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Funksjonsanalyse er tema for denne teksten. Vi vil møte den deriverte funksjonen og benytte
den som et viktig verktøy for funksjonsanalyse. Jeg har stort sett samlet en del jeg har skrevet
fra før og forandret litt på det. Det betyr at det kan være både feil og mangler. Si fra til meg
hvis du oppdager noen av dem, så vil jeg rette opp. Se derfor datoen på framsida for å være
sikker på at du har siste versjon.

Kom også gjerne med kommentarer som kan bidra til en forbedring.

Lykke til med funksjonsanalysen!

Creative Commons Navngivelse-IkkeKommersiell-DelPåSammeVilkår 4.0 Internasjonal Offentlige Lisens
Teksten er skrevet med LATEX.
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1 Introduksjon
1.1 Noen definisjoner
I drøfting av funksjoner er vi ute etter å finne egenskapene til en funksjon. I hvilket intervall
vokser funksjonsverdiene? Når er funksjonsverdien størst? Minst? Alt dette kan være av inter-
esse. Da dukker en del faguttrykk opp og definisjonene av dem må vi være enige om. Derfor
følger det her en del definisjoner som vil bli benyttet i det videre arbeidet med å undersøke
funksjoner.

Definisjon 1 Nullpunkt

La f være en funksjon og la c være et tall c ∈ Df .
Hvis f(c) = 0 er punktet c et nullpunkt.

x1 x2 x3 x4 x5

x

y

Figur 1.1: Nullpunkt

I figur 1.1 er nullpunktene x1, x2, x3, x4, x5 markert. Legg merke til at bare x-verdiene er null-
punktene og at de ikke skrives på koordinatform. Det viser en forvirrende bruk av ordet punkt
på norsk. I andre språk skilles det klart mellom punkter på koordinatform og punkter som
kan representeres på aksene. I engelskspråklig litteratur kalles nullpunkt for «zeros», på svensk
for «nollställen» og nesten det samme på tysk, «nullstellen». I disse språkene skilles det altså
mellom punkter på koordinatform og steder. Her hjemme er det dessverre litt ulik bruk av
ordet punkt. Geometrien har sin definisjon og i koordinatsystemet må elevene finne både x-
og y-verdi. I grunnskolen og videregående skole har det vært vanlig å bare benytte x-verdier
for nullpunkt, mens begge koordinater har vært brukt for topp- og bunnpunkt. For avklaringer
kan det være lurt å se den siste eksamensveiledning for matematikk. Den fins på hjemmesiden
til Utdanningdirektoratet. Kanskje kan definisjonene som følger bidra til oppklaring?
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Definisjon 2 Maksimums- og minimumspunkt

La f være en funksjon og la c være et tall c ∈ Df .
Punktet c et maksimumspunkt for f hvis f(x) ≤ f(c) i en umiddelbar nærhet av c
Punktet c et minimumspunkt for f hvis f(x) ≥ f(c) i en umiddelbar nærhet av c

Legg igjen merke til at ordet «punkt» er brukt om verdien c.

I figur 1.2 er x1 og x3 maksimumspunkt i og med at det i en umiddelbar nærhet ikke fins
punkter som gir høyere funksjonsverdier. På samme måte er x2 og x4 minimumspunkter.

Som vi kan se av grafen er ikke dette nødvendigvis punktene som gir de aller største, eller
minste, funksjonsverdiene, men de viser til en topp- eller bunn på grafen til funksjonen.

Definisjon 3 Maks- og minimumsverdi

Hvis c er et maksimumspunkt er f(c) en maksimumsverdi.
Hvis c er et minimumspunkt er f(c) en minimumsverdi.

I disse definisjonene finner en ofte at maksimum erstattes med maksimal og minimum erstattes
med minimal. Betydningen er den samme.

Definisjon 4 Ekstremalpunkt og ekstremalverdi

Ekstremalverdier er maksimums- eller minimumsverdier.
Ekstremalpunkter er maksimums- eller minimumspunkter

Så kommer vi til topp- og bunnpunkt og da i betydningen geometriske punkt i koordinatsyste-
met.

Definisjon 5 Topp- og bunnpunkt

Toppunkt er et punkt på grafen med koordinatene maksimumspunkt og maksimumsverdi.
Bunnpunkt er et punkt på grafen med koordinatene minimumspunkt og minimumsverdi.

x1

f(x1)

x2

f(x2) x3

f(x2)

x4

f(x2)

toppunkt

toppunkt

bunnpunkt

bunnpunkt

vokser synker vokser synker vokser

x

y

Figur 1.2: Viktige egenskaper
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2 Endring
2.1 Endring - hva er det?
Det er mange ord som kan benyttes for endring eller forandring. I skolematematikken benyttes
ofte ordet «vekst». Kanskje kan det være forvirrende siden vi i hverdagslivet bare tenker på at
noe øker når vi snakker om vekst? I matematikken kan vi også ha negativ vekst, i tillegg til den
positive veksten. Noen ganger blandes også verbene «å stige», «å synke», «å øke», «å minske»,
og andre varianter, inn. I læreplanene for matematikk dukker nok et begrep opp. Under målene
for 1T står det at det er et mål for opplæringa at eleven skal kunne «bruke gjennomsnittleg og
momentan vekstfart» (UtdanningsdirektoratetLaereplanmatematikkfellesfag2019)

Det offisielle ordet for den endringen vi skal se på er derfor gjennomsnittlig vekstfart. Da
er det en god grunn til å holde seg til det, men det kan argumenteres for å heller kalle det
samme for endringsrate. For det første kan ordet «gjennomsnittlig» få elevene til å tenke på
gjennomsnittet av flere tall og lede mot en prosess hvor flere verdier skal adderes for å deles på
antallet. Det kan være en utfordring (doorman_modelling_2005). I den her sammenhengen
må gjennomsnittlig tenkes som fordelt over et intervall eller «fordelt jevnt utover». Ordet «fart»
har en dagligdags betydning som skiller seg, sjøl om det naturligvis er forbundet med, fra
endringen vi studerer.

På engelsk heter det «rate of change». Da kan det være greit å kalle det for endringsrate på
norsk. Endringsrate vil derfor benyttes synonymt med gjennomsnittlig vekstfart i det som følger.

2.2 Symboler og eksempler
Nye symboler bør innføres med forsiktighet, så før elevene introduseres for nye tegn kan det
være fornuftig å starte med noen oppgaver. Her er noen eksempler som er ment å kunne få med
elevene inn i hva endring er før symbolene introduseres. Oppgavene bør dere prøve sjøl. Sett
deg derfor inn i elevens rolle, gjør oppgavene og prøv å følg tenkemåten.

Oppgave 1

Et epletre var 1 meter da det ble plantet. Etter fire år var treet 2.25 m. Hvor mange
meter har treet vokst?

Den burde være grei? Svaret er at treet hadde vokst 1.25 m. Her er ikke resultatet det viktige,
men hva vi gjorde. Vi fant forskjellen mellom de to høydene. Det er endring.

Benytter vi bokstaven h for høyde skriver vi ofte en slik forskjell som ∆h.

∆ er en den store utgaven (den lille skrives δ) av den fjerde bokstaven i det greske alfabetet.
Vi leser den som «delta».

Da blir svaret på oppgaven: ∆h = 1.25 m

Så epletreet har vokst 1.25 m. Det kan være interessant nok, men som oftest er vi også interessert
i hvor lang tid det tok: endring over tid.
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Oppgave 2

Et epletre var 1 meter da det ble plantet. Etter fire år var treet 2.25 m. Hvor mange
meter har treet vokst i gjennomsnitt per år?

Det er grunn til å tro at et tre ikke vokser like mye per år. Det gjelder i alle fall for oss mennesker.
Når det står «i gjennomsnitt per år» kan vi tolke det som at vi skal finne den gjennomsnittlige
veksten. I vår oppgave må vi derfor dele veksten på de fire årene:

1.25

4
= 0.3125

La oss benytte bokstaven t for tida. Tidsforskjellen, f.eks. de fire årene, kan vi da skrive ∆t.
Da kan vi skrive endringsraten, eller den gjennomsnittlige veksten, vi fant som

∆h

∆t

Det er en vanlig skrivemåte blant matematikere og fysikere. Nå har vi regnet ut hvor vi mye
treet vokser fordelt på antall år. Det kan vi også framstille grafisk. La oss se på det.

2.2.1 Grafisk framstilling
Treet vokste fra 1 m til 2.25 m på de fire første årene. De to punktene i figur 2.1 viser høyden ved
0 år og høyden ved 4 år. Den gjennomsnittlige veksten kan vi tegne som ei rett linje mellom de
to punktene. Stigningstallet til den rette linja er det samme som den gjennomsnittlige veksten.

∆h

∆t
=

1.25

4
= 0.3125

Husk at treet neppe har hatt en jevn vekst i denne perioden. I virkeligheten vil treets vekst
være avhengig av mange faktorer, som temperatur, lys, næring osv. Veksten vil også variere
gjennom året: mest om sommeren og minst om vinteren. Kanskje har veksten fulgt den grå
kurven i figur 2.1? I alle fall er det viktig å vite forskjellen mellom den gjennomsnittlige veksten
og hvordan veksten har vært.

2.2.2 Et større eksempel
Vi fortsetter med treet vårt. Nå får vi gitt en funksjon som forteller oss sammenhengen mellom
antall år etter treet ble plantet og hvor høgt det er:

h(t) = −0.003 · t3 + 0.09 · t2 + 1

Her er

h− høyden i meter
t− antall år etter treet ble plantet

Tegner vi grafen til funksjonen h vil du se den i figur 2.2.

7



1 2 3 4 5
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∆h
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t - antall år

h- høyde

Figur 2.1: Vekst av treet de fire første årene

2 4 6 8 10 12 14 16 18 20

2

4

6

8

10

12

14

x

y

Figur 2.2: Høyden av et epletre

Oppgave 3

Finn den gjennomsnittlige vekstfarten fra treet var 2 til det var 6 år

Vi skal altså finne den gjennomsnittlige vekstfarten fra det andre året og til det sjette. Det er
en periode på 4 år. Hvor mye har treet vokst? Heldigvis har vi funksjonen som kan fortelle oss
høydene. Utverdiene blir:

h(2) = 1.34

h(6) = 3.59
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Da er vi klar til å finne den gjennomsnittlige vekstfarten:
∆h

∆t
=

h(6)− h(2)

6− 2
=

3.59− 1.34

4
=

2.25

4
= 0.5625

Igjen kan vi se på hvordan vi kan framstille dette grafisk. Figur 2.3 viser det.

1 2 3 4 5 6 7

1

2

3

4

5

∆h

∆t

x

y

Figur 2.3: Gjennomsnittlig vekstfart

Ser vi på stigningstallet til linja gjennom de to punktene på grafen (se figur 2.3) har vi reg-
net ut at den er 0.5625. Husk at den gjennomsnittlige vekstfarten vil være det samme som
stigningstallet!

2.3 En definisjon
En formell definisjon av endringsrate (eller gjennomsnittlig vekstfart) tar utgangspunkt i figur
2.4.

Definisjon 6 Endringsrate

La f være en funksjon som er definert i intervallet [x1, x2]. Endringsraten til funksjonen
f i intervallet er gitt ved

∆y

∆x
=

f(x1 +∆x)− f(x1)

∆x
=

f(x2)− f(x1)

x2 − x1

her må ∆x ̸= 0.

Legg merke til at endringsraten har samme verdi som stigningstallet til sekanten gjennom
punktene (x1, f(x1)) og (x2, f(x2))

2.4 Didaktiske utfordringer
Se på definisjonen av endringsrate. Det første som møter en elev er flere matematiske symbo-
ler. I vår definisjon møter eleven både greske bokstaver og indekser. Hvert symbol må være
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∆y

∆x
f(x1)

f(x2)

x1 x2

x

y

Figur 2.4: Gjennomsnittlig endringsrate

meningsbærende for eleven og det vil de ikke være ved første møte.

En annen utfordring finner vi i den proporsjonale tenkinga som ligger til grunn. Uttrykket ∆y
∆y

må oppfattes som en verdi som forteller noe størrelsesforholdet mellom teller og nevner.

Som om det ikke var nok kommer enda en utfordring. I tillegg opererer vi på to plan: numeriske
utregninger og grafiske framstillinger. Det krever at elevene ser sammenhengen mellom de to.
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3 Tangenter
3.1 Hva er en tangent?
Hva en tangent er kan være litt vanskelig å definere før vi er ferdige med temaet vi nå tar
fatt på. Det hindrer oss ikke i å se på en del egenskaper til tangenter. Det gjør det mulig å
tegne tangenter og å forstå hvordan vi kan benytte tangenter i til å analysere funksjoner. Navnet
kommer fra det latinske tangerer, som betyr «å røre». Kanskje kjenner du dansen tango? Navnet
har samme opprinnelse. Ordet tangent er egentlig en forkorting av tangentlinje. Da er vi ved
opprinnelsen: ei linje som berører en kurve i et punkt.

Vi starter med å se på noe som kanskje er kjent fra før, nemlig tangenter til en sirkel.

3.2 Sirkeltangent
Ofte skjer det første møtet med tangenter i geometri og konstruksjon av en tangent til en sirkel.
Tangenten skjærer da sirkelen i ett punkt og står vinkelrett på radiusen fra sentrum og ut til
det punktet.

A

S

Figur 3.1: En sirkeltangent i et tilfeldig punkt

Oppgave 4

Bruk digitalt verktøy og tegn en sirkel. Tegn en tangent i et punkt på sirkelen.
• Forstørr området rundt punktet.
• Hva kan du observere?
• Hva skjer med sirkelen?

Hva skjer når vi forstørrer området rundt tangeringspunktet? Figur 3.2 viser hvordan det en
figur kan se ut. Der kan vi observere at tangenten og sirkelbuen ligger over hverandre i et
område. Zoomer vi mer inn vil tangenten og sirkelbuen se mer og mer lik ut.
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Figur 3.2: Etter at vi har zoomet inn

Dette er en viktig observasjon som vi skal utnytte seinere.

3.3 Tangenter til en graf
Tangenter kan vi tegne til nesten alle kurver og skal nå se på tangenter til grafen til noen
funksjoner. I figur 3.1 er det tegnet flere tangenter. Legg merk til hvordan tangentene er tegnet.
En slik oppgave kan være en grei start for elever.

−6 −4 −2 2 4 6

−4

−2

2

4

x

y

Figur 3.3: Tangenter i punkter på en graf

La oss ta å forstørre en del av grafen for å få fram egenskapene til tangenten.

Legg merke til det forstørra området i figur 3.4. Der er en del av grafen lagt under lupen og vi kan
se resultatet i sirkelen til høyre. Tangenten og grafen går i ett i nærheten av tangeringspunktet.
Stigningstallet til tangenten forteller oss stigningen til grafen i området. Forstørrer vi nok vil
grafen og tangenten se ut til å være sammenfallende. Det kaller vi lokal linearitet.
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4
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Figur 3.4: Tangenter i punkter på en graf med forstørra utsnitt

3.4 Hva kan tangenten fortelle oss?
Hvorfor alt dette maset om tangenter? Jo, det er fordi tangentene kan gi oss viktige opplysninger
om funksjonen. Husk at tangenten og grafen i nærheten av tangeringspunktet ser like ut bare
vi zoomer oss nok inn1. Stigningstallet til tangenten vil derfor fortelle oss hvordan funksjonen
vokser akkurat i det området. Ser vi på et slikt avgrensa område kaller vi det ofte for momentan
endringsrate eller momentan vekstfart.

Vet vi stigningstallet til tangenten kan vi det fortelle oss hvor mye grafen stiger eller synker.
Husk at grafen er en framstilling av en funksjon og at vi ofte ønsker å vite hvordan funksjons-
verdiene forandrer seg. Se på grafen i figur 3.4. Prøv å tenke deg i hvilke intervaller grafen stiger
og i hvilke intervaller den synker. Tenk også på hvordan tangentene til grafen kan fortelle oss
det.

3.4.1 En sykkeltur langs grafen
La oss tenke oss at vi kunne ta en sykkeltur langs grafen. Da kunne vi også tenke oss at vi
festet ei pil parallelt med hjulene. Situasjonen ville se ut slik som i figur 3.5. Pila vil være en
tilnærming til en tangent og kan illustrere hva tangenten kan fortelle. I denne framstillingsmåten
fins det nok noen matematiske svakheter, men vi får fram hvordan tangenten vil vise hvordan,
og hvor mye, grafen stiger og synker.

1Her er det noen unntak. Det fins både funksjonstyper hvor dette ikke gjelder og at det ikke gjelder i visse
punkt. Vi ser bort fra disse tilfellene
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Figur 3.5: En sykkeltur langs grafen

Stigningstallet til tangenten forteller oss hvor mye grafen stiger eller synker. Nettopp dette
stigningstallet vil bli viktig for oss når vi skal analysere funksjoner. Stigningstallet må vi kunne
finne for å bruke det. Det er her den deriverte funksjonen kommer inn. Den kan fortelle oss
stigningstallet.

3.4.2 Topp- og bunnpunkt
Hva er stigningstallet til tangentene i topp- eller bunnpunkt? Figur 3.6 viser tangentene i alle
topp- og bunnpunkt. Er ikke stigningstallet til alle tangentene lik null? Er ikke alle horisontale
linjer? Joda, i topp- og bunnpunkt er stigningstallet til tangenten lik null. Det kan vi utnytte!

−6 −4 −2 2 4 6

−4

−2

2

4

x

y

Figur 3.6: Tangenter i topp- og bunnpunkt
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4 Den deriverte funksjonen
4.1 En funksjon som har stigningstall som utverdi
Hva om vi hadde en funksjon som kunne fortelle oss stigningstallet til tangenten til grafen?
Som var slik at bare vi visste en x-verdi så kunne funksjonen gi oss stigningstallet som utverdi?
Det er den funksjonen vi skal se på nå. Vi kaller den den deriverte funksjonen. Gjør deg også
kjent med skrivemåten

f ′(x)

Der står det «f derivert av x»

!f (x)

x -verdien til punktet på grafen

stigningstallet  
til tangenten

Figur 4.1: Den deriverte funksjonen

Den deriverte er en funksjon som er god å ha. Kjenner vi en x-verdi kan vi få vite hva stig-
ningstallet til tangenten er i punktet. Det forteller oss stigningen til funksjonen. Den deriverte
funksjonen kan vi i mange tilfeller regne ut, men vi kan også benytte teknologien til å finne
denne funksjonen. La oss se på hvordan det kan gjøres.

4.2 Hvordan kan vi finne den deriverte funksjonen?
Den deriverte kan vi finne på flere måter.

• ved å benytte det som kalles derivasjon kan vi finne den deriverte for en del funksjoner

• ved å benytte digitale verktøy

• ved å benytte numeriske metoder

I det som følger kommer vi mest til å se på polynomfunksjoner og benytte de to første metodene.
Vi starter med å finne den funksjonsuttrykket deriverte ved hjelp av noen verktøy.

4.2.1 CAS
I norske lærebøker det mest vanlig å skrive den deriverte slik f ′(x) Du kan lese mer om for-
skjellige typer notasjon og opprinnelsen i avsnitt 4.4, men vi må innom en annen måte å skrive
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den deriverte på som er blant disse variantene

d

dx
(f(x))

df(x)

dx

d(f(x))

dx

Denne notasjonen kalles leibniz-notasjon 1. Når vi skal bruke CAS-verktøy er det ofte en slik
notasjon vi må benytte. Notasjonen benyttes i f. eks. TI-Nspire og Desmos. Desmos finner ikke
funksjonsuttrykket, bare grafen til den deriverte. I GeoGebra kan vi benytte f ′(x).

I figur 4.2 er CAS blitt brukt til å finne den deriverte av funksjonen f(x) = x3.

(a) TI-Nspire (b) Geogebra

Figur 4.2: Derivasjon med CAS

Svaret blir det samme vi finner at hvis vi har en funksjon gitt ved f(x) = x3 så vil den deriverte
funksjonen være f ′(x) = 3x2. Vi har funnet et funksjonsuttrykk som kan gi alle stigningstallene
til tangentene.

4.2.2 Ved å bruke derivasjonsregler
Verbet «å derivere» er knytta til å finne funksjonsuttrykk til den deriverte funksjonen ved bruk
av derivasjonsregler. De fins det mange av og vil bli presentert seinere. Foreløpig kan vi se på
noen enklere eksempler.

En viktig derivasjonsregel er denne:

(xn)′ = n · xn−1

Den forteller oss at skal vi derivere en funksjon som kan skrives som en potens, så finner
vi uttrykket til den deriverte ved å multiplisere x med eksponenten og trekke fra én fra den
opprinnelige eksponenten. La oss se på et eksempel.

Eksempel 1

Vi har funksjonen
f(x) = x5

Finn den deriverte.
Vi benytter derivasjonsregelen (xn)′ = n · xn−1

f ′(x) = 5 · x5−1 = 5x4

Da har vi funnet ut at når f(x) = x5 så er f ′(x) = 5x4.

Hva om vi skal finne den deriverte til g(x) = 2 ·x5? Legg merke til at g(x) = 2 · f(x). I figur 4.3
er grafene til de to funksjonene tegnet. Så er det tegnet tangenter i punktene hvor x = 1. Husk

1Oppkalt etter den tyske matematikeren Gottfried Wilhelm von Leibniz (1646 – 1716)
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nå at den deriverte i ett punkt er stigningstallet til tangenten. Stigningstallet til tangenten til
f(x) er 5, mens stigningstallet til g(x) er 10. Overraskende? Kanskje ikke siden g(x) = 2 · f(x).
Funksjonsverdiene til g er to ganger f .

1

1

2

3

4

x

y

Figur 4.3: f(x) og 2 · f(x)

Når vi skal finne den deriverte til g har vi at:

g′(x) = 2 · x5 = 2 · 5 · x5−1 = 10x4

Slik er det for alle funksjoner. Benytter vi k for en konstant kan vi skrive derivasjonsregelen
slik:

(k · f(x))′ = k · f ′(x)

Hva om vi ønsker å finne den deriverte til funksjonen h(x) = x5 +2? Her er h(x) = f(x)+ 2 og
begge grafene er tegnet i figur 4.4

Det gir h′(x) = f ′(x) = 5 · x4

Stigningstallene til de to tangentene er det samme! For å finne den deriverte kan vi se bort fra
konstanter i polynomer. Vi kan også derivere ledd for ledd i et polynom.

Eksempel 2

Finn den deriverte til f(x) = 3x4 + 2x3 + x− 7
Vi deriverer ledd for ledd og benytter derivasjonsregelen: (xn)′ = n · xn−1. Legg merke til
at (x)′ = (x1)

′
= 1 · x1−1 = 1 · x0 = 1

f ′(x) = 3 · 4 · x3 + 2 · 3 · x2 + 1 = 12x3 + 6x2 + 1

Flere derivasjonsregler kommer seinere.
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1

2

3

4

5

x

y

Figur 4.4: f(x) og f(x) + 2

4.2.3 Bruk av definisjonen til den deriverte
Den deriverte er definert på denne måten:

f(x)′ = lim
∆x→0

∆y

∆x

= lim
∆x→0

f(x+∆x)− f(x)

∆x

Denne definisjonen kan vi benytte for å finne den deriverte, men ofte kan det bli litt komplisert.
Derivasjonsreglene er utledet fra definisjonen. Seinere skal vi se nærmere på hvordan definisjo-
nen kan benyttes til å finne funksjonsuttrykket til den deriverte, men for nå kan vi nøye oss
med å vite at det er definisjonen som er grunnlag for derivasjonsreglene og at den kan benyttes.

4.3 Nå kan vi finne stigningstall til tangenter
Funksjonsverdien til den deriverte funksjonen er stigningstallene til tangentene. La oss se litt
mer på det.

4.3.1 Stigningstallet i et punkt
Når vi har funnet den deriverte kan vi få svar på hva stigningstallet til grafen bare vi vet
innverdien. La oss se på funksjonen

f(x) = x3

Den deriverte er da
f ′(x) = 3x2

Hva er stigningstallet til tangenten i punktet hvor x = 2 ?

f ′(2) = 3 · 22 = 12
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4.3.2 Alle stigningstallene
Et eksempel til

f(x) = x2

Da er
f ′(x) = 2x

Vi kan tegne grafene til begge disse funksjonene i samme koordinatsystem. Se figur 4.5.

−4 −2 2 4

−4

−2

2

4

6

8

10
f(x) = x2

f ′(x) = 2x

x

y

Figur 4.5: f og f ′ tegnet i samme koordinatsystem

Å tegne begge grafene i ett koordinatsystem kan være litt forvirrende siden funksjonsverdiene
er av to forskjellige typer. Funksjonsverdien til f ′(x) er stigningstallet til tangenten, mens
funksjonsverdien til f(x) ikke er stigningstall. I figuren kan vi lese av begge funksjonsverdier.

Oppgave 5

Bruk grafen og finn stigningstallet til tangenten i punktet hvor x = 2 og hvor x = −2.
Prøv å tegn tangentene og se om det stemmer.

Hva fikk du til svar? Fant du at stigningstallene må være 4 og −4? Verdiene finner vi ved å lese
av grafen.
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−4 −2 2 4

−4

−2

2

4

6

8

10
f(x) = x2

f ′(x) = 2x

x

y

Figur 4.6: Stigningstallet til tangentene

Vi kan se på et eksempel til. I figur 4.7 er grafen til en funksjon f og den deriverte til den
funksjonen, f ′,tegnet.

−6 −4 −2 2 4 6

−4

−2

2

4

f ′(x)

f(x)

x

y

Figur 4.7: Både f og f ′ tegnet i samme koordinatsystem

Oppgave 6

Se nøye på grafene og prøv å finn sammenhengene mellom de to grafene.
Legg spesielt merke til

• hvor f ′(x) = 0 og hva det betyr for f(x)
• hvor f ′(x) > 0 og hva det betyr for f(x)
• hvor f ′(x) < 0 og hva det betyr for f(x)
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Oppgave 7

En oppgave for et digitalt verktøy. Vi har

h(x) = x2 − 9x+ 2

h′(x) = 2x− 9

Tegn de to funksjonene. Stemmer det at h′(x) gir egenskapene til h(x)? På hvilken måte?

4.4 Notasjon
Her er litt mer om bakgrunnen for de forskjellige notasjonene. Vi har sett at i norsk tradisjon
er det vanlig å skrive den deriverte til funksjonen f som

f ′(x)

Denne notasjonen kalles «Lagrange-notasjon» og er oppkalt etter Joseph-Louis Lagrange (1736
– 1813). Egentlig var han italiener. Du kan lese mer om ham her. Norske matematikkbøker og
Geogebra benytter denne notasjonen, men leser vi engelskspråklige matematikktekster dukker
som regel en annen notasjon opp. Den er oppkalt etter Gottfried Wilhelm Leibniz (1646 – 1716),
tyskeren som parallelt med Newton grunnla funksjonsanalysen. Mer om Leibniz fins her. Med
Leibniz sin notasjon skriver vi den deriverte som

df

dx

eller
d

dx
f (x)

Denne notasjonen må vi benytte i digitale verktøy som Desmos og TI-Nspire.
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5 Analyse av funksjoner
Å analysere funksjoner vil som regel si å finne ut når funksjonsverdiene øker eller minker, og når
grafen til funksjonen har topp- eller bunnpunkt. Den deriverte er et viktig verktøy for å få svar
på disse spørsmålene. Den deriverte funksjonen forteller oss stigningstallene til alle tangentene.

Vi har sett på sammenhengen mellom de to funksjonene å betrakte tangentene som en sykkeltur,
så har vi funnet stigningstallene til alle tangentene ved den deriverte funksjonen. I figur 5.1 kan
vi se alle stigningstallene som den røde grafen. Her kan det være lurt å bruke litt tid på hvordan
alt dette henger sammen ved å studere figurene. Det er hva den røde grafen kan fortelle om
den blå som blir sentralt i analysen av funksjoner.

−6 −4 −2 2 4 6

−4

−2

2

4

x

y

Figur 5.1: Den deriverte og egenskapene

Vi skal nå se på noen eksempler hvor vi analyserer funksjoner og finner viktige egenskaper ved
dem, men før det skal vi definere noen uttrykk som benyttes ved funksjonsanalyse.

Når vi ser på vekst undersøker vi det som kalles monotoniegenskapene til funksjonen

Definisjon 7

La f være en funksjon som er definert i intervallet [a, b]. Vi lar x1, x2 ∈ [a, b]. Da sier at
f er
voksende i [a, b] hvis x1 < x2 =⇒ f(x1) ≤ f(x2) for alle x1, x2

avtakende i [a, b] hvis x1 < x2 =⇒ f(x1) ≥ f(x2) for alle x1, x2

strengt voksende i [a, b] hvis x1 < x2 =⇒ f(x1) < f(x2) for alle x1, x2

strengt avtakende i [a, b] hvis x1 < x2 =⇒ f(x1) > f(x2) for alle x1, x2

Ordene voksende og avtakende er ord som benyttes i blant annet Eksamensveiledning for ma-
tematikk. I den siste eksamensveiledninga er avtakende erstatta med «strengt minkende (avta-
gende)». Andre ord som økende, stigende, minkende benyttes også.

5.1 Et eksempel f (x) = x3 − 3 · x + 1

Vi skal nå se på et eksempel på hvordan vi kan analysere en funksjon. Det vi ønsker å vite er
altså:

• intervallet hvor funksjonen øker

22



• intervallet hvor funksjonen minker

• toppunkt

• bunnpunkt

I dette eksemplet ser vi på funksjonen som er gitt ved dette funksjonsuttrykket:

f(x) = x3 − 3 · x+ 1

Vi skal analysere denne funksjonen på flere måter

• grafisk

• derivasjon

• med digitale hjelpemidler

5.1.1 Analyse av funksjonen

Grafisk

Tegner vi grafen til en funksjon kan vi benytte den til å se intervallene hvor den stiger og
synker. Vi kan også lese av topp- og bunnpunkter. Bruker vi digitale verktøy for å tegne grafen
kan vi også be om å få koordinatene til topp- og bunnpunkter.

−3 −2 −1 1 2 3

−4

−2

2

4
(−1, 3)

(1,−1)

x

y

Figur 5.2: Grafen til f(x) = x3 − 3 · x+ 1

Ved å se på grafen, eller ved å be om å få koordinatene til ekstremalpunktene, kan vi finne
svaret.

En analyse av funksjonen forteller oss dette om funksjonen f :

• toppunkt (−1, 3)

• bunnpunkt (1,−1)

• strengt voksende i intervallet ⟨←,−1⟩ ∪ ⟨1,→⟩

• strengt avtakende i intervallet ⟨−1,−1⟩
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Ved derivasjon

Den deriverte forteller oss stigningstallene til tangentene og vi har sett hvor nyttig det kan
være når vi skal analysere funksjoner. Nå skal vi se på hvordan vi kan utnytte det i praksis.
Funksjonen i eksemplet er

f(x) = x3 − 3 · x+ 1

Vi finner den deriverte ved å benytte derivasjonsreglene.

f ′(x) = 3 · x3−1 − 3 · x1−1 − 0 = 3x2 − 3

Når vi nå har et uttrykk for den deriverte gjenstår det å finne ut når den deriverte er lik null,
mindre enn null og større enn null. Løser likninga f ′(x) = 0 for å finne ut det.

f ′(x) = 0

3x2 − 3 = 0

3 · (x2 − 1) = 0

3 · (x− 1) · (x+ 1) = 0

x = 1 ∨ x = −1

Da vet vi når den deriverte er lik null og vi vet at for disse x-verdiene kan vi ha et topp- eller
et bunnpunkt. Før vi kan si med sikkerhet hvilke punkt det er må vi vite intervallene hvor
funksjonen øker eller minker. Da må finne intervallene hvor f ′(x) er negativ og positiv.

Det neste er å finne når f ′ er positiv og negativ. Vi må løse ulikhetene:

f ′(x) < 0

f ′(x) > 0

Da kan det være lurt å tegne et fortegnsskjema for

f ′(x) = 3x2 − 3 = 3 · (x− 1) · (x+ 1)

Etter at vi har faktorisert uttrykket kan vi tegne opp hver enkelt faktor og til slutt se på
fortegnene til produktet. Her er hver faktor tegnet under en x-akse og det er markert hvor
faktoren er positiv, null og negativ. Alle faktorene tegnes og til slutt er det tegnet ei fortegnslinje
for produktet.

−1 1

x+ 1

x− 1

f ′(x)
↗ ↘ ↗

Når vi har funnet fortegnslinja til den deriverte vet mye om egenskapene til funksjonen. I
fortegnsskjemaet er det markert med piler hvor den er strengt avtakende og voksende.

Det å tegne fortegnsskjema er en vanlig metode i Norge. En annen måte å gjøre det samme på
er å lage en tabell. Det er enklere hvis vi ikke bruker papir og blyant. Bare se figur 5.3.
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⟨←,−1⟩ −1 ⟨−1, 1⟩ 1 ⟨1,→⟩
x+ 1 - 0 + + +
x− 1 - - - 0 +
f ′(x) + 0 - 0 +

↗ ↘ ↗

Figur 5.3: Fortegnstabell

Uansett metode kommer vi fram til samme resultat.

Funksjonsverdiene til topp- og bunnpunktet finner vi ved å sette inn i funksjonsuttrykket:

f(−1) = 3

f(1) = 1

Nå kan vi lese av diagrammet eller tabellen kommer vi fram til samme svaret som ved grafisk
avlesing:

• toppunkt (−1, 3)

• bunnpunkt (1,−1)

• strengt voksende i intervallet ⟨←,−1⟩ ∪ ⟨1,→⟩

• strengt avtakende i intervallet ⟨−1,−1⟩

Med digitalt verktøy

Med digitale verktøy har vi som regel muligheten til å benytte CAS 1-kommandoer. I figur 5.4
ser vi hvordan det er gjort med verktøyene TI-Nspire og GeoGebra.

(a) TI-Nspire (b) Geogebra

Figur 5.4: Derivasjon med CAS

Først er funksjonene definert. Så er den deriverte funnet. Til slutt løser vi likninger og ulikheter
og finner funksjonsverdiene.

Legg merke til at svarene blir akkurat de samme som de vi har funnet tidligere.
1CAS- Computer Algebra System
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5.2 Finn størst areal av et beiteområde
Vi kan se på et eksempel ved å se på denne oppgaven.

Oppgave 8

En bonde har nok materiale til 40 meter med gjerde. Det vil han bruke til å lage en
rektangulær lufteplass for geita si. Han vil plassere gjerdet på utsida av geitefjøset slik
du ser på figuren under.

låve

Finn målene bonden må benytte for å lage et rektangulært område som gir størst mulig
beiteareal til geita.

Et løsningsforslag
Vi må starte med å velge en variabel og gjør det slik som figuren under viser

låve

xx

40− 2x

Arealet av beiteområdet til geita finner vi ved å ta bredde multiplisert med lengde. Da kan vi
forklare bonden at arealet av rektanglet kan skrives som

A(x) = x · (40− 2x) = −2x2 + 40x

Legg merke til at definisjonsmengden bestemmes av hva som er praktisk mulig. Vi må ha en
viss bredde på området, så x ∈ ⟨0, 20⟩. Da blir definisjonsmengden til funksjonen DA = ⟨0, 20⟩

Nå har vi et funksjonsuttrykk som gir sammenhengen mellom areal og bredden, x. Da kan vi
finne det største arealet på flere måter.

Grafisk.

Vi kan tegne grafen til funksjonen og finne toppunktet med en hvilken som helst graftegner.
I noen verktøy må vi be om å få beregnet toppunktet. Benytter vi riktig syntaks, og justerer
aksene, vil resultatet blir omtrent som grafen under
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Figur 5.5: Funksjonsanalyse
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Da kan vi lese av at det største volumet finner vi når x = 10.

Tegner vi grafen i en graftegner vil vi kunne gi en kommando som viser hvor topp- eller bunn-
punkt er. Benytter vi Desmos kommer de automatisk opp. I GeoGebra kan vi gi kommandoen

Maks[<Funksjon>,<Start x-verdi>,<Slutt x-verdi>]

eller velge funksjonsanalyse i menyen for så å angi intervallet. Figur 5.5 viser resulatet av det.

Med den deriverte

Først må vi finne den deriverte funksjonen. Siden det er en polynomfunksjon kan vi derivere
ledd for ledd med derivasjonsregelen

(xn)′ = n · xn−1

Da finner vi at
A′(x) = −4x+ 40

For å finne kandidater til topp- eller bunnpunkt må vi løse likninga A′(x) = 0.
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A′(x) = 0

−4x+ 40 = 0

x = 10

Da har vi funnet en x-verdi som gjør at A′(x) = 0. Vi må også undersøke om den verdien gir et
topp- eller bunnpunkt. På den klassiske skolemåten tegner vi da et fortegnsskjema eller setter
opp en fortegnstabell.

Akkurat dette utnytter vi når vi faktoriserer og tegner hver faktor.

A′(x) = −4x+ 40 = −4(x− 10)

La oss starte med fortegnsskjemaet.

−4
x− 10

A′(x)

10

↗ ↘

Hva forteller dette oss? Av skjemaet kan vi lese om A′(x) er positiv eller negativ. Starter vi fra
venstre og følger retninga på x-aksen kan vi lese av fortegnslinja til den deriverte funksjonen.
Da ser vi at A′(x) har en positiv verdi i intervallet opp til x = 10, så er verdien negativ opp til
x2. Så blir den positiv igjen. Pilene under viser hva det betyr for volumet.

Et godt alternativ når vi skriver med en tekstbehandler er å heller skrive en fortegnstabell.

⟨←, 10⟩ 10 ⟨10,→⟩
−4 - - -
x− 10 + 0 -
A′(x) + 0 -

↗ ↘

Igjen kan vi se at det største volumet finner vi når x = 10.

Med litt hjelp av teknologi

Når vi har funnet funksjonsuttrykket, kan vi skrive inn det i et matematikkprogram og be om
å få den x-verdien som gir det største, eller minste resultatet. Figur 5.6 viser ett eksempel hvor
WolframAlpha er benyttet. Her ser vi igjen at arealet blir størst når x = 10 og at arealet da er
200m2

Tidligere løste vi oppgaven ved å utføre derivasjon og finne den deriverte. Vi fant ut for hvilken
x-verdi den deriverte ble lik null. I tillegg undersøkte vi om det ga et topp- eller bunnpunkt.
Da så vi på fortegnet til den deriverte i intervallet under og over nullpunktet ved å tegne er for-
tegnsskjema. Det samme kan vi gjøre med det som kalles et CAS (Computer Algebra System).
De siste versjonene av GeoGebra har innebygd et CAS. Her er hvordan vi kan derivere, finne
nullpunktet til den deriverte og undersøke fortegnet til funksjonsverdiene rundt nullpunktet.
Se figur 5.7. Vi kommer fram til det samme som når vi regnet for hånd.
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Figur 5.6: Bruk av WolframAlpha

Figur 5.7: Derivasjon i GeoGebra

Uansett hvilken framgangsmåte vi benytter kommer vi fram til at arealet er størst når x = 10
og at arealet da er 200m2. Innhegningen vil da ha bredde lik 10m og lengde 20m.

5.3 En hjortebestand
Elevene som tok eksamen i 1T våren 2013 fikk oppgitt en funksjon som ga sammenhengen
mellom antall hjort i en kommune og antall år.

Her er starten på oppgaven:

Funksjonen h gitt ved
h(t) = 3.25 · t3 − 50 · t2 + 170 · t+ 700

var en god modell for hjortebestanden i en kommune i perioden 1990–2000. Ifølge modellen var
det h(t) hjort i kommunen t år etter 1. januar 1990.

En deloppgave var denne
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Oppgave 9

Når var hjortebestanden størst, og hvor mange hjort var det i kommunen da?

La oss se på hvordan den kan løses.

Et løsningsforlag
Som de andre eksemplene kan også denne løses på flere måter.

Grafisk løsning

Vi starter med å se på grafen til funksjonen. Benytter vi et digitalt verktøy kan vi også be om
å få topp- eller bunnpunkt og løse oppgaven slik. Grafen er tegnet i figur 5.8.

2 4 6 8 10
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700

800

900

1,000

(2.15, 867)

t

h(t)

Figur 5.8: Antall hjort i kommunen

Ved å be om å få koordinatene til ekstremalpunktene, kan vi finne svaret som er at etter t = 2.15
er hjortebestanden størst. Den er da på 867 individer.

Ved derivasjon

Deriverer vi funksjonen finner vi

h′(t) = 3 · 3.25 · t2 − 2 · 50 · t+ 170 = 9.75t2 − 100t+ 170

For å finne mulige ekstremalpunkt må vi finne de verdiene som gjør at den deriverte blir lik null.
Husk at vi da finner innverdiene til de punktene som gjør at stigningstallet til den deriverte er
lik null.
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h′(t) = 0

9.75t2 − 100t+ 170 = 0

t =
−(−100)±

√
(−100)2 − 4 · 9.75 · 170
2 · 9.75

t = 2.15119 ∨ t = 8.10522

Det neste vi må gjøre er å finne ut om dette er topp- eller bunnpunkt. En måte å gjøre det på
er å tegne fortegnsskjema. Den deriverte kan vi nå faktorisere som

h′(t) = 9.75 · (t− 2.15) · (t− 8.11)

Tegner faktorene i et fortegnskjema.

2.15 8.11

t− 2.15

t− 8.11

h′(t)
↗ ↘ ↗

Fortegnsdiagrammet viser at vi har ett toppunkt når t = 2.15. Akkurat samme svar som vi fant
grafisk.

Hvor stor hjortebestanden var finner vi ut ved å sette inn i den opprinnelige funksjonen.

h(2.15119) = 866.675

Vi kan konkludere med at hjortebestanden er størst litt ut i 1992. Da var det 867 hjort.
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6 Praktisk bruk
Den deriverte funksjonen gir alle endringene i hvilket som helst punkt. Det kan vi ha nytte av
i mange praktiske situasjoner. Vi skal se på noen eksempler

6.1 Posisjon, fart og akselerasjon

Oppgave 10

Vi tenker oss at vi har observert en bil som starter i et punkt og funnet ut hvor langt den
har kjørt etter ei viss tid. Funksjonen for avstanden fra startpunktet etter t sekunder er
gitt ved funksjonen

s(t) = 0.3t2 + 0.8t Ds = [0, 10]

a. Finn gjennomsnittsfarten fra t = 4 og til t = 8
b. Hva er farten til bilen ved t = 5

Funksjonen forteller oss hvor langt bilen har kommet og da kan vi finne gjennomsnittsfarten
fra t = 4 og til t = 8 slik

∆s

∆t
=

s(8)− s(4)

8− 4
= 4.4

Gjennomsnittsfarten i intervallet blir 4.4 m/s.

Hva om vi ønsker å finne farten på bilen etter fem sekunder? Da har vi ikke noe intervall. Vi
må finne den momentane endringsraten. Den finner vi med den deriverte av funksjonen

v(t) = s′(t) = 0.6t+ 0.8

2 4 6 8 10

10

20

30

40

∆t

∆s

x

y

Figur 6.1: Grafen til s(t) = 0.3t2 + 0.8t

Nå kan vi sette inn og finne at v(5) = 3.8 m/s. Vi finner stigningstallet til tangenten hvor t = 5.
Se figur 6.1.
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Farten til bilen kan vi altså finne ved den deriverte

v(t) = s′(t)

Her ser vi at den deriverte funksjonen har en praktisk tolkning.

Hvordan endrer farten seg? Da må vi se på den deriverte av farten. Endring av fart er det vi
kaller akselerasjon. Vi deriverer og får

a(t) = v′(t) = s′′(t) = 0.6

Bilen har en konstant akselerasjon på 0.6 m/s2

Vi har at

v(t) = s′(t)

a(t) = v′(t) = s′′(t)

2 4 6 8 10

10

20

30

40

s(t)

v(t) = s′(t)

a(t) = v′(t) = s′′(t)
x

y

Figur 6.2: Sammenhengen mellom posisjon, fart og akselerasjon

6.2 Litt økonomi
Vi kan se på en annen oppgave hvor konteksten er økonomi. Her er en oppgave

Oppgave 11

En bedrift regner med at kostnaden ved å produsere x enheter om dagen av en vare vil
være gitt ved

K(x) = 0.01x3 + 150x+ 3000 DK = [20, 120]

Vi antar at bedriften selger varen for 500 kr per enhet. Lønner det seg for bedriften å
øke produksjonen når den på forhånd produserer

a. 100 enheter om dagen?
b. 120 enheter om dagen?
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Inntekta denne bedriften har vil være I(x) = 500x. Overskuddet blir da

O(x) = I(x)−K(x)

= 500x− (0.01x3 + 150x+ 3000)

= −0.01x3 + 350x− 3000

Tegner grafen

20 40 60 80 100 120 140 160 180 200

0.5

1

1.5

2

2.5
·104

x

y

Figur 6.3: Grafen til O(x) = −0.01x3 + 350x− 3000

Hva som skjer ved en økning av overskuddet kan vi studere ved å se på O′(x). Vi finner den
deriverte

O′(x) = −0.03x2 + 350.0

Grafen til den deriverte

Hva er endringa av overskuddet når det produseres 100 enheter. Det finner vi slik

O′(100) = 50

Det betyr at øker vi produksjonen med en enhet (det minste vi kan øke med) så kan vi forvente
oss en økning i overskuddet med 50 kroner. Det lønner seg!

Hva nå med 120 enheter? Vi gjør det samme og får

O′(120) = −82

Nå er situasjonen en annen. Bedriften vil tape penger på å øke produksjonen!
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Figur 6.4: Grafen til O′(x) = −0.03x2 + 350.0
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7 Høyere ordens deriverte
Hva om vi deriverer den deriverte? Hva kan den funksjonen fortelle oss?

7.1 Et eksempel
La oss se på funksjonen gitt ved

f(x) = x4 − 3x3 + 5x− 2

Figur 7.1 viser grafen til funksjonen. Studer grafen før du går videre.
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−4
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6
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x

y

Figur 7.1: Grafen til f(x) = x4

La oss først finne nullpunkt og monotoniegenskaper til funksjonen. Nullpunktene finner vi ved
hjelp av GeoGebra. Etter å ha definert funksjonen kan vi benytte kommandoen Løs(f(x)=0
og finne nullpunktene

x = −1.25 ∨ x = 0.45 ∨ x = 1 ∨ x = 2

Figur 7.2: Løsning i GeoGebra

Den deriverte gir oss monotoniegenskapene

f ′(x) = 4x3 − 9x2 + 5
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Vi finner nullpunktene til den deriverte

f ′(x) = 0 =⇒ x = −0.66 ∨ x = 1 ∨ x = 1.91

For å avgjøre om disse kan gi topp- eller bunnpunkt ser vi på fortegnet til den deriverte.

Vi har at

f ′(x) < 0 når x ∈ ⟨←,−0.66⟩ ∪ ⟨1, 1.91⟩
f ′(x) > 0 når x ∈ ⟨−0.66, 1⟩ ∪ ⟨1.91,→⟩

Det betyr at f(x) er strengt voksende i intervallet ⟨−0.66, 1⟩ ∪ ⟨1.91,→⟩ og strengt minkende
i ⟨←,−0.66⟩ ∪ ⟨1, 1.91⟩.

Det kan vi se av grafen. I tillegg kan vi se hvordan grafen krummer. I noen intervaller har den
den hule siden nedover, i andre den hule siden oppover. De egenskapene kan den andrederiverte
fortelle oss om.

Vi kan nemlig fortsette å derivere. Ved å derivere en gang til vil vi finne endringene av endrin-
gene: hvordan den deriverte endrer seg. La oss prøve

f ′′(x) = 12x2 − 18x

Vi faktoriserer uttrykket og tegner et fortegnsdiagram

f ′′(x) = 12x2 − 18x = 6x(2x− 3)

Fortegnsskjema

0
3
2

6x

2x− 3

f ′′(x)

⌣ ⌢ ⌣

Nå har vi fått tegnet opp fortegnet til den andrederiverte. Legg merke til hva som tegnet under
fortegnslinja. Nå er det ikke piler opp eller ned, men hvordan krumningen til den opprinnelige
funksjonen er. Vi har at f(x) vender den hule siden ned i intervallet ⟨0, 3

2
⟩ og opp i intervallet

⟨←, 0⟩ ∪ ⟨3
2
,→⟩ Vi har funnet krumningsegenskapene til funksjonen.

I tillegg har vi funnet punktene hvor krumningen endrer seg. Vi har funnet vendepunktene til
funksjonen: x = 0 ∨ x = 3

2

7.2 Konveks og konkav
Vi har brukt uttrykkene «den hule sida opp» og «den hule sida ned». Egentlig heter det konveks
og konkav. Se figur 7.3 som forklarer begrepene.

Det er tegnet to linjestykker mellom punkter på grafen. Starter vi lengst til venstre er det ei
linje som heter L1. I området mellom endepunktene til linjestykket vil alle funksjonsverdiene
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Figur 7.3: Konveks og konkav

være mindre enn punktene på linja. I slike intervall sier vi at f er konkav. Linja til høyre er teg-
na gjennom de to vendepunktene. Her kan vi se at alle funksjonsverdiene ligger under, eller på,
linja. De vil aldri ligge over. I det intervallet sier vi at funksjonen er konveks. Finner vi vende-
punktene vet vi at krumningen kan skifte i disse punktene. Fortegnet til den andrederiverte
forteller krumningen.

Teorem 1

Antar at f ′ er kontinuerlig i intervallet I. Da har vi at

f ′′(x) > 0 når x ∈ I =⇒ f er konveks på I

f ′′(x) < 0 når x ∈ I =⇒ f er konvav på I

Punkter som markerer overgangen mellom krumningene kaller vi vendepunkt

Definisjon 8 Vendepunkt

Antar at f er kontinuerlig i et punkt c. Hvis den andrederiverte f ′′(x) skifter fortegn i c,
så er c et vendepunkt for grafen til funksjonen.

Legg merke til at det ikke er nok at f ′′(x) = 0.
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7.3 Noen oppgaver

Oppgave 12

Du har gitt funksjonen
f(x) = x3 − x2 + 4

a. Finn monotoniegenskapene til f og eventuelle topp- og bunnpunkt
b. Finn eventuelle vendepunkter og hvor grafen vender den hule siden nedover, og

hvor den vender oppover
c. For hvilken x-verdi avtar funksjonen raskest?

Finn monotoniegenskapene til f og eventuelle topp- og bunnpunkt

Finner den deriverte ved å benytte derivasjonsreglene

f ′(x) = 3x2 − 2x = x(3x− 2)

Tegner en fortegnstabell som viser monotoniegenskapene

⟨←, 0⟩ x = 0 ⟨0, 2
3
⟩ x = 2

3
⟨2
3
,→⟩

x - 0 + + +
3x− 2 - - - 0 +
produktet + 0 - 0 +

↗ ↘ ↗

Funksjonen vokser i intervallet ⟨←, 0⟩ ∪ ⟨2
3
,→⟩

Funksjonen avtar i intervallet ⟨0, 2
3
⟩

Toppunkt: (0, f(0)) = (0, 4)

Bunnpunkt: (2
3
, f(2

3
)) = (2

3
, 104

27
)

Finn eventuelle vendepunkter og hvor grafen vender den hule siden nedover, og
hvor den vender oppover

Da må vi dobbelderivere
f ′(x) = 3x2 − 2x

f ′′(x) = 6x− 2 = 6(x− 1

3
)

Lager en fortegnstabell for den dobbeltderiverte

⟨←, 1
3
⟩ 1

3
⟨1
3
,→⟩

6 + + + +
x− 1

3
- 0 +

f ′′(x) - 0 +
⌢ ⌣

Da har vi at:
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f(x) vender den hule siden ned i intervallet ⟨←, 1
3
⟩ og opp i ⟨1

3
,→⟩.

f(x) har et vendepunkt for x = 1
3

Vi kan finne koordinatene også, men legg merke til at vendepunktet er definert som x-verdien.
Koordinatene er

(
1
3
, f(1

3
)
)
=

(
1
3
, 106

27

)
For hvilken x-verdi avtar funksjonen raskest?

Husk at det den andrederiverte forteller hvordan den deriverte endrer seg. Da må vi må løse
likninga

f ′′(x) = 0⇒ x =
1

3

For å være sikre på den avtar raskest, og ikke minst, må si se på fortegnet til f ′′(x). Her er det
en lineær funksjon med stigningstall seks og som skjærer y-aksen i -2, så vi kan være sikre på
at f ′′(x) skifter fortegn fra negativ til positiv. Da vet vi at funksjonen avtar raskest når x = 1

3
.
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8 Definisjonen av den deriverte
8.1 Derivasjon med definisjonen av den deriverte
Den deriverte er definert på denne måten:

Definisjon 9

f ′(x) = lim
∆x→0

∆y

∆x

= lim
∆x→0

f(x+∆x)− f(x)

∆x

Egentlig er definisjonen bare en formalisering av det vi har sett på tidligere. Her står det, i
matematisk språk, at den deriverte er det samme som stigningstallet til tangenten. Vi kjenner
igjen endringsraten som

f(x+∆x)− f(x)

∆x

Vi har sett at den kan representeres grafisk som en sekant gjennom to punkt på grafen. Se
figur 8.1.

∆x

∆y

x x+∆x

f(x)

f(x+∆x)
y

Figur 8.1: Endringsrate som sekant

Resten av definisjonen innebærer at vi skal se på noe som kalles en grenseverdi. Vi skal tenke oss
hva som skjer når verdien ∆x blir mindre og mindre – vi leser det som «når ∆x går mot null».
Grenseverdier, og betraktninger rundt dem, er utfordrende. Vi må forestille oss en overgang fra
sekanter som tegnes med stadig mindre verdier av ∆x for til slutt å bli tangenten i punktet x.
Mest illustrerende er nok dette med programvare som får fram det dynamiske. Et forsøk på å
illustrere det er gjort i figur 8.2.

I figuren er det tegnet flere sekanter som likner mer og mer på tangenten i punktet. Tangenten
er den grønne linja. Prøv gjerne det samme i et verktøy som GeoGebra.
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Figur 8.2: Fra sekant til tangent

8.2 Slik finner vi den deriverte med definisjonen
Definisjonen av den deriverte kan benyttes for å vise derivasjonsreglene og til å finne den
deriverte. Vi skal se på hvordan vi kan gjøre det, men vær klar over at slike oppgaver ikke er
sentrale i den siste læreplanrevisjonen, LK20. Vi tar det med for at det kan vise hvordan det
er mulig.

La oss se på funksjonen f(x) = x2. Først finner vi f(x+∆x) ved å sette inn x+∆x for x.

f(x+∆x) = (x+∆x)2 = x2 + 2 · x ·∆x+ (∆x)2

Det benytter vi når vi setter inn i definisjonen.

∆y

∆x
=

x2 + 2 · x ·∆x+ (∆x)2 − x2

∆x

=
2 · x ·∆x+∆x

∆x

=
∆x · (2 · x+∆x)

∆x
= 2 · x+∆x

Når vi så skal finne grenseverdien må vi se på hva som skjer med dette uttrykket når ∆x blir
en svært liten størrelse og til slutt null. Her er det ganske greit: vi kan se bort fra den. Da får
vi:

f ′(x) = lim
∆x→0

∆y

∆x
= lim

∆x→0
(2 · x+∆x) = 2x

Vi ser det blir mye regning når vi skal benytte definisjonen til å finne den deriverte funksjonen.
I de tilfellene at vi må gjøre det ved regning har vi med enkle andregradsfunksjoner å gjøre.
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8.3 Her er løsningen på noen typiske oppgaver

Oppgave 13

Bruk definisjonen av den deriverte til å derivere f(x) = 2x+ 7

Her er bokstaven h brukt i stede for ∆x, slik flere lærebøker gjør.

f ′(x) = lim
h→0

f(x+ h)− f(x)

h

= lim
h→0

2(x+ h) + 7− (2x+ 7)

h

= lim
h→0

2x+ 2h+ 7− 2x− 7

h

= lim
h→0

2h

h
= lim

h→0
2

= 2

Svar: f ′(x) = 2

Oppgave 14

Bruk definisjonen av den deriverte til å derivere f(x) = 2x2 + 3x

For å gjøre det litt mer oversiktlig regner jeg ut telleren i definisjonen først og starter med å
finne et uttrykk for f(x+∆x)

f(x+∆x) = 2 · (x+∆x)2 + 3 · (x+∆x)

= 2 · (x2 + 2 · x ·∆x+ (∆x)2) + 3 · (x+∆x)

= 2x2 + 4 · x ·∆x+ 2 · (∆x)2 + 3x+ 3 ·∆x

Så ser vi på hele telleren f(x+∆x)− f(x):

f(x+∆x)− f(x) = 2x2 + 4 · x ·∆x+ 2 · (∆x)2 + 3x+ 3 ·∆x− (2x2 + 3x)

= 4 · x ·∆x+ 2 · (∆x)2 + 3 ·∆x

Nå kan vi sette inn i brøken ∆y
∆x

∆y

∆x
=

4 · x ·∆x+ 2 · (∆x)2 + 3 ·∆x

∆x

=
∆x · (4x+ 2 ·∆x+ 3)

∆x
= 4x+ 2 ·∆x+ 3

43



Nå ser vi på grenseverdien av denne brøken.

f ′(x) = lim
∆x→0

∆y

∆x
= lim

∆x→0
(4x+ 2 ·∆x+ 3) = 4x+ 3

f ′(x) = 4x+ 3

Igjen ser vi at det stemmer med bruk av derivasjonsreglene for et polynom, eller?
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9 Derivasjonsregler
9.1 Derivasjonsregler
Heldigvis slipper vi å benytte definisjonen til å finne den deriverte. For de funksjonene vi støter
på har noen allerede gjort det for oss. Det har resultert i en rekke derivasjonsregler.

9.1.1 Noen grunnleggende derivasjonsregler
Vi skal bare se på derivasjon av polynomfunksjoner og det første vi kan merke oss er denne
regelen.

Definisjon 10

Dersom n er et naturlig tall
(xn)′ = nxn−1

Når vi deriverer et polynom så kan vi derivere ledd for ledd.

Definisjon 11

(u(x) + v(x))′ = u′(x) + v′(x)

Hvis k er en konstant gjelder denne reglene

Definisjon 12

(k · u(x))′ = k · u′(x)

k′ = 0

der k er en konstant

Den deriverte til en konstant er altså null. Tenk på hvordan grafen til en funksjon som f(x) = k
ser ut. Det er ei horisontal linje. En tangent til et punkt på denne linja har samme stigningstall
som linja. Da må f ′(x) = 0.

La oss se på et eksempel

Oppgave 15

Finn den deriverte til f

f(x) = 2 · x4 + 5 · x3 + 3 · x2 + 6 · x+ 7

Benytter reglene under

• (xn)′ = nxn−1

• (u(x) + v(x))′ = u′(x) + v′(x)
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• (k · u(x))′ = k · u′(x)

• k′ = 0

Da finner vi at den deriverte funksjonen er

f ′(x) = 2 · 4 · x4−1 + 5 · 3 · x3−1 + 3 · 2 · x2−1 + 6 · 1 · x1−1 + 0

= 8 · x3 + 15 · x2 + 6 · x+ 6

Oppgave 16

Finn den deriverte til disse funksjonene
a) f(x) = 6x7 + 3x2 − 4x
b) g(x) = 3x8 + 2x5 − x+ 7
c) h(x) = x2 − 9x+ 2

9.1.2 Derivasjon av et produkt

Definisjon 13

Dersom u(x) og v(x) er to deriverbare funksjoner, så er

(u(x) · v(x))′ = u′(x) · v(x) + u(x) · v′(x)

La oss se på en typisk oppgave hvor vi må benytte denne regelen

Oppgave 17

Deriver funksjonen f(x) =
√
x · (x4 + 1)

Her må vi benytte regelen for derivasjon av et produkt:

(u(x) · v(x))′ = u′(x) · v(x) + u(x) · v′(x)

I dette tilfellet er

u(x) =
√
x =⇒ u′(x) =

1

2
√
x

v(x) = (x4 + 1) =⇒ v′(x) = 4x3

Da setter vi inn i derivasjonsregelen for et produkt
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f ′(x) =
1

2
√
x
· (x4 + 1) +

√
x · 4x3

=
x4 + 1 + 2

√
x ·
√
x · 4x3

2
√
x

=
x4 + 1 + 2x · 4x3

2
√
x

=
x4 + 1 + 8x4

2
√
x

=
9x4 + 1

2
√
x

Svar: f ′(x) = 9x4+1
2
√
x

9.1.3 Derivasjon av en brøk
Ved derivasjon av et brøkuttrykk gjelder denne regelen

Definisjon 14

(u(x) · v(x))′ = u′(x) · v(x) + u(x) · v′(x)(
u(x)

v(x)

)′

=
u′(x) · v(x)− u(x) · v′(x)

(v(x))2

La oss se på et en oppgaven hvor denne regelen må tas i bruk.

Oppgave 18

Deriver f(x) =
x3 − 1

x4 + 1

Dette er en brøk hvor teller en og nevneren er polynomfunksjoner. Vi har at

u(x) = x3 − 1 =⇒ u′(x) = 3x2

v(x) = x4 + 1 =⇒ v′(x) = 4x3

Setter inn og får

f ′(x) =
3x2 · (x4 + 1)− (x3 − 1) · 4x3

(x4 + 1)2

=
3x6 + 3x2 − 4x6 + 4x3

(x4 + 1)2

=
−x6 + 4x3 + 3x2

(x4 + 1)2
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Svar: f ′(x) =
−x6 + 4x3 + 3x2

(x4 + 1)2

9.2 Bevis for derivasjonsreglene
Dette er for alle som ønsker å se reglene bevist. Har du ikke noe ønske om det kan dette utelates.
Bevis for derivasjonsreglene kan være en utfordring, men la oss se på hvordan det kan gjøres
for noen av reglene. Vi starter med å vise derivasjonsregelen for et produkt

9.2.1 Bevis for produktregelen

Bevis 1

Her setter vi at f(x) = u(x) · v(x) og bruker definisjonen av den deriverte

f ′(x) = lim
h→0

f(x+ h)− f(x)

h

= lim
h→0

u(x+ h) · v(x+ h)− u(x) · v(x)
h

Vi legger til og trekker fra u(x+ h) · v(x) og får

= lim
h→0

u(x+ h) · v(x+ h)− u(x) · v(x) + u(x+ h) · v(x)− u(x+ h) · v(x)
h

Gjør om litt på rekkefølgen

= lim
h→0

u(x+ h) · v(x)− u(x) · v(x) + u(x+ h) · v(x+ h)− u(x+ h) · v(x)
h

= lim
h→0

(u(x+ h)− u(x)) · v(x) + u(x+ h) · (v(x+ h)− v(x))

h

Dette kan vi skrive som

= lim
h→0

u(x+ h)− u(x)

h
· v(x) + u(x+ h) · v(x+ h)− v(x)

h

= lim
h→0

u(x+ h)− u(x)

h
· lim
h→0

v(x) + lim
h→0

u(x+ h) · lim
h→0

v(x+ h)− v(x)

h

Med bruk av definisjonen av den deriverte kan vi nå skrive dette som

= u ′(x) · v(x) + u(x) · v ′(x)

9.2.2 Bevis for potensregelen
Når vi skal bevise potensregelen kan vi benytte produktregelen. Det første beviset gjelder når
eksponenten er et naturlig tall.
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Bevis 2

Vi skal bevise (xn)′ = nxn−1.
Skrevet som funksjoner vil det si at f(x) = xn =⇒ f ′(x) = nxn−1.
Hvis n = 1 kan vi vise at regelen stemmer. Da vil den derivert være lik 1.
Det kan vi gjøre ved å utføre et induksjonsbevis for n ∈ N. Vi starter med å anta at p er
et naturlig tall som vi vet regelen stemmer for. Da kan p f. eks. være 2 eller 3 og vi har
at

f(x) = xp f ′(x) = pxp−1

Neste steg blir å undersøke om det stemmer for p + 1. Det kan vi gjøre ved å benytte
produktregelen

f ′(x) = pxp−1 · x+ xp · 1 = pxp + xp = (p+ 1)xp

Ut fra uttrykket kan vi se at regelen stemmer. Vi vet da at den stemmer for p = 1 og
alle verdier som øker med 1. Da må den stemme for alle naturlige tall. Regelen er bevist
når eksponenten er et naturlig tall

Vi kan gjennomføre et bevis ved faktorisering også

Bevis 3

Definisjonen av den deriverte

f ′(x) = lim
h→0

f(x+ h)− f(x)

h

Vi benytter definisjonen og kan skrive

f(x+ h)− f(x)

h
=

(x+ h)n − xn

h

Faktoriserer telleren ved at vi vet at an − bn = (a− b)
n−1∑
k=0

akbn−1−k

Setter a = x+ h og b = x og deler på h og får

(x+ h)n − xn

h
=

n−1∑
k=0

(x+ h)kxn−1−k

Nå kan vi se hva som skjer når h nærmer seg null
h→ 0⇒ (x+ h)k → xk h→ 0⇒ ledd nr. k→ xkxn−1−k = xn−1

Vi vet at det er n ledd og har at nxn−1

En annen måte er å benytte binomialteoremet
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Bevis 4

(x+ h)n =
n∑

k=0

(
n
k

)
xk · hn−k

(x+ h)n − xn

h
=

n∑
k=0

(
n
k

)
xk · hn−k − xn

h
=

n∑
k=0

(
n
k

)
xk · hn−k−1 − xn · h−1

Ledd nummer:
n:

(
n
n

)
xn · hn−n−1 = 1 · xn · h−1 = xnh−1

n-1:
(

n
n−1

)
xn−1 · hn−(n−1)−1 = 1 · xn · h0 = nxn−1

(
n

n−1

)
=

n!

(n− 1)!(n− (n− 1))!
=

n!

(n− 1)!
= n

n-2:
(

n
n−2

)
xn−2 · hn−(n−2)−1 =

n(n− 1)

2
· xn−2 · h

(
n

n−2

)
=

n!

(n− 2)!(n− (n− 2))!
=

n!

(n− 2)!2!
=

n(n− 1)

2

1. ledd (k=0):
(
n
0

)
x0 · hn−0−1 = hn−1

(
n
0

)
=

n!

0!(n− 0)!
= 1

2. ledd (k=1):
(
n
1

)
x1 · hn−1−1 = nxhn−2

(
n
1

)
=

n!

1!(n− 1)!
= n

Nå kan vi skrive alt dette som:
(x+ h)n − xn

h
=

xnh−1+nxn−1+
n(n− 1)

2
xn−2h+····+nxhn−2+hn−1−xnh−1 = nxn−1+

n(n− 1)

2
xn−2h+

· · · ·+nxhn−2 + hn−1

Vi skal finne lim
h→0

f(x+ h)− f(x)

h
tar denne grenseverdien av hvert ledd og får: nxn−1

9.2.3 Bevis for den deriverte av en brøk
Denne regelen kan bevises slik
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Bevis 5

Gitt funksjonen f(x) =
u(x)

v(x)
. Finner den deriverte funksjonen ved definisjonen av den

deriverte

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
= lim

h→0

u(x+ h)

v(x+ h)
− u(x)

v(x)

h

= lim
h→0

u(x+ h) · v(x)− v(x+ h) · u(x)
v(x) · v(x+ h)

h

= lim
h→0

u(x+ h) · v(x)− v(x+ h) · u(x)
h · v(x) · v(x+ h)

Legger til og trekker fra fra u(x) · v(x) i telleren og ordner uttrykket

= lim
h→0

u(x+ h) · v(x)− v(x+ h) · u(x) + u(x) · v(x)− u(x) · v(x)
h · v(x) · v(x+ h)

= lim
h→0

u(x+ h) · v(x)− u(x) · v(x)− v(x+ h) · u(x) + u(x) · v(x)
h · v(x) · v(x+ h)

Faktoriserer

= lim
h→0

(u(x+ h)− u(x)) · v(x)− (v(x+ h) + v(x)) · u(x)
h · v(x) · v(x+ h)

Dividerer teller og nevner med h

= lim
h→0

u(x+ h)− u(x)

h
· v(x)− v(x+ h) + v(x)

h
· u(x)

v(x) · v(x+ h)

Bruker reglene for grenseverdier

=
lim
h→0

u(x+ h)− u(x)

h
· lim
h→0

v(x)− lim
h→0

v(x+ h) + v(x)

h
· lim
h→0

u(x)

lim
h→0

v(x) · v(x+ h)

Nå kan vi skriver dette som

=
u′(x) · v(x)− u(x) · v′(x)

(v(x))2
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