aritmetiske klassikeren om Gnomon og de sirkuleere stiene i
himmelen. Bgkene er fra Zhou-dynastiet som varte fra 1046 til 256 f. Kr. Seinere er bgkene
samlet og utvidet. Figur 5.1 viser en figur hentet fra en av bgkene. Vi tegner opp den pa nytt
og setter navn pa sidene og ender opp med figur ??. Den vil vi benytte til beviset.

&K
ﬁ {%% \\ o
/ N

P, E% '
TR
!

Figur 5.1: Hlustrasjon fra Chou Pei Suan Ching

SRR R 96 72 &

Tegner vi opp det samme og setter pa lengder av sidene ser det slik ut:

b a
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Med utgangspunkt i figuren kan vi fore dette beviset:

b
(a+b)2:4-%+02

a® + 2ab + b = 2ab + &2

a?+ b2 =2
O]

Beviset bygger pa hvordan vi kan regne ut arealet av det store kvadratet pa flere mater. (a+b)?
gir arealet av kvadratet ved a multiplisere sidene med hverandre. Alternativt kan vi finne det
samme arealet ved & finne arealet av det rgde kvadratet, ¢? og legge til de fire trekantene som
mangler.

Bevis med formlike trekanter

A C

B

I figuren er AABC en rettvinkla trekant. Vi feller ned en normal fra punktet C' og ned pa
grunnlinja AB. Skjeeringspunktet kaller vi D.

Da har vi at AABC ~ AADC ~ ABDC fordi alle har en felles vinkel og en annen vinkel som
er oppgitt til 90°

Vi setter AD =2 og DB =y.
At AABC ~ ANADC gir:

E:E:>b2:CZL‘
At AABC ~ ACDB gir:
g:%:MzQ:cy

Det kan vi bruke slik:

A+ =cr+cy
= c(x +y)

=Cc-Cc==¢C
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Garfield sitt bevis

James Abram Garfield (1831 — 1881) var den 20. presidenten i USA. I 1876 presenterte han et
bevis med utgangspunkt i figuren under.

C
D b
a
c
Y B
A b E

Forst beregnet han arealet av hele trapeset ved a bruke formelen for arealet av et trapes, som
er summen av lengdene av de parallelle sidene delt pa to ganger hgyden

(a+0b)
2

(a+b)?
2

(a+0b) =

Vi kan finne det samme arealet ved 4 ta summen av trekantene:

ba ab cc

2+2+2

De to uttrykkene for arealet er like og av det fglger beviset:

ba ab cc  (a+Db)?
2t T T
2ab+ ¢* = (a +b)?
2ab + ¢* = a® + 2ab + b*

¢ =a’+ b

Euklids bevis

Euklid, han som skrev bgkene Elementene, tok ogsa med et bevis for pytagorassetningen. Han
tok utgangspunkt i figuren under. Den kalles ofte for «brudens stol». Illustrasjonen i figur 5.2
er hentet fra en eldre utgave av Elementene.

Vi tegner opp figuren til Euklid pa nytt.
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Figur 5.2: lllustrasjon fra Euklids Elementene

D K E

Euklids bevis gar ut pa a viset at arealet av [JADFEB er det samme som summen av arealene
til OBHIC og JACFG. Vi skriver arealet av rektanglet ABED som o(JABED)

Da skal vi vise at «(JABDE) = o(OCBHI) + o(OJACFQG)
Med utgangspunkt i figuren fins det flere alternativer.
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Alternativ 1 Av figuren ser vi at JADK J og AADC har samme grunnlinje, AD, og samme
hgyde, DK. Det betyr at:
a(JADKJ) =2 a(A(ADC)

Vi kan ogsa vise at:

a(JACFG) =2 - a(A(ABG)
siden begge har felles grunnlinje AG og felles hgyde GF'.

Sa kan vi vise at

ANADC = ANABG

Av figuren kan vi se at den ene er en 90° rotasjon av den andre om punktet A. Kongruensen
kan vi vise med kongruenssetningen: side-vinkel-side. Vi har at AG = AC og at AD = AB. Sa
har vi at: ZBAG = ZDAC = 90° + ZBAC.

Da fglger det at:

a(OADKJ) =2 - a(AADC) =2 - a(AABG) = o(JACFG)

Vi kan fglge samme framgangsmate for a vise at: «(OCBHI) = «(OJKEB)

Da har vi vist at:
a(JACFG) + o(OCBHI) = «(OADEB)

Alternativ 2 Vi vil vise at:

a(OACFG) = a(OADKJ)
(OCBHI) = o(0JK EB)

Forst viser vi at
a(JACFG) = o(OADKJ)

a(AGAC) = a(AGAB) fordi begge har grunnlinje GA og hgyde AC. De har samme hgyde
fordi ZACB er rettvinkla og hgyden i AGAB er avstanden fra GA til F'C. Punktet B ligger
ogsa pa linja gjennom F og C'. Da vil linja BC' veere parallell med linja GA og de to trekantene
har samme hgyde.

Da kan vi vise at
a(AGAB) = a(ACAD)
Det er fordi ZGAB = ZCAD siden begge er 90°+ ZCAB da er AGAB = ACAD. Her bruker

vi argumentet med side - vinkel - side.

Vi har ogsa at
a(ACAD) = a(AJAD)

fordi begge har grunnlinja AD og hgyde AJ
Setter vi alt det sammen har vi at: «(AGAC) = a(AJAD)

a(ANJAD) =
a(AGAC) =

- o(OADK.J)
-o(0ACFG)

1
2
1
2

} = a(JACFG) = o(OAJKD)
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Fglger vi samme argumentasjon kan vi ogsa vise at a(JBCIH) = o(OKFEB/J) etter samme
framgangsmate som over. Da far vi

a(OABED) = o(OBCIH) + o(OACFG)

]
Alternativ 3 Vi starter med a vise at:
ANABC ~ AAJC
Det kan vi vise ved at begge trekanter er rettvinkla og begge trekanter har ZBAC felles.
Da vet vi at % = % og vi har at:
AJ AC
AC  AB
AC
AJ=AC - —
AB
AJ-AB = AC - AC
AC?* = AJ - AB
Na vet vi at AD = AB og da betyr det vi har funnet at:
a(HACFG) = o(OADKJ)
Folger vi samme framgangsmate kan vi vise at:
ANABC ~ ACBJ
Da har vi at % = é—g. Gjgr vi samme utregning far vi at
BC?*= AB-JB
Da vet vi at:
a(OCBHI) = o«(OJKEB)
og vi har vist at:
a(JACFG) + o(OCBHI) = «(OADEB)
]

Alternativ 4 Vi starter med & vise at

a(AADC) = - - «(OADKJ)

DO | —

Grunnlinja i AADC er AD og hgyden er AJ. AD og AJ er ogsa hgyde og bredde i HADKJ.

Sa finner vi arealet at AADC'. Fgrst viser vi at det er det samme som arealet av AABG. Vi
kan vise at AADC =2 AABG. Det stemmer siden
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AD = AB
AC = AG
LCAD = ZGAB

Arealet av AADC:

AG-AC 1,
—3 A

Na& utnytter vi at a( AADC) =1 - o(OADKJ) og vi far at:

a(AABG) =

a(AADC) = % AD - AJ

Disse to arealene ma veere like og vi kan sette opp denne likninga:

1~AC?:%-AB-AJ

2
)
AC*=AB- AJ
Tilsvarende resonnement gir: BC? = AB - JB
Legger sammen de to lengdene og far denne likninga
AC? + BC* = AB-AJ + AB - JB
=AB-(AJ+ JB)

— AB- AB
= AB?

Flytting og bytting
Et annet bevis kan fores ved a flytte trekanter. Se pa figur 5.3. Kan du se beviset?

Arealet av det hvite omradet er det samme i begge figurene. I den ene er det kvadratet pa
hypotenusen. I den andre figuren er det kvadratene pa hver av katetene.

5.3 Bevis for den omvendte setningen

Den omvendte setningen forteller at vinkelen i en trekant hvor a? + b? = ¢ méa veere rett. Den
kan ogsa bevises pa flere mater. Her er noen alternativer.
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Figur 5.3: Flytting av trekanter
Alternativ 1 Vi starter med AABC hvor vi har at

a? =b* + (5.1)

Vi skal viset at LBAC er en rett vinkel.

C F
b a b x
-
A ¢ B D ¢ E

Det neste vi gjor er a konstruere en rettvinkla trekant ADFEF slik at DE = AB = ¢ og
DF = AC =b. Vi kaller EF = z.

I ADEF er /D = 90° og da sier pytagorassetningen at forholdet mellom sidene i den kon-
struerte trekanten er

v? =0+ (5.2)

I AABC har vi gitt likning 5.1. Ved sammenlikning av de to likningene 5.1 og 5.2 far vi

(12:.172 — a=x

Ved kongruenspostulatet SSS har vi da at

ANABC = ADEF
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Det betyr at ZA = /D og at ZA er en rett vinkel.
O
Alternativ 2 Vi tegner en trekant med sidelengdene BC' = a, AC' = b og AB = ¢ og skal
bevise at hvis a? = b + ¢ s ma ZA = 90°.
Tegner vi en tilfeldig trekant og feller ned normalen fra C' pa AB kan vi ha to tilfeller.
C C

A c B A c B

Vi kan vise at normalen fra C' ma treffe AB i punktet A. Kaller vi avstanden fra normalens
fotpunkt og A for x far vi

a®=h*+(cE£x)? =h*+c £ 2 + 2°

Vi har ogsa at
L
som vi kan sette inn i det forrige uttrykket og fa

a’> =0+ 2+ 2

Utgangspunktet var at a* = b? + ¢?. Det betyr at x = 0 noe som betyr at normalen vil treffe i
punktet A. Altsa AABC er rettvinkla. [J
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6 Periferivinkelsetningen

6.1 Periferivinkelsetningen

Forst ma vi veere enige om hva en periferivinkel og en sentralvinkel er.

Definisjon 11 Perfiferi- og sentralvinkel

En periferivinkel er en vinkel med toppunkt pa sirkelperiferien.
En sentralvinkel er en vinkel med toppunkt i sentrum av sirkelen.

I figur 6.1 er 3 en sentralvinkel og o en periferivinkel.

C

Figur 6.1: Periferi- og sentralvinkel

Det er en viktig sammenheng mellom disse to vinklene:

Nar en periferivinkel og en sentralvinkel spenner over samme sirkelbue, sa er periferivin-
kelen halvparten sa stor som sentralvinkelen.

Dette teoremet, eller leeresetningen, kan bevises pa flere mater.

Tar vi utgangspunkt i figur 6.1 ser vi at bade periferivinkelen og sentralvinkelen deles i
to deler av diameteren C'D. Vi har at

a=LACS + £SCB (6.1)
B =/ASD + /DSB
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Ut fra det vi vet om vinkelsummen i en trekant har vi at
LSAC + ZACS +ZC5A =180°

Ut fra definisjonen av en sirkel har vi at alle radiene er like lange. Det betyr at SA = SC
og at AASC er en likebeint trekant. Det betyr igjen at ZLSAC = LACS.
Daer ZOUSA=180" — ZASD og det forer til at

LSAC + LACS + LZCSA=180"°

I
LACS + LZACS + (180" — LASD) =180°
N2
LASD =2-LACS (6.3)
Tilsvarende far vi for ABSC
/DSB=2-/5CB (6.4)

Setter (3) og (4) inni (2)

B=2-/ACS+2-/SCB
— 2. (LACS + /SCB)

=2«

Hvilket skulle bevises.
O

Kanskje tar ikke beviset over hensyn til alle tilfeller av sentral- og periferivinkler? Et mer
utfyllende bevis kan ta utgangspunkt i flere tilfeller.

Vi kan se pa tre mulige tilfeller av periferi- og sentralvinkler.

Tilfelle 1
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- R

I dette tilfellet ligger QOR pa samme linje. Vi har da en likebeint trekant APOQ fordi
sidene OQ) og OP begge er radius i sirkelen. Vi vet da at vinklene ZQPO og ZPQO er
like store. La oss kalle disse vinkelene (5. Legg ogsa merke til at dette er perfiferivinkelen.
Da har vi at ZPOQ =180° —2-0

Na vet vi at sentralvinkelen, som vi kan kalle «, er:
a=/POR=180" — ZPOQ =180" —(180° —2-a)=2-0

Altsa: a=2-p0

Tilfelle 2 1 dette tilfellet ligger sentrum, O, inne i periferivinkelen. Vi trekker da ei
hjelpelinje og ender opp med denne figuren

0 R

RV

5

Da har vi at sentralvinkelen er: « = ZPOS + ZSOR
Vi har da to figurer som er identiske med tilfelle 1. Vi vet da at
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ZLPOS =2/PQS
ZSOR =2/5QR

Setter inn og far

a = /POS + ZSOR
— 2/PQS + 2/SQR
= 2(£LPQS + ZSQR) —92.

Tilfelle 3

S

Vi trekker igjen ei hjelpelinje gjennom fra () gjennom sentrum.
Vi har at « = ZPOR = ZPOS — ZROS.
Igjen har vi to figurer som er identiske med det forste tilfellet, og vi vet igjen at

LPOS =2/PQS
ZSOR =2/5QR

a=/POR
— /POS — ZROS
=2/PQS — 2/RQS
= 2(£LPQS — ZRQS)
=28
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6.2 Tales setning

Denne setningen har fatt navnet sitt etter Tales fra Millet. Se mer her Wikipedia: Tales fra
Milet. Navnet pa matematikere fra gamle dager er blitt brukt i flere sammenhenger og det fins
flere setninger som har samme navn. Legg ogsa merke til at navnet skrives bade med og uten
«h»: Thales eller Tales. Denne setningen er et spesialtilfelle av periferivinkelsetningen.

En periferivinkel som spenner over en bue pa 180° er 90 °

Det er noe vi ofte benytter oss av i konstruksjoner.

O DGP: Utforsk periferivinkelsetningen

Bruk GeoGebra eller et annet DGP. Tegn en sirkel med sentrum. Sett av punkter pa
sirkelen slik at det dannes en sentral- og periferivinkel som spenner over samme bue. Mal
vinklene for & se om periferivinkelsetningen stemmer.

6.3 Noen oppgaver

Vi benytter perfierivinkelsetningen i mange sammenhenger. Her er en oppgave som viser akkurat
det. Prgv a unnga a se pa lgsningen fgr du har fatt prevd deg.

Oppgave 4

I AABC er AB =20 og ZC' = 90°. Normalen fra C treffer AB i punktet H. CH = a
Finn for hvilke verdier av a vi har to, en eller ingen trekanter som mulige lgsninger.

Lgsningsforslag

Tenk pa setningen til Tales. C' vil ligger pa en halvsirkel med diameter lik AB. Tegn opp!
Da kan du se at det er en lgsning nar a = 10, ingen lgsning nar a > 10 og to lgsninger
nar a < 10
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Oppgave 5

Pa en likebeint trekant konstrueres det et kvadrat pa det beinet. Resultatet blir som i
figuren under.

«

Fra det motsatte hjgrnet i trekanten trekkes det en diagonal til det gvre hjgrnet i kvad-
ratet. Hvor stor blir vinkel a?

Lgsningsforslag

Dette er en oppgave hvor det er vanskelig & vite hvor en skal starte. Det er nok lurt a
tenke pa hva det er vi far opplyst. Her er det mange sider som er like lange og trekanten
er likebeint. Kanskje kan det veere en ide & prgve a konstruere figuren — enten med passer
eller med f. eks. GeoGebra? I sa fall vil det bli behov for a tegne en sirkel og der ligger
nok lgsningen.

~__

Bo———— 0

Ved a se ngye pa figuren er det mulig a se at her har vi med en sentral- og periferivinkel
a gjore. Sentralvinkelen er ZEAC og periferivnkelen er ZEBC'. Begge de to vinklene
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spenner over samme bue C'E. Da vet vi fra periferivinkelsetningen at ZEBC' = %ZEAC’ .
Det betyr at LZEBC' = 45°

Oppgave 6

va

A C B

Figuren over vier et linjestykke AB som har lengde (a + 1). Linjestyket er diameter i
sirkelen s. Punktet C' ligger pa AB og har avstand a fra A. Linjestykket C'D star vinkelrett
pa linjestykket AB. Punktet D er skjeeringspunktet mellom sirkelen og linjestykket C'D.
Bevis at lengden av linjestykket C'D er y/a .

Lgsningsforslag

Ut fra Tales setning kan vi tegne denne figuren

Da har vi at
NABD ~ DBC

fordi begge har en rett vinkel og /B felles. Det gjor at vi kan sette opp disse forholdene

DB BC
AB DB
DB*=AB-BC=(a+1)-1=a+1

Benytter i pytgaorassetningen pa ADBC' far vi
BC? + CD* = DB?

CD>?=DB>-BC?=a+1-1=a
CD=+a O
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7 Analytisk geometri

I det som kalles analytisk geometri flytter vi oss inn i koordinatsystemet. Alle punkter far
koordinater og vi kan finne likninger som beskriver forskjellige geometriske objekter.

Vi starter med a finne avstanden mellom to punkt.

7.1 Avstanden mellom to punkter

Denne oppgaven gir en smakebit pa analytisk geometri. Tenk godt pa den for du ser pa lgs-
ningsforslaget.

Oppgave 7

Punktet A har koordinatene (1,2) og punktet B har koordinatene (5,4). Finn lengden
av linjestykket mellom de to punktene.

Y

Hvordan tenkte du? I oppgaven er det ikke noe krav til hvordan den lgses — det star bare «finn
lengden». En tegning og bruk av et eller annet til & male lengder med kunne i noen tilfeller
gitt et svar. Litt mer ngyaktig svar kunne vi fatt ved & bruke et DGP. Her er det GeoGebra
kommer fram til

B=(54)

A=(1,2)
4.4721
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Punktene er tegna inn med oppgitte koordinater. I algebrafeltet kan vi skrive inn koordinatene.
Nar de er pa plass er avstanden pa linjestykket mellom de to punktene malt. Lengden er 4.4721.
Svaret er funnet, men hva skjuler seg bak det GeoGebra har gjort?

For & regne ut lengden kan vi benytte denne framgangsmaten.

Lgsningsforslag

Her er punktene, og linjestykket, i koordinatsystemet. Starter vi i punkt A kan vi ogsa
markere hvor langt bort og hvor hggt opp punkt B ligger.

D Qﬁ

M= [«

w
\V)

\V]

N

Problemet er na gjort om til & finne lengden av hypotenusen i en rettvinkla trekant. Det
kan vi gjore ved pytagorassetningen.

|AB|? = 4* + 22 = 20
|AB| = V20 = 2/5 =~ 4.472

Den samme framgangsmaten kan vi benytte uansett hva koordinatene til de to punktene her.
Velger vi to vilkarlige punkt P og () kan vi tegne linjestykket mellom dem.
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Q(:CQa 92)

Y2 — U1

P(Il,yl) To — X1

Avstanden blir hypotenusen i en rettvinkla trekant. Det to katetene far lengdene |xo — 1] og
ly2 — y1|. Husk at | benyttes som absoluttverditegn og at lengden alltid vil ha positiv verdi. Da
har ikke plasseringa til punktene noen betydning.

Nar vi na skal finne lengden av hypotenusen gar vi fram som i oppgaven. Vi benytter pyta-
gorassetningen og finne kvadratene. Ser vi pa kvadratet av lengden av den horisontale kateten
blir det: (z2 — z1)?. Hvis punktet @ hadde veert til venstre for P burde vi skrevet (z; — )2,
men nar vi kvadrerer far vi samme resultat.

(g —21)* =25 — 2 29 - 71 + 7]
(1 —29)? =22 —2- 21 - 29 + T2

Verdiene til koordinatene, og med det plasseringene av punktene, spiller ingen rolle for det vi
skal finne.

|PQI” = (22 — 21)* + (2 — 1)’
1PQ| = /(x2 — 21)* + (y2 — 11)?

Dette kaller vi avstandsformelen

Gitt to punkter P og () med koordinatene P : (z1,y1) og @ : (x2,%2). Da er avstanden
mellom punktene

|PQ| = v/(z2 — 21)% + (y2 — 11)?

7.2 Midtpunktet pa ei linje

Hvordan kan vi ga fram for a finne koordinatene til midtpunktet pa et linjestykke nar vi kjenner
koordinatene til endepunktene. Se pa oppgaven under og prgv a finne en framgangsmate.
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Oppgave 8

Punktet A har koordinatene (1,2) og punktet B har koordinatene (5,4). Finn koordina-
tene til punktet M midt pa linjestykket AB.

Y

6oL
O

ot

S

w

o

[uin

—_
20

-1 1 2 3 4 5 6 T

Fant du at koordinatene méa veere (3,3)7 Det stemmer, her er et forslag til hvordan en kan ga
fram.

Lgsningsforslag

[«

at

S

w

nNo

[uin

Ved & studere figuren kan vi se at x-koordinaten til M ma ligge midt mellom x-
koordinatene til de to punktene, altsa midt mellom 1 og 5. Det gir x-koordinaten 3.
Det som ligger midt mellom noe kjenner vi som gjennomsnittet av verdiene. Det betyr

at x-koordinaten blir:
5+1

3
Z
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y-koordinaten ligger ogsa pa det gjennomsnittet av de to y-koordinatene:

4+ 2
T2 _3
2

At dette resonnementet stemmer kan vi prgve a bekrefte ved a bruke DGP.

O DGP: Undersgk om Igsningen din stemmer

Sett av to tilfeldige punkt. Tegn linjestykket mellom dem og be GeoGebra om a fin-
ne midtpunktet pa linjestykket. Vis koordinatene til alle punktene. Greier du a finne
koordinatene ved regning?

Lgsningsforslag

Figuren viser et skjermbilde fra GeoGebra.

A=(-7.5,75)

B =(2.5,4.3)

Koordinatene til midtpunktet M kan regnes ut slik:

M —7.5+ 2.5’ 7.5+4.3
2 2

) = (—2.5,5.9)

Punktene kan flyttes rundt og alle utregningene gir koordinatene til midtpunktet.

Formelen

For a fgre et bevis kan vi benytte det vi har funnet ut om formlike trekanter. Tegner vi tilfeldige
punkter i et koordinatsystem, og markerer midtpunktet pa linjestykket mellom dem som M,
kan vi ende opp med dette resultatet
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Ut fra figuren kan vi vise at
ANACB ~ AAEM

fordi ZA er den samme i begge og begge trekanter har en rett vinkel. Vi vet ogsa at

1
|AM] = 3|AB|

Da har vi at

|AM|  |ME| |AE| 1

|AB| — |BC| |AC| 2
Det viser at koordinatene til midtpunktet vil ha bade x- og y-koordinater midt mellom koordi-
natene til endepunktene.

Et alternativ er a se pa figuren under. Her er det igjen to tilfeldig plasserte endepunkter.

’t

Benytter vi vinkel-side-vinkel-postulatet kan vi sla fast at

NAEM = AMDB

52



Trekantene er kongruente fordi de har to vinkler som er like store, /EAB = ZDMB og
LEMA = ZDBM. Den mellomliggende siden mellom toppunktene er like lange: |AM| =
|M B).

Da vil vi ogsa ha at
|AE|=|MD| |CD|=|DB|

Na har vi slatt fast at punktet M vil ha x- og y-koordinater som ligger midt mellom koordinatene
til endepunktene. Hvordan kan vi finne koordinatene?

Y

Ser vi pa de horisontale avstandene fra y-aksen far vi to avstander til endepunktene. I figuren
under er de kalt a og b. Den delen som utgjor forskjellen mellom de to er markert med grgnt.
Punktet vi skal finne er markert med rgdt.

a b a
— T ——
P o a+b

b 2
de to avstandene satt sammen

Avstanden til punktet vi skal finne kan vi se er gjennomsnittet av de to avstandene. Gjennom-
snittet finner vi ved “T“’ Det samme argumentet gjelder for de vertikale avstandene.

Har punktet A koordinatene (z1,y;) og B koordinatene (z3,y2) kan vi finne koordinatene til
midtpunktet som %2“ og ”Tﬂ“ Bruk gjerne litt tid pa a forsikre deg om at det ikke spiller
noen rolle hvor endepunktene er plassert i forhold til hverandre.
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r2t+x1

Yy2+y1

Koordinatene til midtpunktet:

M fﬂ2+9317y2+y1
2 2

Gitt to punkter P og @ med koordinatene P : (x1,y1) og @ : (z2,y2). Koordinatene til
midtpunktet, M, mellom de to punktene vil vaere

M x2+x1,y2+y1
2 2
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8 Kjeglesnittene

Na skal vi se pa kjeglesnittene. La oss starte med navnet. Grunnen til at sirkelen, ellipsen,
hyperbelen og parabelen kalles kjeglesnitt skyldes at de kommer fram nar vi snitter ei kjegle.
Figuren viser hvordan kjegla skal snittes

8.1 Sirkelen

Sirkelen kjenner vi godt fra fgr, men hvordan kan vi forklare hva en sirkel er? Kanskje kan
passeren veere et godt utgangspunkt. Tegner vi en sirkel vil vi fa en strek hvor avstanden til
sentrum er like stor uansett hvor pa streken vi maler. Omtrent sann er definisjonen ogsa.

Definisjon 12 Sirkelen

En sirkel er det geometriske stedet for de punktene som har en fast avstand fra et fast
punkt

Det faste punktet kaller vi sentrum i sirkelen og avstanden kaller vi radius.
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Likninga for en sirkel

La oss plassere sirkelen i et koordinatsystemet. S er sentrum i sirkelen og har koordinatene
(x0,Y0). P er et tilfeldig punkt pa sirkelperiferien. Radius kaller vi r.

Y, o P(z,y)

,/ ~
e N

Avstanden fra S til P vet vi er r. Nar vi vet koordinatene til S og P kan vi finne avstanden
mellom de to punktene ved a benytte setningen til Pytagoras.

[ figuren vil punktet A ha koordinatene (z,yo) og vi kan finne avstandene uttrykt ved = og y

|SA| = |z — o
|AP| = |y — o

Da kan vi finne 72

= (z—x0)*+ (y — 1)

Siden vi kvadrerer avstandene kan vi se bort fra absoluttverdien. Kvadratet vil alltid veere
positivt.

Det vi har kommet fram til kaller vi for standardformen for likninga til en sirkel.

Standardform likninga til en sirkel

Likninga for en sirkel med radius r og sentrum i (¢, yo)

(2 = 20)* + (y — yo)* =1

Alle sirkler kan beskrives av denne likninga. I f. eks. GeoGebra kan vi se at sirkellikninga dukker
opp nar vi tegner en sirkel.

En sirkelen med radius 10 og senter i (5, 8) er gitt ved likninga:

(x —5)°+ (y—8)> = 100
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8.2 Parabelen

Definisjon 13 Parabel

En parabel er det geometriske stedet for de punktene som ligger i samme avstand fra et
punkt F' som fra ei linje [. Punktet F' er brennpunktet og linja [ er styrelinja.

Definisjonen forteller at et vilkarlig punkt P pa parabelen vil ligge like langt fra brennpunktet
som fra styrelinja.

l

Punktet F kaller vi brennpunktet til parabelen. Bokstaven F' kommer fra at det kalles focus pa
engelsk. Linja [ kaller vi styrelinja.

Uansett hvor punktet P ligger vil
|[FP|=[PQ|

Q DGP: Parabelen ]

Tegn ei styrelinje og sett av et punkt pa styrelinja. Sett av et punkt som et brennpunkt.
Lag et linjestykke mellom brennpunktet og punktet pa styrelinja. Finn midtnormalen til
linjestykket. Alle punktene pa parabelen vil na ligge pa skjeeringspunktet mellom midt-
normalen og en normal pa styringslinja gjennom punktet som ble avsatt pa styringslinja.
Spor punktet og sjekk om sporinga likner en parabel.

Egenskaper ved parabelen

Parabelen er symmetrisk
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symmetrilinje

styrelinje

Grunnen til navnet brennpunkt er at all refleksjon vil samles der. En tredimensjonal parabel
kalles en parabol og alle som har sett ei parabolantenne har kanskje fatt med seg at mottakeren
sitter akkurat i brennpunktet. Lurt, siden det betyr at alle signaler vil samles der. Det samme
prinsippet benyttes ogsa for & samle varme i brennpunktet.

Likninga

Vi kan se pa et eksempel hvor vi finner likninga for en parabel. I funksjonsleere kjenner vi para-
belen som grafen til en andregrads polynomfunksjon. Vi skal se at likninga for parabelen som et

geometrisk sted likner pa den vi kjenner. La oss ta utgangspunkt i at vi kjenner brennpunktet
og styrelinja.
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Brennpunktet F' har koordinatene (0,2) og styrelinja er x-aksen. P er et tilfeldig punkt pa
parabelen. Kan vi finne ei likning for denne parabelen?

Fra definisjonen av en parabel vet vi at uansett hvor punktet P ligger vil

[FP|=|PQ|

Det gir oss

|IPQl =y
|FP|=+/(z—0)2+ (y — 2)?

Punktet P(z,y) er pa parabelen dersom disse to avstandene er like, altsa:

|PQ| = |FP|
y=+vat+(y—2)°
y =+ (y - 2)°
v =a? +yt — Ay +4

4y =22+ 4
L,

= - 1

1Y 4x+

Likninga for parabelen blir y = ixZ + 1. Det er kanskje ikke sa overraskende ut fra det vi vet
om andregradsfunksjoner?

Vi kan finne den generelle likninga for en parabel pa samme mate. For a finne det som kalles en
standardform tar vi utgangspunkt i topp- eller bunnpunktet til parabelen. Vi kaller det punktet
V' etter det engelske vertex.
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symmetrilinje

=

styrelinje

Avstanden fra styrelinja til V', og fra V' til brennpunktet F' gir vi navnet p. At de er like store
folger av definisjonen av en parabel. Da kan vi skrive standardformen for likninga.

Standardform for parabelen

Likninga for en parabel med topp- eller bunnpunkt i (xg,y) og symmetrilinje parallell
med y-aksen kan skrives som

y — Yo = k(z — z0)”
hvor k = 4%. Parabelen har apningen oppover hvis p > 0

Likninga for en parabel med topp- eller bunnpunkt i (xg,y0) og symmetrilinje parallell
med x-aksen vil ha likninga

x—x0 = k(y — y)°

Parabelen har apning mot hgyre hvis p > 0 og apningen mot venstre hvis p < 0

8.3 Ellipsen

Definisjon 14 Ellipsen

En ellipse er det geometriske stedet for de punktene som er slik at summen av avstandene
til to faste punkter, F og Fy er konstant.
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Definisjonen forteller at summen av avstandene d; og ds alltid vil veere konstant. Det gjgr at vi
enkelt kan tegne en ellipse ved bruk av en hyssing, to knappenaler og en blyant, slik figur 8.1
viser.

Figur 8.1: tegning av ellipse

De to knappenéalene danner brennpunktene i ellipsen og da kan vil blyantstreken gi alle punktene
som er slik at summen av avstandene til brennpunktene er konstant.

Brennpunktene er de to faste punktene hyssingen er festet i. At de kalles brennpunkter skyldes
nok at refleksjonsegenskapene i en ellipse. Sender vi noe i rett bane fra det ene brennpunktet
vil det ende opp i det andre.

Aksene

Ellipsen har en bredde og en hgyde som vi kaller akser
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Linjestykket AB gar gjennom brennpunktene og vi kaller AB for den store aksen til ellipsen.
Linjestykket C'D er en del av midtnormalen til AB og punktene C' og D er skjeeringspunktene
mellom midtnormalen og ellipsen. Vi kaller C'D for den lille aksen. Begge aksene danner sym-
metriakser for ellipsen. Skjeeringspunktet mellom aksene kaller vi sentrum i ellipsen. Det folger
at sentrum ligger midt mellom de to brennpunktene. Kaller vi avstanden fra A til sentrum for
a og avstanden fra sentrum til C' for b, har vi at

e den store aksen: 2a

o den lille aksen: 2b

o den store halvaksen: a
e den lille halvaksen: b

Vi vet at summen av avstandene fra et punkt pa ellipsen og til brennpunktene er konstant.
Tenk pa hvordan vi kan tegne en ellipse. Vi kaller denne avstanden for r. Ser vi naermere pa
punktet A far vi at

r = AFl + AFQ

Da ellipsen er symmetrisk vet vi at AF} = F5B og vi har at
T:AF1+AF2:F2B+AF2 = AB = 2a

Det betyr at summen av avstandene fra et punkt pa ellipsen til brennpunktene er lik lengden
av den store aksen.

Vi tar utgangspunkt i figur 8.2 hvor C' og D er endepunktene til den lille aksen. C'D ligger
langs midtnormalen til brennpunktene. Da har vi at C'F; = C'F,. Summen av avstandene er
CF,+CF, =2a og vi har at CF; = CF; = a. S er sentrum i ellipsen og ASF;C er rettvinkla.
Benytter vi setningen til Pytagoras har vi at

SC? + SF? = CF,?

v+ =a’

Eksentrisiteten

Eksentrisiteten forteller noe om hvor utstrakt ellipsen er

e=—
a

hvor ¢ = va? — b? (avstanden fra et brennpunkt til sentrum).

Eksentrisiteten er alltid: 0 < e < 1.
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D

Figur 8.2: Viktige egenskaper

Likninga for en ellipse

Ut fra definisjonen kan vi komme fram til hvordan vi kan skrive likninga for en ellipse pa det
som kalles en standardform.

Standardform for ellipse

Likninga for en ellipse med sentrum i (xg, yo) og den store aksen parallell med x-aksen

(55 - xo)Q (3/ - y0)2
a? * b? =1

8.4 Hyperbelen

Definisjon 15 Hyperbelen

En hyperbel er det geometriske stedet for de punktene som er slik at differansen mellom
avstandene til to faste punkter er konstant.
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Uansett hvor punktet P er pa hyperbelen har vi at

|PFy| — |PF5| = konstant

Likninga for en hyperbel

Ut fra definisjonen av en hyperbel og litt regning kan vi komme fram til likninger for hyperbler.
Setter vi den opp pa det som kalles standardform far vi dette resultatet

Standardform likninga til en hyperbel

Likninga pa standardform for en hyperbel med sentrum i (xg, yo)

(x - 560)2 (y - y0)2
a? o =+l

Det er fortegnet foran ettallet som bestemmer hvordan hyperbelen er orientert. Hyperbelen kan
bade ha apninger mot x- eller y-aksen. Ser vi pa hyperbler med sentrum i origo vil en hyperbel
med likninga er

22 P )

a? b2

ha en orientering som den vi ser under.
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Y,

Fy(—¢,0) bl¢ Fi(c,0)

Pa figuren er a avstanden fra origo til punktene som ligger naermest origo. De punktene, vi
bruker ofte V for vertex, har koordinatene

Vi (a,0) Vs i (—a,0)

Avstanden fra origo til brennpunktene har fatt navnet c. Brennpunktene har da koordinatene

Fy: (c,0) Fy: (—¢,0)

Sammenhengen mellom avstandene kan uttrykkes som a?+b? = ¢2. For & vite hva b star for mé
vi fgrst innom asymptotene. Asymptotene er tegnet inn pa figuren og kan betraktes som linjer
hyperbelen naermer seg. Tegner vi opp et rektangel hvor hvert hjgrne ligger pa asymptotene,
og to av sidene tangerer punktene V; og V5, vil vi ha b som avstanden fra origo og opp til den
andre siden i rektanglet. Se figuren.

En liten forandring pa fortegnet slik at hyperbelen har likninga

2 2
@y
a? b2

gjor at vi snur om pa det meste. Da vil det se sann ut.
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Y,

Den konstante forskjellen mellom avstandene vi sa pa i starten kan vi na si noe mer om. Gir
vi navnet d; og ds til avstandene fra brennpunktene kan vi tegne denne figuren.

Ut fra avstandene a og ¢ og litt regning kan vi se at

’dl — dg’ = 2a

Asymptotene vil ha likningene

b
y—yozi—(x—xo)
a

Praktisk bruk av hyperbelen

Hyperbelen som et geometrisk sted utnyttes pa mange mater. Differensen mellom avstander
kan utnyttes i navigasjonssystemer og mye annet. Et eksempel pa en enkel metoden fra forste
verdenskrig er hvordan hyperbelen ble utnytta for a finne posisjonen til kanoner. Tre personer
med hver sin synkroniserte klokke ble plassert ut i terrenget. Hvis alle kunne hgre kanonsmellet
var det mulig & finne posisjonen ut fra tidspunktene. Forskjellene mellom avstandene kunne
benyttes til & bestemme to hyperbler. Skjeeringspunktet mellom hyperblene ga posisjonen.
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