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Her er litt om geometri som vi har tatt opp i høst. Husk at alt ikke er med her! Duk-
ker det opp noe som er feil eller uklart er det fint om jeg får beskjed. Send meg en e-
post:per.g.osterlie@ntnu.no, så kan jeg rette det opp.

Teksten er skrevet med LATEX.

Creative Commons Navngivelse-IkkeKommersiell-DelPåSammeVilkår 4.0 Internasjonal Offentlige Lisens
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1 Innledning
1.1 Geometri – Hva er det?
Ordet geometri kommer fra gresk og betyr rett oversatt «jordmåling». Geometri er en av våre
eldste vitenskaper og handler om egenskaper, størrelser og sammenhenger til figurer og legemer.

Les mer her Wikipedia: Geometri og SNL: Geometri

1.2 Viktige begrep

Punkter og linjer
Et punkt i geometrien er en ide om en fast posisjon uten utstrekning. Vi markerer et punkt
med en prikk eller et kryss og benytter store bokstaver for å sette navn på punktene.

Ei rett linje illustreres som en strek og har utstrekning i en dimensjon. Linja fortsetter uendelig
i begge retninger. Vi kan tenke på ei linje som uendelig mange punkter.

Et linjestykke er den delen av av ei linje som ligger mellom to endepunkter. Figuren under viser
linjestykket AB.

ℓ linje

linjestykke

stråle
A

B

C

En stråle er en del av ei linje som er avgrensa av ett endepunkt. En stråle er også uendelig lang.

Vinkler
Vinkler er viktige i geometrien. En vinkel er dannet av to vinkelbein

A

B

C

α

Vinkelen over dannes av vinkelbeina AB og AC. Vi kan enten gi vinkelen et navn ved en
bokstav eller benytte punktene. Symbolet ∠ benyttes som ordet «vinkelen» slik at ∠CAB
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betyr «vinkelen dannet av vinkelbeina gjennom punktene C, A og B». Det er vanlig å skrive
navnene på punktene i rekkefølge mot klokka, men ikke alle følger den regelen. Her har også
∠CAB fått navnet α som er den greske bokstaven alfa. Ofte benyttes små greske bokstaver
eller bokstavene fra «u» i alfabetet.

For å beskrive egenskapene til vinkler benytter vi en del begrep. Her er noen definisjoner som
dukker opp.

Definisjon 1 Navn på vinkler

a. En rett vinkel er 90°
b. En like vinkel er 180°
c. En spiss vinkel er mellom 0° og 90°
d. En stump vinkel er mellom 90° og 180°

Rett vinkel

u

v

Komplementsvinkler

uv

Nabovinkler

Definisjon 2 To vinkler

a. Komplementvinkler er to vinkler som til sammen er 90°
b. Supplementsvinkler er to vinkler som til sammen er 180°
c. Nabovinkler er supplementsvinkler med felles vinkelbein

Plangeometri og symbolbruk
Et plan har en utstrekning i to dimensjoner, akkurat som et ark vi tegner på. Vi kan kalle det
plangeometri når vi betrakter punkter, linjer og figurer i ett og samme plan.

A B

CD

For figurene vi tegner i planet benytter vi symbolet △ for ordet «trekant» og □ for «firkant».
Med utgangspunkt i figuren over kan vi skrive △ABD når vi mener «trekanten dannet av
punktene A, B og D. For «firkanten dannet av A,B, C og D» kan vi skrive □ABCD.
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Symboler

• ∠A – vinkel A
• △ABC – trekant ABC
• □ABCD – firkant ABCD
• AB ⊥ CD - AB er vinkelrett på CD
• AB ∥ CD – AB er parallell med CD
• |AB| – lengden av AB

Geometrisk sted
Uttrykket geometrisk sted dukker ofte opp i geometrien

Definisjon 3 Geometrisk sted

En samling punkter hvor alle har de samme geometriske egenskapene.

Et typisk geometrisk sted vil være sirkelen.

rS

Alle punktene som utgjør sirkelen ligger like langt fra punktet som vi kaller sentrum. Med
uendelig mange punkt får vi det vi kaller en sirkel. Alle punktene har den samme geometriske
egenskapen: de ligger i samme avstand fra ett punkt.

Eksempler på andre geometriske steder
• parallelle linjer til ei gitt linje
• midtnormalen til et linjestykke
• halveringslinja til en vinkel
• parabelen

5



2 Euklid
2.1 Euklid fra Aleksandria
Euklid regnes som en av grunnleggerne av geometrien. Det som gjør han fortsatt aktuell for
oss i dag er måten han bygget opp argumentasjonen sin.

Euklid ble født omtrent 300 fvt., men vi vet lite om ham. Se Wikipedia: Euklid for mer.

2.2 Oppbygging
Elementene kalles boka, eller bøkene, som Euklid skrev. Den er bygd opp ved at han starter
med noen definisjoner, postulater og allmenne regler (eng. Common notions). Ut fra disse
argumenterer han for gyldigheten av proposisjoner (ordet kommer fra det latinske propositio,
som betyr forslag).

definisjoner

postulater

allmenne regler

proposisjoner

Definisjonene til Euklid kan virke litt merkelig på oss i dag. Her er noen eksempler:

Definisjon 1 Et punkt er det som ikke har noen del.

Definisjon 2 Og ei linje er en lengde uten bredde.

Definisjon 3 Ei rett-linje ligger jevnt med punkter på seg selv.

Definisjonene kan være vanskelige for oss, men han forsøker å klargjøre alle begrepene i boka
før han går i gang. De definerte begrepene benytter han for å sette fram fem postulater:

Postulat 1. En rett-linje kan trekkes fra et punkt til et annet.

Postulat 2. En endelig rett-linje kan forlenges til en vilkårlig lang rett- linje.

Postulat 3. Rundt ethvert punkt kan man konstruere en sirkel med vilkårlig stor radius.

Postulat 4. Alle rette vinkler er like store.
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Postulat 5. Når en rett-linje skjærer to andre rett-linjer slik at summen av de to indre vinklene
på samme side er mindre enn to rette vinkler, vil de to rett-linjene møtes på den siden
av den første rett-linjen hvor summen av de to indre vinklene var mindre enn to rette
vinkler, når rett-linjene forlenges mot det uendelige.

Oversettelse henta fra Preben Lie, UiO

Dette er de fem postulatene til Euklid hvor det siste kalle parallellpostulatet. Parallellpostulatet
forteller at to parallelle linjer ikke skjærer hverandre. Det er noe som kan diskuteres og godtas
ikke dette postulatet ender vi opp i det som kalles ikke-euklidsk geometri. I vår sammenheng
godtar vi det femte postulatet og holder oss til euklidsk geometeri.

Euklid benytter seg også av det han kaller allmenne regler eller common notions, som det heter
i engelske oversettelser av Elementene.

CN 1. Ting som er like samme ting er også like hverandre.

CN 2. Og hvis like ting blir lagt til like ting, så er også totalene like.

CN 3. Og hvis like ting blir trukket fra like ting, vil også restene være like.

CN 4. Og ting som sammenfaller er like hverandre.

CN 5. Og hele er større enn delene.

2.3 Argumentasjon
Vi kan se på hvordan Euklid benyttes alt dette for å argumentere for den første proposisjonen
sin. Euklids Elementer er det mulig å kjøpe i bokhandelen, men det er også noen versjoner på
tilgjengelig på nettet. Her er lenka til en anerkjent utgave Elementene: Clark University.

Et utdrag derfra viser hvordan Euklid kommer fram til sin første proposisjon om hvordan vi
kan konstruere en likesida trekant.
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Euklid bygger opp en argumentasjon basert på det han har slått fast tidligere og viser, trinn for
trinn, hvordan den likesida trekanten kan konstrueres. En slik argumentasjon kan vi ikke kreve
av elever i grunnskolen, men strukturen bør være basert på å logisk bygge opp en argumentasjon
som holder.

2.4 Noen aktuelle proposisjoner fra Euklid
Mye av det vi møter i skolematematikken, og særlig i geometri, har sin opprinnelse i Elementene.
Vi kan se på noen av dem

Proposisjon 15
I den engelske utgaven heter det: «If two lines cut one another, they make the vertical angles
equal to one another».

A

B

CD E

Tar vi utgangspunkt i figuren forteller proposisjonen forteller at ∠CEA = ∠DEB og ∠BEC =
∠AED.

Bevis 1

Vi kan først vise at ∠CEA = ∠BED.
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v
v

u
A

B

CD E

La de rette linjene AB og CD skjære hverandre i punktet E.
Den rette linja AE danner supplementsvinklene ∠CEA og ∠AED med den rette linja
CD. Det betyr at u+ v = 180°.
Den rette linja DE danner supplementsvinklene ∠AED og ∠BED med den rette linja
AB. Det betyr at ∠BED + v = 180°.
Da har vi at ∠BED = ∠CEA.
Euklid formulerer det som at både summen av ∠CEA og ∠AED og summen av ∠AED
og ∠BED er to rette vinkler (altså supplementsvinkler). Trekker vi fra ∠AED fra begge
summene får vi at ∠BED = ∠CEA.
Vi kan gjennomføre samme argumentasjon for å vise at ∠AED = ∠CEB.

v

v

v

m

n

l

Proposisjon 32
In any triangle, if one of the sides is produced, then the exterior angle equals the sum of the
two interior and opposite angles, and the sum of the three interior angles of the triangle equals
two right angles.

Vi formulerer det som: Vinkelsummen i en trekant tilsvarer to rette vinkler, altså 180°

Dette beviser Euklid i boka si. Se Elementene: Proposition 32.

Han starter med å tegne denne figuren:
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B C

A

α

β γ

D

E

β
α

Så bygger han opp beviset gjennom å vise til de allmenne reglene (CN), postulater og tidligere
beviste proposisjoner. Her er en direkte oversettelse

Bevis 2

La ABC være en trekant, og la en av sidene, BC, utvides til D.
Jeg sier da at den ytre vinkelen ACD er lik summen av de to indre, og motsatte vinklene,
CAB og ABC, og at summen av de tre indre vinklene i trekant ABC, BCA og CAB,
er lik to rette vinkler.
Trekk ei linje CE parallell med den rette linja AB gjennom punktet C (P. 31).
Da siden AB er parallell med CE og AC skjærer begge to, vil de to vinklene BAC og
ACE være like store (P. 29).
Igjen, da siden AB er parallell med CE, og den rette linja BD skjærer begge, vil vinkel
ECD være lik vinkel ABC (P. 29).
Men, det er også vist at vinkel ACE er lik vinkel BAC. Derfor vil hele vinkel ACD være
lik summen av vinklene BAC og ABC.
Legg vinkel ABC til begge. Da vil summen av vinklene ACD og ACB være lik summen
av de tre vinklene ABC, BCA og CAB (CN. 2)
Men, summen av vinklene ACD og ACB er lik to rette vinkler. Derfor er summen av
vinklene ABC, BCA og CAB også lik to rette vinkler (P. 13).
Derfor vil summen av vinklene i enhver trekant være lik summen av to rette vinkler (CN.
1)

Vinkelsummen i en trekant kan vises på flere måter. Denne figuren kan også være et utgangs-
punkt. Her er linja ℓ ei linje som er parallell med AB gjennom C.

α β

γ

A B

C ℓ

α β

Da kan vi ta i bruk proposisjon 15 og vise at det må bli 180°.
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3 Kongruens
3.1 Kongruens
Kongruens, og at figurer er kongruente, er noe et ord vi møter i geometrien. Ordet stammer fra
det latinske congruentia som betyr «samsvar» eller «støter sammen». En mye brukt definisjon
er denne:

Definisjon 4 Kongruens

To figurer er kongruente dersom de har samme form og størrelse

Det betyr at figurene som kan legges oppå hverandre, og dekke hverandre den nøyaktig, er
kongruente. Da vil alle vinkler og lengder være like.

Kongruens er et sentralt tema i geometrien og et sentralt mål i læreplanen hvor vi finner dette
kompetansemålet i LK20.

Kompetansemål etter 9. trinn
Mål for opplæringa er at eleven skal kunne

• utforske eigenskapane ved ulike polygon og forklare omgrepa formlikskap og kongruens

Som vi ser er det et mål at elevene skal kunne forklare begrepene kongruens og formlikhet. I
læreplanen er det nevnt polygon (mangekanter). Vi tar trekanten som utgangspunkt.

3.2 Kongruente trekanter
Vi kan tegne to trekanter med like store vinkler og like lange sider.

u
v

w

A
B

C

u

v

w

D

E

F

I de to trekantene △ABC og △DEF finner vi de samme vinklene ∠u, ∠v og ∠w. I tillegg
er sidene parvis like lange, dvs. |AC| = |DF |, |AB| = |DE| og |BC| = |EF |. Klipper vi ut
trekantene kan vi legge dem oppå hverandre og de vil nøyaktig dekke hverandre. Trekantene er
kongruente. Det fins et eget symbol for «kongruent» og vi kan skrive det slik:

△ABC ∼= △DEF

For å avgjøre om to trekanter er kongruente har vi noen hjelpemidler i form av kongruensset-
ninger. Oppfylles kravene i disse teoremene vil trekantene være kongruente. Legg merke til at
om alle kravene oppfylles så er både formen på trekanten og størrelsen bestemt.
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Teorem 1 side-side-side-postulatet

To trekanter er kongruente hvis de har parvis like lange sider

A
B

C

D

E

F

Greier vi å vise at to trekanter har de samme lengdene på sidene kan vi med side-side-side-
postulatet slå fast at trekantene er kongruente.

Teorem 2 side-vinkel-side-postulatet

To trekanter er kongruente hvis de har to parvis like lange sider med samme vinkel mellom
de to sidene.

A
B

C

v D

E

F

v

Ofte kan det være lurt å tenke seg at trekantene skal konstrueres med de kravene som står.
Starter vi med ei gitt side, setter av den gitte vinkelen og markerer lengden på det andre
vinkelbeinet, så er både form og størrelse på trekantene bestemt.

Teorem 3 vinkel-side-vinkel-postulatet

To trekanter er kongruente hvis de har to vinkler som er like store og den mellomliggende
siden mellom toppunktene er like lange.

A
B

C

v

w

D

E

F

v
w

Med to vinkler hvor begge har ett felles vinkelbein bestemmes trekanten og stemmer det for to
trekanter må de være kongruente.

Legg også merke til at hvis vi vet at to vinkler i en trekanter er parvis like store, så vil den tredje
vinkelen være like store i trekantene. Når vi vet det har vi også vinkel-vinkel-side-postulatet.
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Teorem 4 vinkel-vinkel-side-postulatet

To trekanter er kongruente hvis de har to vinkler som er like store og en side som er like
lange.

Egentlig blir det bare en presisering av vinkel-side-vinkel-postulatet.

Teorem 5 side-side-vinkel-postulatet

To trekanter er kongruente hvis to sider er like lange og den motstående vinkelen til den
lengste siden er like stor i begge trekanter.

A
B

C

u

D

E

F

u

Den setningen kan det være vanskeligere å se for seg, men igjen kan det være greit å tenke på
hvordan vi kan konstruere en trekant med de gitte kravene.

En oppgave som et eksempel
Kongruenssetningene benyttes til å vise kongruens. En typisk oppgave kan være omtrent som
den under.

Oppgave 1

I figuren under er AC = CD og BC = CE. Argumenter for at △ABC ∼= △DEC.

A

B

D

E

C
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Løsningsforslag

Oppgaven gir at |AC| = |CD| og |BC| = |CE|.

A

B

D

E

C

De to linjene AD og BE skjærer hverandre i punktet C og danner vinklene ∠BCA og
∠ECD som blir toppvinkler.
Side-vinkel-side-postulatet forteller at: To trekanter er kongruente hvis de har to
parvis like lange sider med samme vinkel mellom de to sidene.
Her er |AC| = |CD| og |BC| = |CE|. Vinklene er toppvinkler og ∠BCA = ∠ECD.
SVS-postulatet er oppfylt og trekantene er kongruente:

△ACB ∼= △DCE

Oppsummering

• SVS (Side-Vinkel-Side) - de har like lange sider som danner en like stor vinkel.
Engelsk: SAS (Side-Angle-Side)

• SSS (Side-Side-Side) - de har like lange sider
• VSV (Vinkel-Side-Vinkel) - de har to like store vinkler og ei side som er like lang.

Engelsk: ASA (Angle-Side-Angle)
• SSV (Side-Side-Vinkel) - to like lange sider og motstående vinkel til den lengste

sida like. Engelsk: SSA (Side-Side-Angle)

3.3 Likebeinte trekanter
Kongruens benytter vi ofte i bevis. Nå kan vi se på hvordan vi kan bevis egenskaper ved
likebeinte trekanter ved hjelp av kongruens.

Den likebeinte trekanten er en spesiell type trekant vi ofte støter på i geometrien. Slik ser den
ut:
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A B

C

Definisjon 5 Likebeint trekant

I en likebeint trekant er to sider like lange

Figuren viser en likebeint trekant △ABC hvor lengden av AC og BC er lik. De kalles ofte
beina i trekanten og AB kalles grunnlinja.

De likebeinte trekantene har noen egenskaper det kan være greit å kjenne til.

• vinklene ved grunnlinja er like store

• høyden deler grunnlinja i to like lengder

Vinklene ved grunnlinja er like store
Vi kan vise at ∠ABC = ∠CAB.

Bevis 3

Vi starter med utgangspunkt i figuren over og finner midtpunktet på AB som vi gir
navnet D.
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A BD

C

Fra D tegner vi inn linjestykket DC. Nå vet vi at lengden av AD er den samme som DB.
Vi kan skrive det som | AD |=| DB |.
Da vil vi ved SSS, alle sidene er like lange, ha at

△ADC ∼= △BDC

Det betyr at ∠ABC = ∠CAB .

Bevis 4

Vi kan også vise at hvis de to vinklene ved grunnlinja er like store, så må beina være like
lange. Vi starter med å tegne en trekant med to like store vinkler ved grunnlinja

A BD

C

I trekanten feller vi ned en normal fra C til grunnlinja AB og kaller punktet den skjærer
grunnlinja for D. Vi vet at ∠DAC = ∠DBC, at ∠CDA = ∠CDB = 90° og at CD er ei
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felles side. Da kan vi ved VVS påstå at

△ADC ∼= △BDC

Det betyr at lengden av AC og lengden av BC må være like og at △ABC er likebeint.

Høyden deler grunnlinja i to like lengder
Høyden fra C er linjestykket som står vinkelrett på grunnlinja. Ut fra forrige bevis kan vi
konkludere med at den deler grunnlinja i to like store deler, men vi kan også vise det ut fra den
første figuren.

Bevis 5

Tar vi utgangspunkt i første figur har vi vist at △ADC ∼= △BDC. Det betyr at ∠ADC =
∠BDC og at de to vinklene til sammen vil være 180°. Da må begge være 90° og vi har
vist at CD ⊥ AB, altså er CD høyden i △ABC.

3.4 Kongruensavbildninger – isometri

Kongruente figurer kan flyttes på uten at noe skjer med formen. Flyttingen kan vi kalle for
kongruensavbildninger og skje på flere måter.

• speiling

• rotasjon

• parallellforskyving

• glidespeiling

Kongruensavbildninger kan vi også kalle for isometrier.
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Speiling

En speiling krever ei speilingslinje som figuren skal speiles over. Hvert punkt på figuren skal
ligge like langt fra speilingslinja som i den speilte figuren. I figuren under kan vi se to speilte
figurerer og speilingslinja. Legg merke til hvordan punktene ligger like langt fra speilingslinja.

Vi kan formulere det mer matematisk ved å starten med en trekant △ABC og ei speilingslinje.
Avstanden fra A til et nytt punkt A′ skal være like langt. Avstanden fra A til speilingslinja
vil være normalen fra punktet til til linja. Det nye punktet A′ kan vi derfor plassere i samme
avstand på den samme normalen. Gjentar vi det samme for de andre punktene vil vi få speilingen
△A′B′C ′.

A

B

A′

B′

CC ′

Vi kan definere hva speiling er på samme måte

Definisjon 6 Speiling

En speiling om ei rett linje l skjer ved at et vilkårlig punkt P avbildes som P ′ på motsatt
side av l. P og P ′ har samme avstand fra l. Linja PP ′ står vinkelrett på l

Rotasjon
Det ligger i navnet: En rotasjon roterer, eller «snur» noe.
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Geometriske figurer kan vi betrakte som en samling av mange punkter. Hvert punkt i figuren
blir rotert i en rotasjon. Da må vi vite hvor mye punktene roterer og vi må også ha ett punkt
de roterer ut fra.

Figuren under viser △ABC og punktet O. Starter vi med punkt A og roterer det med 30° om
punkt O får vi punktet A′. Det samme kan vi gjøre for alle punktene i △ABC og ende opp
med △A′B′C ′.

B

B′

A

A′

C

C ′

O

Som vi ser må vi vite rotasjonsvinkelen og vi må vite hvilket punkt vi roterer om.

Definisjon 7 Rotasjon

En rotasjon er bestemt ved et punkt og en vinkel. Vi kaller det rotasjonssentrum, O,
og rotasjonsvinkel, v. Et vilkårlig punkt P avbildes som P ′ slik at |PO| = |P ′O| og
∠POP ′ = v.

Parallellforskyving
Punkter kan også flyttes langs ei linje. Flytter vi alle like langt og parallelt med linja ender vi
opp med en parallellforskyving.
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Vi må kjenne retningen og hvor langt punktene skal flyttes. En vektor er en størrelse med en
retning. Kjenner vi den vet vi hvordan vi kan avbilde punktene. Vektorer dukker ofte opp i
matematikken og notasjonen er et navn med ei pil over: u⃗.

Har vi en trekant og en slik vektor kan vi flytte på den. I figuren har vi △ABC og u⃗. Vektoren
forteller oss retningen og hvor langt hvert punkt skal flyttes.

A B

A′ B′
C

C ′

u⃗

Da ender vi opp med den nye trekanten △A′B′C ′ og vi har gjennomført en parallellforskyving.

Definisjon 8 Parallellforskyving

En parallellforskyving er bestem av en retning og en lengde: u⃗. Et vilkårlig punkt P
avbildes som P ′ slik at PP ′ er parallell med og like lang som u⃗.
Vi kaller u⃗ forskyvningsvektoren.

Glidespeiling
En glidespeiling er en sammensetning av en parallellforskyving og en speiling. Starter vi med
△ABC og speiler den ender vi opp med △A′B′C ′. En parallellforskyving gjør at vi får △A′′B′′C ′′.
Til sammen blir det en glidespeiling.

B

A′

A′′

A

B′

B′′

CC ′

C ′′
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Definisjon 9 Glidespeiling

Glidespeiling er en speiling og en parallellforskyving hvor forskyvingsvektoren er parallell
med speilingslinja.
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4 Formlikhet
Formlikhet – ordet forteller hva det betyr. To figurer er formlike når de har samme form.
Tidligere har vi vært innom kongruens. Da kreves det både samme form og samme størrelse.
Nå er det bare formen som er det viktige.

De to tegningene viser samme figur, men størrelsene er forskjellige. Hver detalj har samme form
og figurene er formlike. Ved en skalering, at vi forstørrer eller forminsker, kan vi lage den ene
av den andre.

4.1 Formlike trekanter
To trekanter vil være formlike hvis de har de samme vinklene.

α
β

γ

A B

C

α
β

γ

D E

F

Vi skriver det slik:
△ABC ∼ △DEF

4.2 Sidene i formlike trekanter
Når trekantene er formlike er den ene en skalering av den andre. Det utnytter vi ofte til å finne
ukjente sider.

Tar vi utgangspunkt i de to trekantene, og passer på at vi velger sider som er vinkelbein til de
like store vinklene, har vi at
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|AB| = k · |DE|
|AC| = k · |DF |
|BC| = k · |EF |

hvor k er en målestokk. Sidelengdene vil bestemmes av målestokken. Hvis k > 1 vil det være
en forstørrelse og hvis k < 1 en forminskelse.

Her er det også mulig å skrive om og få

|CA|
|FD|

=
|AB|
|DE|

=
|CB|
|FE|

= k

Forholdene kan vi sette opp på mange måter, men her er det viktig å passe på at vi får parvis
samhørende sider. Et godt tips kan være å sette opp trekantene ved siden av hverandre som
over. Da kan vi også f.eks. se at

|CA|
|AB|

=
|CA| · k
|AB| · k

=
|DF |
|DE|

Altså at forholdet mellom to sider i en trekant vil være det samme som forholdet med de
samhørende sidene i den andre trekanten.

Detter er noe vi utnytter når vi skal løse oppgaver.

4.3 Noen typiske oppgaver
Vi kan se på noen typiske oppgaver hvor formlikhet utnyttes.

Oppgave 2

Vi skal bestemme bredden av ei elv mellom punktene A og B. Vi måler avstandene AC
= 33 m, CE = 18 m og ED = 12 m.

A C

D

B

E

Hva er bredden AB av elva?
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Løsningsforslag

Trekantene △ACE ∼ △ECD fordi
• ∠ACB = ∠ECD siden de er toppvinkler
• ∠CAB = ∠CED = 90°

Når to vinkler er de samme må også den tredje vinkelen være like stor.
Da kan vi sette opp to forhold som må være like hverandre:

|AB|
|AC|

=
|ED|
|EC|

Vi regner ut:

|AB|
|AC|

=
|ED|
|EC|

|AB|
33

=
12

18

|AB| = 33 · 12
18

= 22

Svar: Bredden av elva er 22 m

Her er en oppgave henta fra eksamen i grunnskolen våren 2011

Oppgave 3

Historien forteller oss at Thales fra Milet (gresk filosof som levde om-
trent 600 fvt.) imponerte alle da han bestemte høyden av Keopspy-
ramiden i Egypt. Han målte opp pyramiden og fant ut at grunnflata
var kvadratisk med sidekanter lik 230 m. Så tok han å satte opp en
pinne litt bortenfor pyramiden og kunne måle skyggene som både

pyramide og pinnen kastet. Figuren under viser lengden av pinnen som NM og lengden
av skyggen pinnen kastet som NP . Lengden av skyggen fra pyramiden er EC.

Thales målte skyggen til pyramiden og fant EC = 431 m. Pinnen han satte opp var to
meter høg og skyggen til den var 7.5 m.
Ta utgangspunkt i figuren til Thales og finn høyden av pyramiden.
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Løsningsforslag

Det er lurt å starte med en god figur

v

T

M

A CE N P

230 m

Thales kunne vise at det er to formlike trekanter gitt at solvinkelen er omtrent den
samme. Da har vi at △ACT ∼ △NPM . Det gjør at vi kan finne høyden ved å sette opp
forhold mellom sidelengdene i de to trekantene.
Vi vet at sidekanten i Keopspyramiden er 230 m. Pyramiden er regulær (ikke skeiv), og
da blir avstanden AE = 230

2
.

AT

AC
=

NM

NP
h

115 + 431
=

2

7.5

h = 546 · 2

7.5
= 145.6

Svar: Høyden er 145.6 meter

4.4 Transversalsetningen
Transversalsetningen er en setning, eller et teorem, som dukker opp i flere sammenhenger.
Vi får bruk for den når vi skal fullføre en del bevis samtidig som den viser noen interessante
geometriske sammenhenger. Skal vi bevise det vi allerede har brukt om forholdet mellom sidene
i formlike trekanter får vi bruk for denne setningen.

Hva er en transversal?
Først må vi bli enige om hva vi mener med en transversal. Store norske leksikon forklarer
at en transversal er «linje som skjærer én bestemt kurve eller flere kurver.». Se SNL. I vår
sammenheng kan vi bytte ut «kurve» med «linje». En transversal blir da ei rett linje som
skjærer ei, eller flere, andre rette linjer.
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a

b

t

Er to linjer som skjæres av en transversal parallelle får vi en transversal vi kan kalle en paral-
lelltransversal.

a

b

t

Vi kommer til å se på parallelltransversaler i trekanter og kan gi denne definisjonen.

Definisjon 10 Transversal

Ei linje som skjærer to eller flere linjer.

Da er vi klare til å se på transversalsetningen

Transversalsetningen
Vi starter med en figur.

A

B

D

C

E

l

m

Med utgangspunkt i figuren kan vi formulere denne setningen.
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Teorem 6 Transversalsetningen

La m og l være to linjer som skjærer over vinkelbeina til en vinkel med toppunkt A. l
skjærer det ene vinkelbeinet i B og det andre i C og m skjærer det ene vinkelbeinet i D
og det andre i E.
Da gjelder at

l ∥ m ⇐⇒ |AB|
|AD|

=
|AC|
|AE|

Transversalsetningen forteller oss at hvis linjene l og m er parallelle så gjelder det at |AB|
|AD| =

|AC|
|AE| .

Den forteller også det motsatte: Hvis |AB|
|AD| =

|AC|
|AE| , så må linjene l og m være parallelle. Det er

derfor ekvivalenstegnet er benyttet.

Bevis
Før vi går i gang med beviset kan det være greit å merke seg skrivemåten

α(△ADC)

Det betyr arealet av trekant ADC og vil bli brukt for å spare litt plass.

Vi tegner linjestykkene DC og BE og får denne figuren.

A

B

D

C

E

l

m

Bevis 6

Vi antar at l ∥ m og har da at

BC ∥ DE =⇒ α(△DEB) = α(△DCE)

Begge trekantene har samme grunnlinje og samme høyde fordi de to linjene er parallelle.
Nå kan vi se på flere arealer og observere at

α(△ADE)− α(△DEB) = α(△ABE)

α(△ADE)− α(△DCE) = α(△ADC)
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Når vi vet at α(△DEB) = α(△DCE) betyr det at

α(△ADC) = α(△ABE)

△ABC og △ADC har samme høyde. Det betyr at forholdet mellom lengdene av grunn-
linjene i de to trekantene må være det samme som forholdet mellom arealene. Det gir

|AB|
|AD|

=
α(△ABC)

α(△ADC)
=

α(△ABC)

α(△ABE)
=

|AC|
|AE|

Sidene i formlike trekanter
Tar vi utgangspunkt i transversalsetningen kan vi nå bevise at forholdene mellom sidene i to
formlike trekanter gjelder.

Figuren under viser to formlike trekanter

△ABC ∼ △DEF

α
β

γ

A B

C

α
β

γ

D E

F

De er formlike siden vinkelene er parvis like store og vi har at

|AB|
|DE|

=
|BC|
|EF |

=
|AC|
|DF |

Dette kan bevises med transversalsetningen.

Bevis 7

De to trekantene er formlike og flyttes slik at vi får denne figuren.

A B

C

E

D

F
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Fra transversalsetningen har vi at

|AB|
|DE|

=
|AC|
|DF |

Vi kan også flytte trekantene slik at vi får denne figuren

A B

C

ED

F

Transversalsetningen gir
|AC|
|DF |

=
|BC|
|EF |

Da har vi vist at
|AB|
|DE|

=
|BC|
|EF |

=
|AC|
|DF |

Ut fra at vi vet
|AB|
|DE|

=
|BC|
|EF |

=
|AC|
|DF |

kan vi også se at
|DE|
|AB|

=
|EF |
|BC|

=
|DF |
|AC|

eller
|AC|
|AB|

=
|DF |
|DE|

og alle mulige andre varianter av forhold.

Tips: Tegn opp trekantene ved siden av hverandre og hold tunga rett i munnen. Matpapir kan
være lurt hjelpemiddel.
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5 Pytagoras
Pytagoras ble født på den greske øya Samos omtrent 570 f. Kr. og har gitt navnet til denne
læresetningen eller teoremet. Et teorem er et matematisk påstand som er bevist. Han syslet med
langt flere studier enn akkurat dette, blant annet musikk og fysikk. Faktisk var det ikke han
som først fant denne setningen heller. I dag vet vi at andre kulturer kjente til dette forholdet
lenge før Pytagoras.

5.1 Læresetningen til Pytagoras
Pytagoras sin læresetning kan vi formulere på flere måter. Her er en vanlig formulering.

Teorem 7 Pytagoras’ læresetning

I en rettvinkla trekant er arealet av kvadratet med side lik hypotenusen lik summen av
arealene av kvadratene med sider lik hver katet.

AC

B

a

a

a

a

b

b

b

b

c

c
c

c

Figuren illustrerer setningen hvor vi har at

c2 = a2 + b2

Setningen kan formuleres på flere måter. Et alternativ er denne:

I en rettvinkla trekant er kvadratet av lengden av hypotenusen lik summen av
kvadratene av lengdene til katetene.

Ut fra definisjonene kan vi også formulere den omvendte pytagorassetningen:
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Teorem 8 Den omvendte pytagorassetningen

Hvis summen av arealene av kvadratene på to sider er lik arealet av kvadratet på den
siste sida er trekanten rettvinkla

Den siste setningen krever et eget bevis som vi skal se på seinere, men først nå skal vi se på
noen bevis for at pytagorassetningen stemmer.

5.2 Bevis av setningen
Det fins svært mange bevis for Pytagoras sin setning. Wikipedia: Pythagorean theorem viser
noen og har lenker til andre varianter. Her kommer noen av de vanligste.

Chou Pei
Chou Pei Suan Ching, eller Zhou Bi Suan Jing, er en av de eldste kinesiske bøkene. Direkte
oversatt er det på norsk: Den aritmetiske klassikeren om Gnomon og de sirkulære stiene i
himmelen. Bøkene er fra Zhou-dynastiet som varte fra 1046 til 256 f. Kr. Seinere er bøkene
samlet og utvidet. Figur 5.1 viser en figur hentet fra en av bøkene. Vi tegner opp den på nytt
og setter navn på sidene og ender opp med figur ??. Den vil vi benytte til beviset.

Figur 5.1: Illustrasjon fra Chou Pei Suan Ching

Tegner vi opp det samme og setter på lengder av sidene ser det slik ut:

a

b
c

a

b

a

b

a

b
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Med utgangspunkt i figuren kan vi føre dette beviset:

(a+ b)2 = 4 · ab
2

+ c2

a2 + 2ab+ b2 = 2ab+ c2

a2 + b2 = c2

Beviset bygger på hvordan vi kan regne ut arealet av det store kvadratet på flere måter. (a+b)2

gir arealet av kvadratet ved å multiplisere sidene med hverandre. Alternativt kan vi finne det
samme arealet ved å finne arealet av det røde kvadratet, c2 og legge til de fire trekantene som
mangler.

Bevis med formlike trekanter

a

b

c
h

x

y

B

A C

D

I figuren er △ABC en rettvinkla trekant. Vi feller ned en normal fra punktet C og ned på
grunnlinja AB. Skjæringspunktet kaller vi D.

Da har vi at △ABC ∼ △ADC ∼ △BDC fordi alle har en felles vinkel og en annen vinkel som
er oppgitt til 90°

Vi setter AD = x og DB = y.

At △ABC ∼ △ADC gir:
b

c
=

x

b
⇒ b2 = cx

At △ABC ∼ △CDB gir:
a

c
=

y

a
⇒ a2 = cy

Det kan vi bruke slik:

a2 + b2 = cx+ cy

= c(x+ y)

= c · c = c2

32



Garfield sitt bevis
James Abram Garfield (1831 – 1881) var den 20. presidenten i USA. I 1876 presenterte han et
bevis med utgangspunkt i figuren under.

E
B

A

D

C

c

b

b

c

c

a

Først beregnet han arealet av hele trapeset ved å bruke formelen for arealet av et trapes, som
er summen av lengdene av de parallelle sidene delt på to ganger høyden

(a+ b)

2
· (a+ b) =

(a+ b)2

2

Vi kan finne det samme arealet ved å ta summen av trekantene:

ba

2
+

ab

2
+

cc

2

De to uttrykkene for arealet er like og av det følger beviset:

ba

2
+

ab

2
+

cc

2
=

(a+ b)2

2
2ab+ c2 = (a+ b)2

2ab+ c2 = a2 + 2ab+ b2

c2 = a2 + b2

Euklids bevis
Euklid, han som skrev bøkene Elementene, tok også med et bevis for pytagorassetningen. Han
tok utgangspunkt i figuren under. Den kalles ofte for «brudens stol». Illustrasjonen i figur 5.2
er hentet fra en eldre utgave av Elementene.

Vi tegner opp figuren til Euklid på nytt.
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Figur 5.2: Illustrasjon fra Euklids Elementene

H

E

C

F

I

K

A

G

D

J B

Euklids bevis går ut på å viset at arealet av □ADEB er det samme som summen av arealene
til □BHIC og □ACFG. Vi skriver arealet av rektanglet ABED som α(□ABED)

Da skal vi vise at α(□ABDE) = α(□CBHI) + α(□ACFG)

Med utgangspunkt i figuren fins det flere alternativer.

34



Alternativ 1 Av figuren ser vi at □ADKJ og △ADC har samme grunnlinje, AD, og samme
høyde, DK. Det betyr at:

α(□ADKJ) = 2 · α(△(ADC)

Vi kan også vise at:
α(□ACFG) = 2 · α(△(ABG)

siden begge har felles grunnlinje AG og felles høyde GF .

Så kan vi vise at
△ADC ∼= △ABG

Av figuren kan vi se at den ene er en 90° rotasjon av den andre om punktet A. Kongruensen
kan vi vise med kongruenssetningen: side-vinkel-side. Vi har at AG = AC og at AD = AB. Så
har vi at: ∠BAG = ∠DAC = 90° + ∠BAC.

Da følger det at:

α(□ADKJ) = 2 · α(△ADC) = 2 · α(△ABG) = α(□ACFG)

Vi kan følge samme framgangsmåte for å vise at: α(□CBHI) = α(□JKEB)

Da har vi vist at:
α(□ACFG) + α(□CBHI) = α(□ADEB)

Alternativ 2 Vi vil vise at:

α(□ACFG) = α(□ADKJ)

α(□CBHI) = α(□JKEB)

Først viser vi at
α(□ACFG) = α(□ADKJ)

α(△GAC) = α(△GAB) fordi begge har grunnlinje GA og høyde AC. De har samme høyde
fordi ∠ACB er rettvinkla og høyden i △GAB er avstanden fra GA til FC. Punktet B ligger
også på linja gjennom F og C. Da vil linja BC være parallell med linja GA og de to trekantene
har samme høyde.

Da kan vi vise at
α(△GAB) = α(△CAD)

Det er fordi ∠GAB = ∠CAD siden begge er 90°+ ∠CAB da er △GAB ∼= △CAD. Her bruker
vi argumentet med side - vinkel - side.

Vi har også at
α(△CAD) = α(△JAD)

fordi begge har grunnlinja AD og høyde AJ

Setter vi alt det sammen har vi at: α(△GAC) = α(△JAD)

α(△JAD) = 1
2
· α(□ADKJ)

α(△GAC) = 1
2
· α(□ACFG)

}
⇒ α(□ACFG) = α(□AJKD)
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Følger vi samme argumentasjon kan vi også vise at α(□BCIH) = α(□KEBJ) etter samme
framgangsmåte som over. Da får vi

α(□ABED) = α(□BCIH) + α(□ACFG)

Alternativ 3 Vi starter med å vise at:

△ABC ∼ △AJC

Det kan vi vise ved at begge trekanter er rettvinkla og begge trekanter har ∠BAC felles.

Da vet vi at AJ
AC

= AC
AB

og vi har at:

AJ

AC
=

AC

AB

AJ = AC · AC
AB

AJ · AB = AC · AC
AC2 = AJ · AB

Nå vet vi at AD = AB og da betyr det vi har funnet at:

α(□ACFG) = α(□ADKJ)

Følger vi samme framgangsmåte kan vi vise at:

△ABC ∼ △CBJ

Da har vi at BC
AB

= JB
BC

. Gjør vi samme utregning får vi at

BC2 = AB · JB

Da vet vi at:
α(□CBHI) = α(□JKEB)

og vi har vist at:
α(□ACFG) + α(□CBHI) = α(□ADEB)

Alternativ 4 Vi starter med å vise at

α(△ADC) =
1

2
· α(□ADKJ)

Grunnlinja i △ADC er AD og høyden er AJ . AD og AJ er også høyde og bredde i □ADKJ .

Så finner vi arealet at △ADC. Først viser vi at det er det samme som arealet av △ABG. Vi
kan vise at △ADC ∼= △ABG. Det stemmer siden
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AD = AB

AC = AG

∠CAD = ∠GAB

Arealet av △ADC:
α(△ABG) =

AG · AC
2

=
1

2
· AC2

Nå utnytter vi at α(△ADC) = 1
2
· α(□ADKJ) og vi får at:

α(△ADC) =
1

2
· AD · AJ

Disse to arealene må være like og vi kan sette opp denne likninga:

1

2
· AC2 =

1

2
· AB · AJ

⇕
AC2 = AB · AJ

Tilsvarende resonnement gir: BC2 = AB · JB

Legger sammen de to lengdene og får denne likninga

AC2 +BC2 = AB · AJ + AB · JB
= AB · (AJ + JB)

= AB · AB
= AB2

Flytting og bytting
Et annet bevis kan føres ved å flytte trekanter. Se på figur 5.3. Kan du se beviset?

Arealet av det hvite området er det samme i begge figurene. I den ene er det kvadratet på
hypotenusen. I den andre figuren er det kvadratene på hver av katetene.

5.3 Bevis for den omvendte setningen
Den omvendte setningen forteller at vinkelen i en trekant hvor a2 + b2 = c2 må være rett. Den
kan også bevises på flere måter. Her er noen alternativer.
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Figur 5.3: Flytting av trekanter

Alternativ 1 Vi starter med △ABC hvor vi har at

a2 = b2 + c2 (5.1)

Vi skal viset at ∠BAC er en rett vinkel.

B EA D

C F

a

c

b x

c

b

Det neste vi gjør er å konstruere en rettvinkla trekant △DEF slik at DE = AB = c og
DF = AC = b. Vi kaller EF = x.

I △DEF er ∠D = 90˚ og da sier pytagorassetningen at forholdet mellom sidene i den kon-
struerte trekanten er

x2 = b2 + c2 (5.2)

I △ABC har vi gitt likning 5.1. Ved sammenlikning av de to likningene 5.1 og 5.2 får vi

a2 = x2 =⇒ a = x

Ved kongruenspostulatet SSS har vi da at

△ABC ∼= △DEF
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Det betyr at ∠A = ∠D og at ∠A er en rett vinkel.

Alternativ 2 Vi tegner en trekant med sidelengdene BC = a, AC = b og AB = c og skal
bevise at hvis a2 = b2 + c2 så må ∠A = 90°.

Tegner vi en tilfeldig trekant og feller ned normalen fra C på AB kan vi ha to tilfeller.

BA

C

a

c

b

x

h

BA

C

a

c

b

x

h

Vi kan vise at normalen fra C må treffe AB i punktet A. Kaller vi avstanden fra normalens
fotpunkt og A for x får vi

a2 = h2 + (c± x)2 = h2 + c2 ± 2cx+ x2

Vi har også at
x2 + h2 = b2

som vi kan sette inn i det forrige uttrykket og få

a2 = b2 + c2 ± 2cx

Utgangspunktet var at a2 = b2 + c2. Det betyr at x = 0 noe som betyr at normalen vil treffe i
punktet A. Altså △ABC er rettvinkla.
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6 Periferivinkelsetningen
6.1 Periferivinkelsetningen
Først må vi være enige om hva en periferivinkel og en sentralvinkel er.

Definisjon 11 Perfiferi- og sentralvinkel

En periferivinkel er en vinkel med toppunkt på sirkelperiferien.
En sentralvinkel er en vinkel med toppunkt i sentrum av sirkelen.

I figur 6.1 er β en sentralvinkel og α en periferivinkel.

α

β

B

D

C

S

A

Figur 6.1: Periferi- og sentralvinkel

Det er en viktig sammenheng mellom disse to vinklene:

Teorem 9 Periferivinkelsetningen eller sentralvinkelsetningen

Når en periferivinkel og en sentralvinkel spenner over samme sirkelbue, så er periferivin-
kelen halvparten så stor som sentralvinkelen.

Dette teoremet, eller læresetningen, kan bevises på flere måter.

Bevis 8

Tar vi utgangspunkt i figur 6.1 ser vi at både periferivinkelen og sentralvinkelen deles i
to deler av diameteren CD. Vi har at

α = ∠ACS + ∠SCB (6.1)
β = ∠ASD + ∠DSB (6.2)
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Ut fra det vi vet om vinkelsummen i en trekant har vi at

∠SAC + ∠ACS + ∠CSA = 180˚

Ut fra definisjonen av en sirkel har vi at alle radiene er like lange. Det betyr at SA = SC
og at △ASC er en likebeint trekant. Det betyr igjen at ∠SAC = ∠ACS.
Da er ∠CSA = 180˚ − ∠ASD og det fører til at

∠SAC + ∠ACS + ∠CSA = 180˚
⇓

∠ACS + ∠ACS + (180˚ − ∠ASD) = 180˚
⇓

∠ASD = 2 · ∠ACS (6.3)

Tilsvarende får vi for △BSC

∠DSB = 2 · ∠SCB (6.4)

Setter (3) og (4) inni (2)

β = 2 · ∠ACS + 2 · ∠SCB

= 2 · (∠ACS + ∠SCB)

= 2 · α

Hvilket skulle bevises.

Kanskje tar ikke beviset over hensyn til alle tilfeller av sentral- og periferivinkler? Et mer
utfyllende bevis kan ta utgangspunkt i flere tilfeller.

Bevis 9

Vi kan se på tre mulige tilfeller av periferi- og sentralvinkler.

Tilfelle 1
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β

β

α
P

R

Q

O

I dette tilfellet ligger QOR på samme linje. Vi har da en likebeint trekant △POQ fordi
sidene OQ og OP begge er radius i sirkelen. Vi vet da at vinklene ∠QPO og ∠PQO er
like store. La oss kalle disse vinkelene β. Legg også merke til at dette er perfiferivinkelen.
Da har vi at ∠POQ = 180˚ − 2 · β
Nå vet vi at sentralvinkelen, som vi kan kalle α, er:

α = ∠POR = 180˚ − ∠POQ = 180˚ − (180˚ − 2 · α) = 2 · β

Altså: α = 2 · β

Tilfelle 2 I dette tilfellet ligger sentrum, O, inne i periferivinkelen. Vi trekker da ei
hjelpelinje og ender opp med denne figuren

β

α

P

S

Q

O

R

Da har vi at sentralvinkelen er: α = ∠POS + ∠SOR
Vi har da to figurer som er identiske med tilfelle 1. Vi vet da at
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∠POS = 2∠PQS

∠SOR = 2∠SQR

Setter inn og får

α = ∠POS + ∠SOR

= 2∠PQS + 2∠SQR

= 2(∠PQS + ∠SQR) = 2 · β

Tilfelle 3

β

α
P

S

Q

O

R

Vi trekker igjen ei hjelpelinje gjennom fra Q gjennom sentrum.
Vi har at α = ∠POR = ∠POS − ∠ROS.
Igjen har vi to figurer som er identiske med det første tilfellet, og vi vet igjen at

∠POS = 2∠PQS

∠SOR = 2∠SQR

α = ∠POR

= ∠POS − ∠ROS

= 2∠PQS − 2∠RQS

= 2(∠PQS − ∠RQS)

= 2 · β

43



6.2 Tales setning
Denne setningen har fått navnet sitt etter Tales fra Millet. Se mer her Wikipedia: Tales fra
Milet. Navnet på matematikere fra gamle dager er blitt brukt i flere sammenhenger og det fins
flere setninger som har samme navn. Legg også merke til at navnet skrives både med og uten
«h»: Thales eller Tales. Denne setningen er et spesialtilfelle av periferivinkelsetningen.

Teorem 10 Tales setning

En periferivinkel som spenner over en bue på 180˚ er 90˚

Det er noe vi ofte benytter oss av i konstruksjoner.

DGP: Utforsk periferivinkelsetningen

Bruk GeoGebra eller et annet DGP. Tegn en sirkel med sentrum. Sett av punkter på
sirkelen slik at det dannes en sentral- og periferivinkel som spenner over samme bue. Mål
vinklene for å se om periferivinkelsetningen stemmer.

6.3 Noen oppgaver
Vi benytter perfierivinkelsetningen i mange sammenhenger. Her er en oppgave som viser akkurat
det. Prøv å unngå å se på løsningen før du har fått prøvd deg.

Oppgave 4

I △ABC er AB = 20 og ∠C = 90˚. Normalen fra C treffer AB i punktet H. CH = a
Finn for hvilke verdier av a vi har to, en eller ingen trekanter som mulige løsninger.

Løsningsforslag

Tenk på setningen til Tales. C vil ligger på en halvsirkel med diameter lik AB. Tegn opp!
Da kan du se at det er en løsning når a = 10, ingen løsning når a > 10 og to løsninger
når a < 10
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Oppgave 5

På en likebeint trekant konstrueres det et kvadrat på det beinet. Resultatet blir som i
figuren under.

α

Fra det motsatte hjørnet i trekanten trekkes det en diagonal til det øvre hjørnet i kvad-
ratet. Hvor stor blir vinkel α?

Løsningsforslag

Dette er en oppgave hvor det er vanskelig å vite hvor en skal starte. Det er nok lurt å
tenke på hva det er vi får opplyst. Her er det mange sider som er like lange og trekanten
er likebeint. Kanskje kan det være en ide å prøve å konstruere figuren – enten med passer
eller med f. eks. GeoGebra? I så fall vil det bli behov for å tegne en sirkel og der ligger
nok løsningen.

α

B C

D

A

E

Ved å se nøye på figuren er det mulig å se at her har vi med en sentral- og periferivinkel
å gjøre. Sentralvinkelen er ∠EAC og periferivnkelen er ∠EBC. Begge de to vinklene
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spenner over samme bue CE. Da vet vi fra periferivinkelsetningen at ∠EBC = 1
2
∠EAC.

Det betyr at ∠EBC = 45°

Oppgave 6

1a

√
a

A BC

D

Figuren over vier et linjestykke AB som har lengde (a + 1). Linjestyket er diameter i
sirkelen s. Punktet C ligger på AB og har avstand a fra A. Linjestykket CD står vinkelrett
på linjestykket AB. Punktet D er skjæringspunktet mellom sirkelen og linjestykket CD.
Bevis at lengden av linjestykket CD er

√
a .

Løsningsforslag

Ut fra Tales setning kan vi tegne denne figuren

1a

A BC

D

Da har vi at
△ABD ∼ DBC

fordi begge har en rett vinkel og ∠B felles. Det gjør at vi kan sette opp disse forholdene

DB

AB
=

BC

DB
DB2 = AB · BC = (a+ 1) · 1 = a+ 1

Benytter i pytgaorassetningen på △DBC får vi

BC2 + CD2 = DB2

CD2 = DB2 − BC2 = a+ 1− 1 = a

CD =
√
a
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7 Analytisk geometri
I det som kalles analytisk geometri flytter vi oss inn i koordinatsystemet. Alle punkter får
koordinater og vi kan finne likninger som beskriver forskjellige geometriske objekter.

Vi starter med å finne avstanden mellom to punkt.

7.1 Avstanden mellom to punkter
Denne oppgaven gir en smakebit på analytisk geometri. Tenk godt på den før du ser på løs-
ningsforslaget.

Oppgave 7

Punktet A har koordinatene (1, 2) og punktet B har koordinatene (5, 4). Finn lengden
av linjestykket mellom de to punktene.

x−1 0 1 2 3 4 5 6

y

−1

0

1

2

3

4

5

6

A

B

Hvordan tenkte du? I oppgaven er det ikke noe krav til hvordan den løses – det står bare «finn
lengden». En tegning og bruk av et eller annet til å måle lengder med kunne i noen tilfeller
gitt et svar. Litt mer nøyaktig svar kunne vi fått ved å bruke et DGP. Her er det GeoGebra
kommer fram til
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Punktene er tegna inn med oppgitte koordinater. I algebrafeltet kan vi skrive inn koordinatene.
Når de er på plass er avstanden på linjestykket mellom de to punktene målt. Lengden er 4.4721.
Svaret er funnet, men hva skjuler seg bak det GeoGebra har gjort?

For å regne ut lengden kan vi benytte denne framgangsmåten.

Løsningsforslag

Her er punktene, og linjestykket, i koordinatsystemet. Starter vi i punkt A kan vi også
markere hvor langt bort og hvor høgt opp punkt B ligger.

x−1 0 1 2 3 4 5 6

y

−1

0

1

2

3

4

5

6

4

2

A

B

Problemet er nå gjort om til å finne lengden av hypotenusen i en rettvinkla trekant. Det
kan vi gjøre ved pytagorassetningen.

|AB|2 = 42 + 22 = 20

|AB| =
√
20 = 2

√
5 ≈ 4.472

Den samme framgangsmåten kan vi benytte uansett hva koordinatene til de to punktene her.
Velger vi to vilkårlige punkt P og Q kan vi tegne linjestykket mellom dem.
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x

y

x2 − x1

y2 − y1

P (x1, y1)

Q(x2, y2)

Avstanden blir hypotenusen i en rettvinkla trekant. Det to katetene får lengdene |x2 − x1| og
|y2 − y1|. Husk at | benyttes som absoluttverditegn og at lengden alltid vil ha positiv verdi. Da
har ikke plasseringa til punktene noen betydning.

Når vi nå skal finne lengden av hypotenusen går vi fram som i oppgaven. Vi benytter pyta-
gorassetningen og finne kvadratene. Ser vi på kvadratet av lengden av den horisontale kateten
blir det: (x2 − x1)

2. Hvis punktet Q hadde vært til venstre for P burde vi skrevet (x1 − x2)
2,

men når vi kvadrerer får vi samme resultat.

(x2 − x1)
2 = x2

2 − 2 · x2 · x1 + x2
1

(x1 − x2)
2 = x2

1 − 2 · x1 · x2 + x2
2

Verdiene til koordinatene, og med det plasseringene av punktene, spiller ingen rolle for det vi
skal finne.

|PQ|2 = (x2 − x1)
2 + (y2 − y1)

2

|PQ| =
√

(x2 − x1)2 + (y2 − y1)2

Dette kaller vi avstandsformelen

Teorem 11 Avstandsformelen

Gitt to punkter P og Q med koordinatene P : (x1, y1) og Q : (x2, y2). Da er avstanden
mellom punktene

|PQ| =
√

(x2 − x1)2 + (y2 − y1)2

7.2 Midtpunktet på ei linje
Hvordan kan vi gå fram for å finne koordinatene til midtpunktet på et linjestykke når vi kjenner
koordinatene til endepunktene. Se på oppgaven under og prøv å finne en framgangsmåte.
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Oppgave 8

Punktet A har koordinatene (1, 2) og punktet B har koordinatene (5, 4). Finn koordina-
tene til punktet M midt på linjestykket AB.

x−1 0 1 2 3 4 5 6
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Fant du at koordinatene må være (3, 3)? Det stemmer, her er et forslag til hvordan en kan gå
fram.

Løsningsforslag

x−1 0 1 2 3 4 5 6

y

−1

0
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M

Ved å studere figuren kan vi se at x-koordinaten til M må ligge midt mellom x-
koordinatene til de to punktene, altså midt mellom 1 og 5. Det gir x-koordinaten 3.
Det som ligger midt mellom noe kjenner vi som gjennomsnittet av verdiene. Det betyr
at x-koordinaten blir:

5 + 1

2
= 3
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y-koordinaten ligger også på det gjennomsnittet av de to y-koordinatene:

4 + 2

2
= 3

At dette resonnementet stemmer kan vi prøve å bekrefte ved å bruke DGP.

DGP: Undersøk om løsningen din stemmer

Sett av to tilfeldige punkt. Tegn linjestykket mellom dem og be GeoGebra om å fin-
ne midtpunktet på linjestykket. Vis koordinatene til alle punktene. Greier du å finne
koordinatene ved regning?

Løsningsforslag

Figuren viser et skjermbilde fra GeoGebra.

Koordinatene til midtpunktet M kan regnes ut slik:

M :

(
−7.5 + 2.5

2
,
7.5 + 4.3

2

)
= (−2.5, 5.9)

Punktene kan flyttes rundt og alle utregningene gir koordinatene til midtpunktet.

Formelen
For å føre et bevis kan vi benytte det vi har funnet ut om formlike trekanter. Tegner vi tilfeldige
punkter i et koordinatsystem, og markerer midtpunktet på linjestykket mellom dem som M ,
kan vi ende opp med dette resultatet
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x

y

A CE

B

M

Ut fra figuren kan vi vise at
△ACB ∼ △AEM

fordi ∠A er den samme i begge og begge trekanter har en rett vinkel. Vi vet også at

|AM | = 1

2
|AB|

Da har vi at
|AM |
|AB|

=
|ME|
|BC|

=
|AE|
|AC|

=
1

2

Det viser at koordinatene til midtpunktet vil ha både x- og y-koordinater midt mellom koordi-
natene til endepunktene.

Et alternativ er å se på figuren under. Her er det igjen to tilfeldig plasserte endepunkter.

x

y

A

B

CE

M D

Benytter vi vinkel-side-vinkel-postulatet kan vi slå fast at

△AEM ∼= △MDB
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Trekantene er kongruente fordi de har to vinkler som er like store, ∠EAB = ∠DMB og
∠EMA = ∠DBM . Den mellomliggende siden mellom toppunktene er like lange: |AM | =
|MB|.

Da vil vi også ha at
|AE| = |MD| |CD| = |DB|

Nå har vi slått fast at punktet M vil ha x- og y-koordinater som ligger midt mellom koordinatene
til endepunktene. Hvordan kan vi finne koordinatene?

x

y

A

B

M

Ser vi på de horisontale avstandene fra y-aksen får vi to avstander til endepunktene. I figuren
under er de kalt a og b. Den delen som utgjør forskjellen mellom de to er markert med grønt.
Punktet vi skal finne er markert med rødt.

a

b

de to avstandene

b a

a+b
2

satt sammen

Avstanden til punktet vi skal finne kan vi se er gjennomsnittet av de to avstandene. Gjennom-
snittet finner vi ved a+b

2
. Det samme argumentet gjelder for de vertikale avstandene.

Har punktet A koordinatene (x1, y1) og B koordinatene (x2, y2) kan vi finne koordinatene til
midtpunktet som x2+x1

2
og y2+y1

2
. Bruk gjerne litt tid på å forsikre deg om at det ikke spiller

noen rolle hvor endepunktene er plassert i forhold til hverandre.
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x

y

x2+x1

2

y2+y1
2

A

B

M

Koordinatene til midtpunktet:
M :

(
x2 + x1

2
,
y2 + y1

2

)
Teorem 12 Koordinatene til midtpunktet

Gitt to punkter P og Q med koordinatene P : (x1, y1) og Q : (x2, y2). Koordinatene til
midtpunktet, M , mellom de to punktene vil være

M :

(
x2 + x1

2
,
y2 + y1

2

)
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8 Kjeglesnittene
Nå skal vi se på kjeglesnittene. La oss starte med navnet. Grunnen til at sirkelen, ellipsen,
hyperbelen og parabelen kalles kjeglesnitt skyldes at de kommer fram når vi snitter ei kjegle.
Figuren viser hvordan kjegla skal snittes

sirkel

ellipse

parabel hyperbel

8.1 Sirkelen
Sirkelen kjenner vi godt fra før, men hvordan kan vi forklare hva en sirkel er? Kanskje kan
passeren være et godt utgangspunkt. Tegner vi en sirkel vil vi få en strek hvor avstanden til
sentrum er like stor uansett hvor på streken vi måler. Omtrent sånn er definisjonen også.

Definisjon 12 Sirkelen

En sirkel er det geometriske stedet for de punktene som har en fast avstand fra et fast
punkt

Det faste punktet kaller vi sentrum i sirkelen og avstanden kaller vi radius.

rS
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Likninga for en sirkel
La oss plassere sirkelen i et koordinatsystemet. S er sentrum i sirkelen og har koordinatene
(x0, y0). P er et tilfeldig punkt på sirkelperiferien. Radius kaller vi r.

x

y

S(x0, y0)

P (x, y)

r

A

Avstanden fra S til P vet vi er r. Når vi vet koordinatene til S og P kan vi finne avstanden
mellom de to punktene ved å benytte setningen til Pytagoras.

I figuren vil punktet A ha koordinatene (x, y0) og vi kan finne avstandene uttrykt ved x og y

|SA| = |x− x0|
|AP | = |y − y0|

Da kan vi finne r2

r2 = (x− x0)
2 + (y − y0)

2

Siden vi kvadrerer avstandene kan vi se bort fra absoluttverdien. Kvadratet vil alltid være
positivt.

Det vi har kommet fram til kaller vi for standardformen for likninga til en sirkel.

Standardform likninga til en sirkel

Likninga for en sirkel med radius r og sentrum i (x0, y0)

(x− x0)
2 + (y − y0)

2 = r2

Alle sirkler kan beskrives av denne likninga. I f. eks. GeoGebra kan vi se at sirkellikninga dukker
opp når vi tegner en sirkel.

Eksempel 1

En sirkelen med radius 10 og senter i (5, 8) er gitt ved likninga:

(x− 5)2 + (y − 8)2 = 100
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8.2 Parabelen

Definisjon 13 Parabel

En parabel er det geometriske stedet for de punktene som ligger i samme avstand fra et
punkt F som fra ei linje l. Punktet F er brennpunktet og linja l er styrelinja.

Definisjonen forteller at et vilkårlig punkt P på parabelen vil ligge like langt fra brennpunktet
som fra styrelinja.

l

F

P

Q

Punktet F kaller vi brennpunktet til parabelen. Bokstaven F kommer fra at det kalles focus på
engelsk. Linja l kaller vi styrelinja.

Uansett hvor punktet P ligger vil
|FP | = |PQ|

DGP: Parabelen

Tegn ei styrelinje og sett av et punkt på styrelinja. Sett av et punkt som et brennpunkt.
Lag et linjestykke mellom brennpunktet og punktet på styrelinja. Finn midtnormalen til
linjestykket. Alle punktene på parabelen vil nå ligge på skjæringspunktet mellom midt-
normalen og en normal på styringslinja gjennom punktet som ble avsatt på styringslinja.
Spor punktet og sjekk om sporinga likner en parabel.

Egenskaper ved parabelen
Parabelen er symmetrisk
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l

styrelinje
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Grunnen til navnet brennpunkt er at all refleksjon vil samles der. En tredimensjonal parabel
kalles en parabol og alle som har sett ei parabolantenne har kanskje fått med seg at mottakeren
sitter akkurat i brennpunktet. Lurt, siden det betyr at alle signaler vil samles der. Det samme
prinsippet benyttes også for å samle varme i brennpunktet.

l

Likninga
Vi kan se på et eksempel hvor vi finner likninga for en parabel. I funksjonslære kjenner vi para-
belen som grafen til en andregrads polynomfunksjon. Vi skal se at likninga for parabelen som et
geometrisk sted likner på den vi kjenner. La oss ta utgangspunkt i at vi kjenner brennpunktet
og styrelinja.
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l

F (0, 2)

P (x, y)

Q(x, 0)

Brennpunktet F har koordinatene (0, 2) og styrelinja er x-aksen. P er et tilfeldig punkt på
parabelen. Kan vi finne ei likning for denne parabelen?

Fra definisjonen av en parabel vet vi at uansett hvor punktet P ligger vil

|FP | = |PQ|

Det gir oss

|PQ| = y

|FP | =
√

(x− 0)2 + (y − 2)2

Punktet P (x, y) er på parabelen dersom disse to avstandene er like, altså:

|PQ| = |FP |
y =

√
x2 + (y − 2)2

y2 = x2 + (y − 2)2

y2 = x2 + y2 − 4y + 4

4y = x2 + 4

y =
1

4
x2 + 1

Likninga for parabelen blir y = 1
4
x2 + 1. Det er kanskje ikke så overraskende ut fra det vi vet

om andregradsfunksjoner?

Vi kan finne den generelle likninga for en parabel på samme måte. For å finne det som kalles en
standardform tar vi utgangspunkt i topp- eller bunnpunktet til parabelen. Vi kaller det punktet
V etter det engelske vertex.
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Avstanden fra styrelinja til V , og fra V til brennpunktet F gir vi navnet p. At de er like store
følger av definisjonen av en parabel. Da kan vi skrive standardformen for likninga.

Standardform for parabelen

Likninga for en parabel med topp- eller bunnpunkt i (x0, y0) og symmetrilinje parallell
med y-aksen kan skrives som

y − y0 = k(x− x0)
2

hvor k = 1
4p

. Parabelen har åpningen oppover hvis p > 0

Likninga for en parabel med topp- eller bunnpunkt i (x0, y0) og symmetrilinje parallell
med x-aksen vil ha likninga

x− x0 = k(y − y0)
2

Parabelen har åpning mot høyre hvis p > 0 og åpningen mot venstre hvis p < 0

8.3 Ellipsen

Definisjon 14 Ellipsen

En ellipse er det geometriske stedet for de punktene som er slik at summen av avstandene
til to faste punkter, F1 og F2 er konstant.
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F1 F2

d1
d2

Definisjonen forteller at summen av avstandene d1 og d2 alltid vil være konstant. Det gjør at vi
enkelt kan tegne en ellipse ved bruk av en hyssing, to knappenåler og en blyant, slik figur 8.1
viser.

Figur 8.1: tegning av ellipse

De to knappenålene danner brennpunktene i ellipsen og da kan vil blyantstreken gi alle punktene
som er slik at summen av avstandene til brennpunktene er konstant.

Brennpunktene er de to faste punktene hyssingen er festet i. At de kalles brennpunkter skyldes
nok at refleksjonsegenskapene i en ellipse. Sender vi noe i rett bane fra det ene brennpunktet
vil det ende opp i det andre.

F1 F2

Aksene
Ellipsen har en bredde og en høyde som vi kaller akser
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Linjestykket AB går gjennom brennpunktene og vi kaller AB for den store aksen til ellipsen.
Linjestykket CD er en del av midtnormalen til AB og punktene C og D er skjæringspunktene
mellom midtnormalen og ellipsen. Vi kaller CD for den lille aksen. Begge aksene danner sym-
metriakser for ellipsen. Skjæringspunktet mellom aksene kaller vi sentrum i ellipsen. Det følger
at sentrum ligger midt mellom de to brennpunktene. Kaller vi avstanden fra A til sentrum for
a og avstanden fra sentrum til C for b, har vi at

• den store aksen: 2a

• den lille aksen: 2b

• den store halvaksen: a

• den lille halvaksen: b

Vi vet at summen av avstandene fra et punkt på ellipsen og til brennpunktene er konstant.
Tenk på hvordan vi kan tegne en ellipse. Vi kaller denne avstanden for r. Ser vi nærmere på
punktet A får vi at

r = AF1 + AF2

Da ellipsen er symmetrisk vet vi at AF1 = F2B og vi har at

r = AF1 + AF2 = F2B + AF2 = AB = 2a

Det betyr at summen av avstandene fra et punkt på ellipsen til brennpunktene er lik lengden
av den store aksen.

Vi tar utgangspunkt i figur 8.2 hvor C og D er endepunktene til den lille aksen. CD ligger
langs midtnormalen til brennpunktene. Da har vi at CF1 = CF2. Summen av avstandene er
CF1 +CF2 = 2a og vi har at CF1 = CF2 = a. S er sentrum i ellipsen og △SF1C er rettvinkla.
Benytter vi setningen til Pytagoras har vi at

SC2 + SF1
2 = CF1

2

b2 + c2 = a2

Eksentrisiteten
Eksentrisiteten forteller noe om hvor utstrakt ellipsen er

e =
c

a

hvor c =
√
a2 − b2 (avstanden fra et brennpunkt til sentrum).

Eksentrisiteten er alltid: 0 < e < 1.
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Figur 8.2: Viktige egenskaper

Likninga for en ellipse
Ut fra definisjonen kan vi komme fram til hvordan vi kan skrive likninga for en ellipse på det
som kalles en standardform.

Standardform for ellipse

Likninga for en ellipse med sentrum i (x0, y0) og den store aksen parallell med x-aksen

(x− x0)
2

a2
+

(y − y0)
2

b2
= 1

8.4 Hyperbelen

Definisjon 15 Hyperbelen

En hyperbel er det geometriske stedet for de punktene som er slik at differansen mellom
avstandene til to faste punkter er konstant.
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Uansett hvor punktet P er på hyperbelen har vi at

|PF1| − |PF2| = konstant

Likninga for en hyperbel
Ut fra definisjonen av en hyperbel og litt regning kan vi komme fram til likninger for hyperbler.
Setter vi den opp på det som kalles standardform får vi dette resultatet

Standardform likninga til en hyperbel

Likninga på standardform for en hyperbel med sentrum i (x0, y0)

(x− x0)
2

a2
− (y − y0)

2

b2
= ±1

Det er fortegnet foran ettallet som bestemmer hvordan hyperbelen er orientert. Hyperbelen kan
både ha åpninger mot x- eller y-aksen. Ser vi på hyperbler med sentrum i origo vil en hyperbel
med likninga er

x2

a2
− y2

b2
= −1

ha en orientering som den vi ser under.
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På figuren er a avstanden fra origo til punktene som ligger nærmest origo. De punktene, vi
bruker ofte V for vertex, har koordinatene

V1 : (a, 0) V2 : (−a, 0)

Avstanden fra origo til brennpunktene har fått navnet c. Brennpunktene har da koordinatene

F1 : (c, 0) F2 : (−c, 0)

Sammenhengen mellom avstandene kan uttrykkes som a2+ b2 = c2. For å vite hva b står for må
vi først innom asymptotene. Asymptotene er tegnet inn på figuren og kan betraktes som linjer
hyperbelen nærmer seg. Tegner vi opp et rektangel hvor hvert hjørne ligger på asymptotene,
og to av sidene tangerer punktene V1 og V2, vil vi ha b som avstanden fra origo og opp til den
andre siden i rektanglet. Se figuren.

En liten forandring på fortegnet slik at hyperbelen har likninga

x2

a2
− y2

b2
= 1

gjør at vi snur om på det meste. Da vil det se sånn ut.
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F1(c, 0)

F2(−c, 0)

V1(0, a)

V2(0,−a)
b

Den konstante forskjellen mellom avstandene vi så på i starten kan vi nå si noe mer om. Gir
vi navnet d1 og d2 til avstandene fra brennpunktene kan vi tegne denne figuren.

P (x, y)

d1
d2

SF1 F2

Ut fra avstandene a og c og litt regning kan vi se at

|d1 − d2| = 2a

Asymptotene vil ha likningene

y − y0 = ± b

a
(x− x0)

Praktisk bruk av hyperbelen
Hyperbelen som et geometrisk sted utnyttes på mange måter. Differensen mellom avstander
kan utnyttes i navigasjonssystemer og mye annet. Et eksempel på en enkel metoden fra første
verdenskrig er hvordan hyperbelen ble utnytta for å finne posisjonen til kanoner. Tre personer
med hver sin synkroniserte klokke ble plassert ut i terrenget. Hvis alle kunne høre kanonsmellet
var det mulig å finne posisjonen ut fra tidspunktene. Forskjellene mellom avstandene kunne
benyttes til å bestemme to hyperbler. Skjæringspunktet mellom hyperblene ga posisjonen.
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