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Funksjonsanalyse er tema for denne teksten. Vi vil mgte den deriverte funksjonen og benytte
den som et viktig verktgy for funksjonsanalyse. Jeg har stort sett samlet en del jeg har skrevet
fra for og forandret litt pa det. Det betyr at det kan veere bade feil og mangler. Si fra til meg
hvis du oppdager noen av dem, sa vil jeg rette opp. Se derfor datoen pa framsida for a veere
sikker pa at du har siste versjon.

Kom ogsa gjerne med kommentarer som kan bidra til en forbedring.

Lykke til med funksjonsanalysen!
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1 Introduksjon

1.1 Noen definisjoner

I drgfting av funksjoner er vi ute etter a finne egenskapene til en funksjon. I hvilket intervall
vokser funksjonsverdiene? Nar er funksjonsverdien stgrst? Minst? Alt dette kan veere av inter-
esse. Da dukker en del faguttrykk opp og definisjonene av dem ma vi veere enige om. Derfor
folger det her en del definisjoner som vil bli benyttet i det videre arbeidet med & undersgke
funksjoner.

Definisjon 1 Nullpunkt

La f veere en funksjon og la ¢ vaere et tall ¢ € Dy.
Hvis f(c¢) = 0 er punktet ¢ et nullpunkt.

Figur 1.1: Nullpunkt

I figur 1.1 er nullpunktene 1, xo, x3, x4, x5 markert. Legg merke til at bare x-verdiene er null-
punktene og at de ikke skrives pa koordinatform. Det viser en forvirrende bruk av ordet punkt
pa norsk. I andre sprak skilles det klart mellom punkter pa koordinatform og punkter som
kan representeres pa aksene. I engelskspraklig litteratur kalles nullpunkt for «zeros», pa svensk
for «nollstallen» og nesten det samme pa tysk, «nullstellen». I disse sprakene skilles det altsa
mellom punkter pa koordinatform og steder. Her hjemme er det dessverre litt ulik bruk av
ordet punkt. Geometrien har sin definisjon og i koordinatsystemet ma elevene finne bade x-
og y-verdi. I grunnskolen og videregaende skole har det veert vanlig a bare benytte x-verdier
for nullpunkt, mens begge koordinater har veert brukt for topp- og bunnpunkt. For avklaringer
kan det veere lurt a se den siste eksamensveiledning for matematikk. Den fins pa hjemmesiden
til Utdanningdirektoratet. Kanskje kan definisjonene som fglger bidra til oppklaring?



Definisjon 2 Maksimums- og minimumspunkt

La f veere en funksjon og la ¢ veere et tall ¢ € Dy.
Punktet ¢ et maksimumspunkt for f hvis f(x) < f(c) i en umiddelbar naerhet av ¢
Punktet ¢ et minimumspunkt for f hvis f(z) > f(c) i en umiddelbar nserhet av ¢

Legg igjen merke til at ordet «punkt» er brukt om verdien c.

I figur 1.2 er x; og x3 maksimumspunkt i og med at det i en umiddelbar neerhet ikke fins
punkter som gir hgyere funksjonsverdier. P4 samme mate er xs og x4 minimumspunkter.

Som vi kan se av grafen er ikke dette ngdvendigvis punktene som gir de aller stgrste, eller
minste, funksjonsverdiene, men de viser til en topp- eller bunn pa grafen til funksjonen.

Definisjon 3 Maks- og minimumsverdi

Hvis ¢ er et maksimumspunkt er f(c) en maksimumsverdi.
Hvis ¢ er et minimumspunkt er f(c) en minimumsverdi.

I disse definisjonene finner en ofte at maksimum erstattes med maksimal og minimum erstattes
med minimal. Betydningen er den samme.

Definisjon 4 Ekstremalpunkt og ekstremalverdi

Ekstremalverdier er maksimums- eller minimumsverdier.
Ekstremalpunkter er maksimums- eller minimumspunkter

Sa kommer vi til topp- og bunnpunkt og da i betydningen geometriske punkt i koordinatsyste-
met.

Definisjon 5 Topp- og bunnpunkt

Toppunkt er et punkt pa grafen med koordinatene maksimumspunkt og maksimumsverdi.
Bunnpunkt er et punkt pa grafen med koordinatene minimumspunkt og minimumsverdi.
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Figur 1.2: Viktige egenskaper



2.1 Endring - hva er det?

Det er mange ord som kan benyttes for endring eller forandring. I skolematematikken benyttes
ofte ordet «vekst». Kanskje kan det veere forvirrende siden vi i hverdagslivet bare tenker pa at
noe gker nar vi snakker om vekst? I matematikken kan vi ogsa ha negativ vekst, i tillegg til den
positive veksten. Noen ganger blandes ogsa verbene «a stige», «a synkey, «a gkey, «a minsken,
og andre varianter, inn. I lezereplanene for matematikk dukker nok et begrep opp. Under malene
for 1T star det at det er et mal for oppleeringa at eleven skal kunne «bruke gjennomsnittleg og
momentan vekstfart» (UtdanningsdirektoratetLaereplanmatematikkfellesfag2019)

Det offisielle ordet for den endringen vi skal se pa er derfor gjennomsnittlig vekstfart. Da
er det en god grunn til & holde seg til det, men det kan argumenteres for & heller kalle det
samme for endringsrate. For det fgrste kan ordet «gjennomsnittligy fa elevene til & tenke pa
gjennomsnittet av flere tall og lede mot en prosess hvor flere verdier skal adderes for a deles pa
antallet. Det kan veere en utfordring (doorman_ modelling_ 2005). I den her ssmmenhengen
ma gjennomsnittlig tenkes som fordelt over et intervall eller «fordelt jevnt utovery». Ordet «fart»
har en dagligdags betydning som skiller seg, sjgl om det naturligvis er forbundet med, fra
endringen vi studerer.

P& engelsk heter det «rate of change». Da kan det veere greit & kalle det for endringsrate pa
norsk. Endringsrate vil derfor benyttes synonymt med gjennomsnittlig vekstfart i det som folger.

2.2 Symboler og eksempler

Nye symboler bgr innferes med forsiktighet, sa fgr elevene introduseres for nye tegn kan det
veere fornuftig & starte med noen oppgaver. Her er noen eksempler som er ment & kunne fa med
elevene inn i hva endring er fgr symbolene introduseres. Oppgavene bgr dere prgve sjol. Sett
deg derfor inn i elevens rolle, gjgr oppgavene og prov a folg tenkematen.

Oppgave 1

Et epletre var 1 meter da det ble plantet. Etter fire ar var treet 2.25 m. Hvor mange
meter har treet vokst?

Den burde vaere grei? Svaret er at treet hadde vokst 1.25 m. Her er ikke resultatet det viktige,
men hva vi gjorde. Vi fant forskjellen mellom de to hgydene. Det er endring.

Benytter vi bokstaven A for hgyde skriver vi ofte en slik forskjell som Ah.

A er en den store utgaven (den lille skrives §) av den fjerde bokstaven i det greske alfabetet.
Vi leser den som «deltay.

Da blir svaret pa oppgaven: Ah = 1.25 m

Sa epletreet har vokst 1.25 m. Det kan vaere interessant nok, men som oftest er vi ogsa interessert
i hvor lang tid det tok: endring over tid.




Oppgave 2

Et epletre var 1 meter da det ble plantet. Etter fire ar var treet 2.25 m. Hvor mange
meter har treet vokst i gjennomsnitt per ar?

Det er grunn til & tro at et tre ikke vokser like mye per ar. Det gjelder i alle fall for oss mennesker.
Nar det star «i gjennomsnitt per ar» kan vi tolke det som at vi skal finne den gjennomsnittlige
veksten. I var oppgave ma vi derfor dele veksten pa de fire arene:

125 _ 0.3125
7 =0

La oss benytte bokstaven ¢ for tida. Tidsforskjellen, f.eks. de fire arene, kan vi da skrive At.
Da kan vi skrive endringsraten, eller den gjennomsnittlige veksten, vi fant som

Ah
At

Det er en vanlig skrivemate blant matematikere og fysikere. N& har vi regnet ut hvor vi mye
treet vokser fordelt pa antall ar. Det kan vi ogsa framstille grafisk. La oss se pa det.

2.2.1 Grafisk framstilling

Treet vokste fra 1 m til 2.25 m pa de fire fgrste arene. De to punktene i figur 2.1 viser hgyden ved
0 ar og hgyden ved 4 ar. Den gjennomsnittlige veksten kan vi tegne som ei rett linje mellom de
to punktene. Stigningstallet til den rette linja er det samme som den gjennomsnittlige veksten.

Ah  1.25
— = —— =0.3125
At 4

Husk at treet neppe har hatt en jevn vekst i denne perioden. I virkeligheten vil treets vekst
veere avhengig av mange faktorer, som temperatur, lys, neering osv. Veksten vil ogsa variere
gjennom aret: mest om sommeren og minst om vinteren. Kanskje har veksten fulgt den gra
kurven i figur 2.17 I alle fall er det viktig a vite forskjellen mellom den gjennomsnittlige veksten
og hvordan veksten har veert.

2.2.2 Et stgrre eksempel

Vi fortsetter med treet vart. Na far vi gitt en funksjon som forteller oss sammenhengen mellom
antall ar etter treet ble plantet og hvor hggt det er:

h(t) = —0.003 - t* 4 0.09 - t* + 1
Her er

h — hgyden i meter

t — antall ar etter treet ble plantet

Tegner vi grafen til funksjonen h vil du se den i figur 2.2.
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Figur 2.1: Vekst av treet de fire fgrste arene
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Figur 2.2: Hgyden av et epletre

Oppgave 3

Finn den gjennomsnittlige vekstfarten fra treet var 2 til det var 6 ar

Vi skal altsa finne den gjennomsnittlige vekstfarten fra det andre aret og til det sjette. Det er

en periode pa 4 ar. Hvor mye har treet vokst? Heldigvis har vi funksjonen som kan fortelle oss
hgydene. Utverdiene blir:

h(2) = 1.34
h(6) = 3.59



Da er vi klar til & finne den gjennomsnittlige vekstfarten:
Ah  h(6) —h(2) 359 —1.34 225

At 6—2 4 g 09029

Igjen kan vi se pa hvordan vi kan framstille dette grafisk. Figur 2.3 viser det.

5,,

Y

12 3 4 5 6 7
Figur 2.3: Gjennomsnittlig vekstfart

Ser vi pa stigningstallet til linja gjennom de to punktene pa grafen (se figur 2.3) har vi reg-
net ut at den er 0.5625. Husk at den gjennomsnittlige vekstfarten vil veere det samme som
stigningstallet!

2.3 En definisjon

En formell definisjon av endringsrate (eller gjennomsnittlig vekstfart) tar utgangspunkt i figur
2.4.

Definisjon 6 Endringsrate

La f veere en funksjon som er definert i intervallet [xq, z5]. Endringsraten til funksjonen
f iintervallet er gitt ved

%:f(%'i“Aﬂ”)_f(%) _ flwa) = f(x)

Az Az To — T

her ma Ax # 0.

Legg merke til at endringsraten har samme verdi som stigningstallet til sekanten gjennom
punktene (z1, f(21)) og (22, f(22))

2.4 Didaktiske utfordringer

Se pa definisjonen av endringsrate. Det fgrste som mgter en elev er flere matematiske symbo-
ler. I var definisjon mgter eleven bade greske bokstaver og indekser. Hvert symbol ma veere
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x T2

Figur 2.4: Gjennomsnittlig endringsrate

meningsbacrende for eleven og det vil de ikke vaere ved fgrste mgte.

En annen utfordring finner vi i den proporsjonale tenkinga som ligger til grunn. Uttrykket ﬁ—z
ma oppfattes som en verdi som forteller noe stgrrelsesforholdet mellom teller og nevner.

Som om det ikke var nok kommer enda en utfordring. I tillegg opererer vi pa to plan: numeriske
utregninger og grafiske framstillinger. Det krever at elevene ser sammenhengen mellom de to.
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3 Tangenter

3.1 Hva er en tangent?

Hva en tangent er kan veere litt vanskelig & definere for vi er ferdige med temaet vi na tar
fatt pa. Det hindrer oss ikke i & se pa en del egenskaper til tangenter. Det gjgr det mulig a
tegne tangenter og a forsta hvordan vi kan benytte tangenter i til a analysere funksjoner. Navnet
kommer fra det latinske tangerer, som betyr «a rgre». Kanskje kjenner du dansen tango? Navnet
har samme opprinnelse. Ordet tangent er egentlig en forkorting av tangentlinje. Da er vi ved
opprinnelsen: ei linje som bergrer en kurve i et punkt.

Vi starter med & se pa noe som kanskje er kjent fra fgr, nemlig tangenter til en sirkel.

3.2 Sirkeltangent

Ofte skjer det forste mgtet med tangenter i geometri og konstruksjon av en tangent til en sirkel.
Tangenten skjeerer da sirkelen i ett punkt og star vinkelrett pa radiusen fra sentrum og ut til
det punktet.

Figur 3.1: En sirkeltangent i et tilfeldig punkt

Oppgave 4

Bruk digitalt verktgy og tegn en sirkel. Tegn en tangent i et punkt pa sirkelen.
o Forstgrr omradet rundt punktet.
o Hva kan du observere?
o Hva skjer med sirkelen?

Hva skjer nar vi forstgrrer omradet rundt tangeringspunktet? Figur 3.2 viser hvordan det en
figur kan se ut. Der kan vi observere at tangenten og sirkelbuen ligger over hverandre i et
omrade. Zoomer vi mer inn vil tangenten og sirkelbuen se mer og mer lik ut.

11



Figur 3.2: Etter at vi har zoomet inn

Dette er en viktig observasjon som vi skal utnytte seinere.

3.3 Tangenter til en graf

Tangenter kan vi tegne til nesten alle kurver og skal nd se pa tangenter til grafen til noen
funksjoner. I figur 3.1 er det tegnet flere tangenter. Legg merk til hvordan tangentene er tegnet.
En slik oppgave kan veere en grei start for elever.

4,,

—4 -+

Figur 3.3: Tangenter i punkter pa en graf

La oss ta a forstgrre en del av grafen for a fa fram egenskapene til tangenten.

Legg merke til det forstgrra omradet i figur 3.4. Der er en del av grafen lagt under lupen og vi kan
se resultatet i sirkelen til hgyre. Tangenten og grafen gar i ett i naerheten av tangeringspunktet.
Stigningstallet til tangenten forteller oss stigningen til grafen i omradet. Forstgrrer vi nok vil
grafen og tangenten se ut til & veere sammenfallende. Det kaller vi lokal linearitet.

12
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Figur 3.4: Tangenter i punkter pa en graf med forstgrra utsnitt

3.4 Hva kan tangenten fortelle oss?

Hvorfor alt dette maset om tangenter? Jo, det er fordi tangentene kan gi oss viktige opplysninger
om funksjonen. Husk at tangenten og grafen i nserheten av tangeringspunktet ser like ut bare
vi zoomer oss nok inn'. Stigningstallet til tangenten vil derfor fortelle oss hvordan funksjonen
vokser akkurat i det omradet. Ser vi pa et slikt avgrensa omrade kaller vi det ofte for momentan
endringsrate eller momentan vekstfart.

Vet vi stigningstallet til tangenten kan vi det fortelle oss hvor mye grafen stiger eller synker.
Husk at grafen er en framstilling av en funksjon og at vi ofte gnsker a vite hvordan funksjons-
verdiene forandrer seg. Se pa grafen i figur 3.4. Prgv & tenke deg i hvilke intervaller grafen stiger
og i hvilke intervaller den synker. Tenk ogsa pa hvordan tangentene til grafen kan fortelle oss
det.

3.4.1 En sykkeltur langs grafen

La oss tenke oss at vi kunne ta en sykkeltur langs grafen. Da kunne vi ogsa tenke oss at vi
festet ei pil parallelt med hjulene. Situasjonen ville se ut slik som i figur 3.5. Pila vil veere en
tilneerming til en tangent og kan illustrere hva tangenten kan fortelle. I denne framstillingsmaten
fins det nok noen matematiske svakheter, men vi far fram hvordan tangenten vil vise hvordan,
og hvor mye, grafen stiger og synker.

'Her er det noen unntak. Det fins bade funksjonstyper hvor dette ikke gjelder og at det ikke gjelder i visse
punkt. Vi ser bort fra disse tilfellene

13



Figur 3.5: En sykkeltur langs grafen

Stigningstallet til tangenten forteller oss hvor mye grafen stiger eller synker. Nettopp dette
stigningstallet vil bli viktig for oss nar vi skal analysere funksjoner. Stigningstallet ma vi kunne
finne for a bruke det. Det er her den deriverte funksjonen kommer inn. Den kan fortelle oss
stigningstallet.

3.4.2 Topp- og bunnpunkt

Hva er stigningstallet til tangentene i topp- eller bunnpunkt? Figur 3.6 viser tangentene i alle
topp- og bunnpunkt. Er ikke stigningstallet til alle tangentene lik null? Er ikke alle horisontale
linjer? Joda, i topp- og bunnpunkt er stigningstallet til tangenten lik null. Det kan vi utnytte!

4,,

—4

Figur 3.6: Tangenter i topp- og bunnpunkt
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4 Den deriverte funksjonen

4.1 En funksjon som har stigningstall som utverdi

Hva om vi hadde en funksjon som kunne fortelle oss stigningstallet til tangenten til grafen?
Som var slik at bare vi visste en x-verdi sa kunne funksjonen gi oss stigningstallet som utverdi?
Det er den funksjonen vi skal se pa na. Vi kaller den den deriverte funksjonen. Gjor deg ogsa
kjent med skrivematen

f'(x)

Der star det «f derivert av x»

stigningstallet
til tangenten

f'(x)

x -verdien til punktet pa grafen
Figur 4.1: Den deriverte funksjonen

Den deriverte er en funksjon som er god a ha. Kjenner vi en x-verdi kan vi fa vite hva stig-
ningstallet til tangenten er i punktet. Det forteller oss stigningen til funksjonen. Den deriverte
funksjonen kan vi i mange tilfeller regne ut, men vi kan ogsa benytte teknologien til & finne
denne funksjonen. La oss se pa hvordan det kan gjgres.

4.2 Hvordan kan vi finne den deriverte funksjonen?

Den deriverte kan vi finne pa flere mater.
o ved a benytte det som kalles derivasjon kan vi finne den deriverte for en del funksjoner
o ved a benytte digitale verktgy
o ved a benytte numeriske metoder

I det som fglger kommer vi mest til & se pa polynomfunksjoner og benytte de to forste metodene.
Vi starter med & finne den funksjonsuttrykket deriverte ved hjelp av noen verktgy.

4.2.1 CAS

I norske leerebgker det mest vanlig & skrive den deriverte slik f/(x) Du kan lese mer om for-
skjellige typer notasjon og opprinnelsen i avsnitt 4.4, men vi ma innom en annen mate a skrive
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den deriverte pa som er blant disse variantene

d df () d(f(z))
%(f(fﬁ)) e e

Denne notasjonen kalles leibniz-notasjon !. Nar vi skal bruke CAS-verktgy er det ofte en slik
notasjon vi ma benytte. Notasjonen benyttes i f. eks. TI-Nspire og Desmos. Desmos finner ikke
funksjonsuttrykket, bare grafen til den deriverte. I GeoGebra kan vi benytte f'(x).

I figur 4.2 er CAS blitt brukt til & finne den deriverte av funksjonen f(z) = 23.

» cas %
f(x):=x3 » Ferdig L | foo=x
d L - f(x) := x3
_(f(x)) > 3 x2 > | F
dx o
(a) TI-Nspire (b) Geogebra

Figur 4.2: Derivasjon med CAS

Svaret blir det samme vi finner at hvis vi har en funksjon gitt ved f(z) = x3 sd vil den deriverte

funksjonen veere f'(z) = 322 Vi har funnet et funksjonsuttrykk som kan gi alle stigningstallene
til tangentene.

4.2.2 Ved a bruke derivasjonsregler

Verbet «a deriverey» er knytta til & finne funksjonsuttrykk til den deriverte funksjonen ved bruk
av derivasjonsregler. De fins det mange av og vil bli presentert seinere. Forelgpig kan vi se pa
noen enklere eksempler.

En viktig derivasjonsregel er denne:
(") =n-2

Den forteller oss at skal vi derivere en funksjon som kan skrives som en potens, sa finner
vi uttrykket til den deriverte ved a multiplisere x med eksponenten og trekke fra én fra den
opprinnelige eksponenten. La oss se pa et eksempel.

Eksempel 1

Vi har funksjonen
flz)=2°

Finn den deriverte.

Vi benytter derivasjonsregelen (z")" =n - 2"}

fl(x) =5-2°" =5z*

Da har vi funnet ut at nar f(z) = 2° s& er f'(x) = 5z*.

Hva om vi skal finne den deriverte til g(z) = 2-2°? Legg merke til at g(z) = 2- f(z). I figur 4.3
er grafene til de to funksjonene tegnet. Sa er det tegnet tangenter i punktene hvor x = 1. Husk

1Oppkalt etter den tyske matematikeren Gottfried Wilhelm von Leibniz (1646 — 1716)
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na at den deriverte i ett punkt er stigningstallet til tangenten. Stigningstallet til tangenten til
f(z) er 5, mens stigningstallet til g(x) er 10. Overraskende? Kanskje ikke siden g(x) = 2- f(z).
Funksjonsverdiene til g er to ganger f.

4,,

1
Figur 4.3: f(x) og 2 f(x)
Nar vi skal finne den deriverte til g har vi at:

Jd(x)=2-2°=2-5-2°"1 = 102"

Slik er det for alle funksjoner. Benytter vi £ for en konstant kan vi skrive derivasjonsregelen
slik:
(k- f(@) =k- f(z)

Hva om vi gnsker & finne den deriverte til funksjonen h(x) = x® + 2? Her er h(z) = f(z)+2 og
begge grafene er tegnet i figur 4.4

Det gir W/ (z) = f'(z) =5 - 2*

Stigningstallene til de to tangentene er det samme! For & finne den deriverte kan vi se bort fra
konstanter i polynomer. Vi kan ogsa derivere ledd for ledd i et polynom.

Finn den deriverte til f(z) =32 +22% + 2 —7

Vi deriverer ledd for ledd og benytter derivasjonsregelen: (z")" = n - 2", Legg merke til
at (z) =(zV)' =1-21"1=1.22=1

flx)=3-4-2+2-3- 22 +1=1223+ 622+ 1

Flere derivasjonsregler kommer seinere.
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NO

i
Figur 4.4: f(x) og f(z) + 2

4.2.3 Bruk av definisjonen til den deriverte

Den deriverte er definert pa denne maten:

f_ o Ay
fla) = Jim =
o, St A7) — f(a)
Ax—0 AZL’

Denne definisjonen kan vi benytte for a finne den deriverte, men ofte kan det bli litt komplisert.
Derivasjonsreglene er utledet fra definisjonen. Seinere skal vi se neermere pa hvordan definisjo-
nen kan benyttes til & finne funksjonsuttrykket til den deriverte, men for na kan vi ngye oss
med a vite at det er definisjonen som er grunnlag for derivasjonsreglene og at den kan benyttes.

4.3 Na kan vi finne stigningstall til tangenter

Funksjonsverdien til den deriverte funksjonen er stigningstallene til tangentene. La oss se litt

mer pa det.

4.3.1 Stigningstallet i et punkt

Nar vi har funnet den deriverte kan vi fa svar pa hva stigningstallet til grafen bare vi vet

innverdien. La oss se pa funksjonen

fla) =2’
Den deriverte er da

f'(x) = 3a°

Hva er stigningstallet til tangenten i punktet hvor z =2 7

fl2)=3-22=12
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4.3.2 Alle stigningstallene

Et eksempel til
f(z) =2

Da er

f(z) =2x

Vi kan tegne grafene til begge disse funksjonene i samme koordinatsystem. Se figur 4.5.

f'(z) =2z

Figur 4.5: f og f’ tegnet i samme koordinatsystem

A tegne begge grafene i ett koordinatsystem kan veere litt forvirrende siden funksjonsverdiene
er av to forskjellige typer. Funksjonsverdien til f’(z) er stigningstallet til tangenten, mens
funksjonsverdien til f(z) ikke er stigningstall. I figuren kan vi lese av begge funksjonsverdier.

Oppgave 5

Bruk grafen og finn stigningstallet til tangenten i punktet hvor = 2 og hvor z = —2.
Prgv a tegn tangentene og se om det stemmer.

Hva fikk du til svar? Fant du at stigningstallene ma vaere 4 og —47 Verdiene finner vi ved a lese
av grafen.
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f'(z) =2z

Figur 4.6: Stigningstallet til tangentene

Vi kan se pa et eksempel til. I figur 4.7 er grafen til en funksjon f og den deriverte til den
funksjonen, f’ tegnet.

1y
f'(x)
2 1
-6 | 4 - 4
—9 |
()
41

Figur 4.7: Bade f og f’ tegnet i samme koordinatsystem

Oppgave 6

Se ngye pa grafene og prgv a finn sammenhengene mellom de to grafene.
Legg spesielt merke til

o hvor f'(xz) = 0 og hva det betyr for f(z)

o hvor f'(z) > 0 og hva det betyr for f(x)

» hvor f'(x) < 0 og hva det betyr for f(z)
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Oppgave 7

En oppgave for et digitalt verktgy. Vi har

h(z) = z° — 9z + 2
h'(x) =2x—9

Tegn de to funksjonene. Stemmer det at h'(z) gir egenskapene til h(z)? Pa hvilken mate?

4.4 Notasjon

Her er litt mer om bakgrunnen for de forskjellige notasjonene. Vi har sett at i norsk tradisjon
er det vanlig & skrive den deriverte til funksjonen f som

f'(x)

Denne notasjonen kalles « Lagrange-notasjon» og er oppkalt etter Joseph-Louis Lagrange (1736
— 1813). Egentlig var han italiener. Du kan lese mer om ham her. Norske matematikkbgker og
Geogebra benytter denne notasjonen, men leser vi engelskspraklige matematikktekster dukker
som regel en annen notasjon opp. Den er oppkalt etter Gottfried Wilhelm Leibniz (1646 — 1716),
tyskeren som parallelt med Newton grunnla funksjonsanalysen. Mer om Leibniz fins her. Med
Leibniz sin notasjon skriver vi den deriverte som

a
dz

eller
d

Ar (z)

Denne notasjonen ma vi benytte i digitale verktgy som Desmos og TI-Nspire.
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5 Analyse av funksjoner

A analysere funksjoner vil som regel si & finne ut nar funksjonsverdiene gker eller minker, og nar
grafen til funksjonen har topp- eller bunnpunkt. Den deriverte er et viktig verktgy for a fa svar
pa disse spgrsmalene. Den deriverte funksjonen forteller oss stigningstallene til alle tangentene.

Vi har sett pa sammenhengen mellom de to funksjonene a betrakte tangentene som en sykkeltur,
sa har vi funnet stigningstallene til alle tangentene ved den deriverte funksjonen. I figur 5.1 kan
vi se alle stigningstallene som den rgde grafen. Her kan det veere lurt a bruke litt tid pa hvordan
alt dette henger sammen ved & studere figurene. Det er hva den rgde grafen kan fortelle om
den bla som blir sentralt i analysen av funksjoner.

4

Figur 5.1: Den deriverte og egenskapene

Vi skal na se pa noen eksempler hvor vi analyserer funksjoner og finner viktige egenskaper ved
dem, men for det skal vi definere noen uttrykk som benyttes ved funksjonsanalyse.

Nar vi ser pa vekst undersgker vi det som kalles monotoniegenskapene til funksjonen

Definisjon 7

La f veere en funksjon som er definert i intervallet [a, b]. Vi lar z1, x5 € [a,b]. Da sier at

fer

voksende i [a,b] hvis 2 < 20 = f(x1) < f(x3) for alle xq, xo
avtakende i [a,b] hvis x; < 29 = f(x1) > f(xq) for alle xy, x9
strengt voksende i [a,b] hvis 21 < 29 = f(z1) < f(z2) for alle z1, z9
strengt avtakende i [a,b] hvis x; < 29 = f(x1) > f(x2) for alle zq, 29

Ordene voksende og avtakende er ord som benyttes i blant annet Eksamensveiledning for ma-
tematikk. I den siste eksamensveiledninga er avtakende erstatta med «strengt minkende (avta-
gende)». Andre ord som gkende, stigende, minkende benyttes ogsa.

5.1 Et eksempel f(z)=2°-3 - 2+1

Vi skal na se pa et eksempel pa hvordan vi kan analysere en funksjon. Det vi gnsker a vite er
altsa:

« intervallet hvor funksjonen gker
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« intervallet hvor funksjonen minker
o toppunkt
e bunnpunkt

I dette eksemplet ser vi pa funksjonen som er gitt ved dette funksjonsuttrykket:

flx)y=2>-3-2+1

Vi skal analysere denne funksjonen pa flere mater
o grafisk
o derivasjon

o med digitale hjelpemidler

5.1.1 Analyse av funksjonen

Grafisk

Tegner vi grafen til en funksjon kan vi benytte den til a4 se intervallene hvor den stiger og
synker. Vi kan ogsa lese av topp- og bunnpunkter. Bruker vi digitale verktgy for a tegne grafen
kan vi ogsa be om a fa koordinatene til topp- og bunnpunkter.

4 5
(-1,3) |7

—4+

Figur 5.2: Grafen til f(z) =2 -3 -z +1
Ved & se pa grafen, eller ved & be om a fa koordinatene til ekstremalpunktene, kan vi finne
svaret.
En analyse av funksjonen forteller oss dette om funksjonen f:
o toppunkt (—1,3)
e bunnpunkt (1,—1)
o strengt voksende i intervallet («—, —1) U (1, —)

o strengt avtakende i intervallet (—1, —1)
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Ved derivasjon

Den deriverte forteller oss stigningstallene til tangentene og vi har sett hvor nyttig det kan
veere nar vi skal analysere funksjoner. Na skal vi se pa hvordan vi kan utnytte det i praksis.
Funksjonen i eksemplet er

flx)=2*-3-2+1

Vi finner den deriverte ved a benytte derivasjonsreglene.
fllx)=3-25' =321 —0=32>-3

Nar vi na har et uttrykk for den deriverte gjenstar det a finne ut nar den deriverte er lik null,
mindre enn null og stgrre enn null. Lgser likninga f'(z) = 0 for a finne ut det.

f(z) =0
322 -3 =10
3-(2°—1)=0

3-(x—=1)-(x+1)=0
r=1Vzx=-—1

Da vet vi nar den deriverte er lik null og vi vet at for disse x-verdiene kan vi ha et topp- eller
et bunnpunkt. Fgr vi kan si med sikkerhet hvilke punkt det er ma vi vite intervallene hvor
funksjonen gker eller minker. Da mé finne intervallene hvor f'(x) er negativ og positiv.

Det neste er a finne nar f’ er positiv og negativ. Vi ma lgse ulikhetene:
fl(x) <0
f(x) >0
Da kan det veere lurt a tegne et fortegnsskjema for
flix)=32"-3=3-(z—1)-(z+1)

Etter at vi har faktorisert uttrykket kan vi tegne opp hver enkelt faktor og til slutt se pa
fortegnene til produktet. Her er hver faktor tegnet under en x-akse og det er markert hvor
faktoren er positiv, null og negativ. Alle faktorene tegnes og til slutt er det tegnet ei fortegnslinje
for produktet.

-1 1
r4+1-----mee-
T—1----mmmmm g - l
o777

Nar vi har funnet fortegnslinja til den deriverte vet mye om egenskapene til funksjonen. I
fortegnsskjemaet er det markert med piler hvor den er strengt avtakende og voksende.

Det a tegne fortegnsskjema er en vanlig metode i Norge. En annen mate a gjore det samme pa
er a lage en tabell. Det er enklere hvis vi ikke bruker papir og blyant. Bare se figur 5.3.
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<<_7_1> —1 <_171> 1 <17_>>
r+1 - 0 + +
r—1 - - - 0 +
f(z) + 0 - 0 +
/(

Figur 5.3: Fortegnstabell

Uansett metode kommer vi fram til samme resultat.
Funksjonsverdiene til topp- og bunnpunktet finner vi ved a sette inn i funksjonsuttrykket:
f(=1) =3
f1)=1

Na kan vi lese av diagrammet eller tabellen kommer vi fram til samme svaret som ved grafisk
avlesing:

 toppunkt (—1,3)

e bunnpunkt (1,—1)

« strengt voksende i intervallet (<—, —1) U (1, —)

o strengt avtakende i intervallet (—1, —1)

Med digitalt verktgy

Med digitale verktgy har vi som regel muligheten til 4 benytte CAS '-kommandoer. I figur 5.4
ser vi hvordan det er gjort med verktgyene TI-Nspire og GeoGebra.

Deflner3er funksjonen B = v 5 () 7\3 x=x= f [ B
f(x)::x =3-x+1 » Ferdig | ; 5
Finner den deriverte é 6= =3xt1 *
3

d ) - f(x) :=x*—3x+1
dx(f(x)) 373 2 f(x)
Finner nar den deriverte er lik null Derivert: 3x2—3

d "(x) =
solve(—(f(x))zo,x) »x="1orx=1 3 les(fl) = 0)

dx - {x=-1,x=1}
Finner nar den deriverte er mindre enn null 4 Los(f(x) <0)

d
solve(d—(f(x))<0,x) > -1<a<l - {-1<x<1}

X

5 Las(f 0

Finner nar den deriverte er stgrre enn null #s(f6) > 0)

d - {x<-1,x>1}
solve(;(f(x))>0,x) » x<-1orx>1 6 f(-1)
Finner funksjonsverdiene [
f1) - 3 7 f(1)
1) » -1 |

(a) TI-Nspire (b) Geogebra

Figur 5.4: Derivasjon med CAS

Forst er funksjonene definert. S& er den deriverte funnet. Til slutt lgser vi likninger og ulikheter
og finner funksjonsverdiene.

Legg merke til at svarene blir akkurat de samme som de vi har funnet tidligere.

LCAS- Computer Algebra System
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5.2 Finn stgrst areal av et beiteomrade

Vi kan se pa et eksempel ved a se pa denne oppgaven.

Oppgave 8

En bonde har nok materiale til 40 meter med gjerde. Det vil han bruke til a lage en
rektanguleer lufteplass for geita si. Han vil plassere gjerdet pa utsida av geitefjgset slik
du ser pa figuren under.

Finn malene bonden ma benytte for a lage et rektanguleert omrade som gir stgrst mulig
beiteareal til geita.

Et lgsningsforslag

Vi ma starte med a velge en variabel og gjor det slik som figuren under viser

40 — 2z

Arealet av beiteomradet til geita finner vi ved & ta bredde multiplisert med lengde. Da kan vi
forklare bonden at arealet av rektanglet kan skrives som

A(x) = x - (40 — 27) = —22% + 40x

Legg merke til at definisjonsmengden bestemmes av hva som er praktisk mulig. Vi ma ha en
viss bredde pa omradet, sa = € (0,20). Da blir definisjonsmengden til funksjonen D4 = (0, 20)

Na har vi et funksjonsuttrykk som gir sammenhengen mellom areal og bredden, x. Da kan vi
finne det storste arealet pa flere mater.

Grafisk.

Vi kan tegne grafen til funksjonen og finne toppunktet med en hvilken som helst graftegner.
I noen verktgy ma vi be om a fa beregnet toppunktet. Benytter vi riktig syntaks, og justerer
aksene, vil resultatet blir omtrent som grafen under
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» Grafikkfelt X

® @ Funksjonsanalyse
Alx)=-2x* +40x @ &

[Intervall WL
250 Egenskap  Verdi

Min (5.3127, ...
Maks (10, 200)

200
Nullpunkt |Ingen null... /\

Integral 1481.1078
Areal 114811078
Gjennoms... 188.5623
Lengde  64.989

150

5.3127 =x =< 13.1675

Figur 5.5: Funksjonsanalyse

2 .
50 1,
(10,200)
200
150
100
50 +
| | | M
5 10 15 20

Da kan vi lese av at det stgrste volumet finner vi nar x = 10.

Tegner vi grafen i en graftegner vil vi kunne gi en kommando som viser hvor topp- eller bunn-
punkt er. Benytter vi Desmos kommer de automatisk opp. I GeoGebra kan vi gi kommandoen

Maks[<Funksjon>,<Start x-verdi>,<Slutt x-verdi>]

eller velge funksjonsanalyse i menyen for sa & angi intervallet. Figur 5.5 viser resulatet av det.

Med den deriverte

Forst ma vi finne den deriverte funksjonen. Siden det er en polynomfunksjon kan vi derivere
ledd for ledd med derivasjonsregelen
n—1

(") =n-z

Da finner vi at
Al(z) = —4x + 40

For & finne kandidater til topp- eller bunnpunkt ma vi lgse likninga A’(x) = 0.
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Al(z)=0
—4x+40=0
z =10

Da har vi funnet en x-verdi som gjor at A’'(x) = 0. Vi ma ogsa underspgke om den verdien gir et
topp- eller bunnpunkt. Pa den klassiske skolematen tegner vi da et fortegnsskjema eller setter
opp en fortegnstabell.

Akkurat dette utnytter vi nar vi faktoriserer og tegner hver faktor.

Al(x) = =4z + 40 = —4(z — 10)

La oss starte med fortegnsskjemaet.

10
e
r—10-----------m -
Alg) ———————————————— 0 -

Hva forteller dette oss? Av skjemaet kan vi lese om A’(z) er positiv eller negativ. Starter vi fra
venstre og fglger retninga pa x-aksen kan vi lese av fortegnslinja til den deriverte funksjonen.
Da ser vi at A’(x) har en positiv verdi i intervallet opp til x = 10, sa er verdien negativ opp til
Zo. Sa blir den positiv igjen. Pilene under viser hva det betyr for volumet.

Et godt alternativ nar vi skriver med en tekstbehandler er a heller skrive en fortegnstabell.

(«,10) | 10 | (10, —)
—4 _ _ _
x — 10 + 0 -
Al(z) + 0 -
S N\

Igjen kan vi se at det stgrste volumet finner vi nar x = 10.

Med litt hjelp av teknologi

Nar vi har funnet funksjonsuttrykket, kan vi skrive inn det i et matematikkprogram og be om
a fa den x-verdien som gir det stgrste, eller minste resultatet. Figur 5.6 viser ett eksempel hvor
WolframAlpha er benyttet. Her ser vi igjen at arealet blir sterst nar x = 10 og at arealet da er
200 m?

Tidligere lgste vi oppgaven ved a utfgre derivasjon og finne den deriverte. Vi fant ut for hvilken
x-verdi den deriverte ble lik null. T tillegg undersgkte vi om det ga et topp- eller bunnpunkt.
Da sa vi pa fortegnet til den deriverte i intervallet under og over nullpunktet ved a tegne er for-
tegnsskjema. Det samme kan vi gjore med det som kalles et CAS (Computer Algebra System).
De siste versjonene av GeoGebra har innebygd et CAS. Her er hvordan vi kan derivere, finne
nullpunktet til den deriverte og undersgke fortegnet til funksjonsverdiene rundt nullpunktet.
Se figur 5.7. Vi kommer fram til det samme som nar vi regnet for hand.
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% WolframAlpha

max A(x)=-2xA2+40x

maximize —2x* +40x

max|-2x* + 40 x] = 200 at x=10

Figur 5.6: Bruk av WolframAlpha

» CAS X
A(x) = -2 x* + 40x

| ® | - A(x) = —2x*+40x

2 A'(x)

» —4x 40
A'(x)=0

Los: {x =10}
A'(x)>0
Los {X < ]0}
A'(x)<0
Las {x > ]U}

Figur 5.7: Derivasjon i GeoGebra

Uansett hvilken framgangsmate vi benytter kommer vi fram til at arealet er stgrst nar x = 10
og at arealet da er 200 m?. Innhegningen vil da ha bredde lik 10 m og lengde 20 m.

5.3 En hjortebestand

Elevene som tok eksamen i 1T varen 2013 fikk oppgitt en funksjon som ga sammenhengen

mellom antall hjort i en kommune og antall ar.

Her er starten pa oppgaven:

Funksjonen A gitt ved

h(t) = 3.25-t> — 50 -t + 170 - t + 700

var en god modell for hjortebestanden i en kommune i perioden 1990-2000. Ifslge modellen var

det h(t) hjort i kommunen t ar etter 1. januar 1990.

En deloppgave var denne
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Oppgave 9

Nar var hjortebestanden stgrst, og hvor mange hjort var det i kommunen da?

La oss se pa hvordan den kan lgses.

Et Igsningsforlag

Som de andre eksemplene kan ogsa denne lgses pa flere mater.

Grafisk lgsning

Vi starter med & se pa grafen til funksjonen. Benytter vi et digitalt verktgy kan vi ogsa be om
a fa topp- eller bunnpunkt og lgse oppgaven slik. Grafen er tegnet i figur 5.8.

1,000 ,
h(t)

900 | (2.15,867)
800 |
700 |

600 |

500 1

2 4 6 8 10
Figur 5.8: Antall hjort i kommunen

Ved a be om a fa koordinatene til ekstremalpunktene, kan vi finne svaret som er at etter t = 2.15
er hjortebestanden stgrst. Den er da pa 867 individer.

Ved derivasjon

Deriverer vi funksjonen finner vi
R (t)=3-325-t*—2-50-t+ 170 = 9.75t*> — 100t + 170

For a finne mulige ekstremalpunkt ma vi finne de verdiene som gjgr at den deriverte blir lik null.

Husk at vi da finner innverdiene til de punktene som gjor at stigningstallet til den deriverte er
lik null.
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W (t) =0

9.75t* — 100t + 170 = 0

—(—100) £ /(—100)2 —4-9.75- 170
2-9.75

t =

t=2.15119Vt = 8.10522

Det neste vi ma gjgre er a finne ut om dette er topp- eller bunnpunkt. En mate a gjore det pa
er a tegne fortegnsskjema. Den deriverte kan vi na faktorisere som

W(t) =9.75- (t —2.15) - (t — 8.11)

Tegner faktorene i et fortegnskjema.

8.11

Fortegnsdiagrammet viser at vi har ett toppunkt nar ¢t = 2.15. Akkurat samme svar som vi fant
grafisk.

Hvor stor hjortebestanden var finner vi ut ved a sette inn i den opprinnelige funksjonen.

h(2.15119) = 866.675

Vi kan konkludere med at hjortebestanden er stgrst litt ut i 1992. Da var det 867 hjort.
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6 Praktisk bruk

Den deriverte funksjonen gir alle endringene i hvilket som helst punkt. Det kan vi ha nytte av
i mange praktiske situasjoner. Vi skal se pa noen eksempler

6.1 Posisjon, fart og akselerasjon

Oppgave 10

Vi tenker oss at vi har observert en bil som starter i et punkt og funnet ut hvor langt den
har kjort etter ei viss tid. Funksjonen for avstanden fra startpunktet etter t sekunder er
gitt ved funksjonen

s(t) =03t 408t D, =[0,10]

a. Finn gjennomsnittsfarten fra t =4 og til t = 8
b. Hva er farten til bilen ved t =5

Funksjonen forteller oss hvor langt bilen har kommet og da kan vi finne gjennomsnittsfarten
fra t =4 og til t = 8 slik
As  s(8) —s(4)
—=—"——"=44
At 8—4
Gjennomsnittsfarten i intervallet blir 4.4 m/s.

Hva om vi gnsker & finne farten pa bilen etter fem sekunder? Da har vi ikke noe intervall. Vi
ma finne den momentane endringsraten. Den finner vi med den deriverte av funksjonen

v(t) = §'(t) = 0.6t + 0.8

4 .
0 Y
30 |
20 |
As
10 +
At
I Il Il Il x {
2 4 6 8 10

Figur 6.1: Grafen til s(t) = 0.3t*> + 0.8t

Na& kan vi sette inn og finne at v(5) = 3.8 m/s. Vi finner stigningstallet til tangenten hvor ¢ = 5.
Se figur 6.1.
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Farten til bilen kan vi altsa finne ved den deriverte

v(t) = s'(t)
Her ser vi at den deriverte funksjonen har en praktisk tolkning.

Hvordan endrer farten seg? Da ma vi se pa den deriverte av farten. Endring av fart er det vi
kaller akselerasjon. Vi deriverer og far

a(t)=2'(t) =s"(t) = 0.6
Bilen har en konstant akselerasjon pa 0.6 m/s?

Vi har at

40 #

30 |

20 |

10 |
v(t) = §'(t)

2 4 6 8 10
Figur 6.2: Sammenhengen mellom posisjon, fart og akselerasjon

6.2 Litt skonomi

Vi kan se pa en annen oppgave hvor konteksten er gkonomi. Her er en oppgave

Oppgave 11

En bedrift regner med at kostnaden ved & produsere x enheter om dagen av en vare vil
veere gitt ved
K(z) =0.012° + 1502 + 3000 Dy = [20,120]

Vi antar at bedriften selger varen for 500 kr per enhet. Lgnner det seg for bedriften a
gke produksjonen nar den pa forhand produserer

a. 100 enheter om dagen?

b. 120 enheter om dagen?
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Inntekta denne bedriften har vil veere I(z) = 500z. Overskuddet blir da

O(z) = I(x) — K(z)
= 5002 — (0.012® + 1502 + 3000)
= —0.012" + 350z — 3000

Tegner grafen

04
2.5 ;10

1.5

0.5 |

20 40 60 80 100 120 140 160 180 200
Figur 6.3: Grafen til O(z) = —0.012% + 3502 — 3000

Hva som skjer ved en gkning av overskuddet kan vi studere ved & se pa O'(x). Vi finner den
deriverte

O'(z) = —0.032* + 350.0

Grafen til den deriverte

Hva er endringa av overskuddet nar det produseres 100 enheter. Det finner vi slik
O'(100) = 50

Det betyr at gker vi produksjonen med en enhet (det minste vi kan gke med) sa kan vi forvente
oss en gkning i overskuddet med 50 kroner. Det lgnner seg!

Hva na med 120 enheter? Vi gjor det samme og far
0'(120) = —82

Na er situasjonen en annen. Bedriften vil tape penger pa & gke produksjonen!
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—400

—600 |

—800 +

Figur 6.4: Grafen til O’(z) = —0.03z* + 350.0
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7 Hoyere ordens deriverte

Hva om vi deriverer den deriverte? Hva kan den funksjonen fortelle oss?

7.1 Et eksempel

La oss se pa funksjonen gitt ved
f(z) =a2* —32° + 52 — 2
Figur 7.1 viser grafen til funksjonen. Studer grafen fgr du gar videre.

10 %

8,,

Figur 7.1: Grafen til f(z) = z*

La oss fgrst finne nullpunkt og monotoniegenskaper til funksjonen. Nullpunktene finner vi ved
hjelp av GeoGebra. Etter a ha definert funksjonen kan vi benytte kommandoen Les (f(x)=0

og finne nullpunktene
r=-125Ve =045V =1Ver =2

| = E] v SNy x=x= F [ &
1 fx)i=x"—3-x+5.x-2 X=
- f(x) ;==x*—3x>+5x—-2
2 Los(f(x) = 0)
- {x=—-1.25,x=0.45x=1.8,x =2}
Los(f'(x) = 0)

3

{ —V105+5
- =R

\/105+5}
x=1x=Y00 12

4 $3
~ {x=—0.66,x = 1,x = 191}
5 Los(f(x) <0)
- {x<—0.66,1<x< 191}
6 Los(f(x) > 0)
i ~ {-0.66 <x<1,x>1.91}

Figur 7.2: Lgsning i GeoGebra

Den deriverte gir oss monotoniegenskapene

f'(x) = 4a® —92° + 5
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Vi finner nullpunktene til den deriverte

f(z)=0 = 2=-066Ver=1Ve=191
For a avgjere om disse kan gi topp- eller bunnpunkt ser vi pa fortegnet til den deriverte.
Vi har at

f'(x) < 0nar z € (+-,—0.66) U (1,1.91)
f'(z) > 0 nar z € (—0.66,1) U (1.91, —)

Det betyr at f(z) er strengt voksende i intervallet (—0.66, 1) U (1.91, —) og strengt minkende
i («,—0.66) U (1, 1.91).

Det kan vi se av grafen. I tillegg kan vi se hvordan grafen krummer. I noen intervaller har den
den hule siden nedover, i andre den hule siden oppover. De egenskapene kan den andrederiverte
fortelle oss om.

Vi kan nemlig fortsette a derivere. Ved a derivere en gang til vil vi finne endringene av endrin-
gene: hvordan den deriverte endrer seg. La oss prgve

f"(z) = 122* — 182

Vi faktoriserer uttrykket og tegner et fortegnsdiagram
f"(z) = 122% — 182 = 62(2x — 3)

Fortegnsskjema
3
0 2
6 ~----------------- <
P e
f'(x) T

Na har vi fatt tegnet opp fortegnet til den andrederiverte. Legg merke til hva som tegnet under
fortegnslinja. Na er det ikke piler opp eller ned, men hvordan krumningen til den opprinnelige
funksjonen er. Vi har at f(z) vender den hule siden ned i intervallet (0, %) og opp i intervallet
(+-,0) U (3, —) Vi har funnet krumningsegenskapene til funksjonen.

I tillegg har vi funnet punktene hvor krumningen endrer seg. Vi har funnet vendepunktene til

funksjonen: z =0V x = g

7.2 Konveks og konkav

Vi har brukt uttrykkene «den hule sida opp» og «den hule sida ned». Egentlig heter det konveks
og konkav. Se figur 7.3 som forklarer begrepene.

Det er tegnet to linjestykker mellom punkter pa grafen. Starter vi lengst til venstre er det ei
linje som heter L;. I omradet mellom endepunktene til linjestykket vil alle funksjonsverdiene
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Y

Figur 7.3: Konveks og konkav

veere mindre enn punktene pa linja. I slike intervall sier vi at f er konkav. Linja til hgyre er teg-
na gjennom de to vendepunktene. Her kan vi se at alle funksjonsverdiene ligger under, eller pa,
linja. De vil aldri ligge over. I det intervallet sier vi at funksjonen er konveks. Finner vi vende-
punktene vet vi at krumningen kan skifte i disse punktene. Fortegnet til den andrederiverte
forteller krumningen.

Antar at f’ er kontinuerlig i intervallet /. Da har vi at

f"(x) >0nérz € I = f er konveks pa [
f"(x) <O0ndrz €l = f er konvav pa [

Punkter som markerer overgangen mellom krumningene kaller vi vendepunkt

Definisjon 8 Vendepunkt

Antar at f er kontinuerlig i et punkt c¢. Hvis den andrederiverte f”(x) skifter fortegn i ¢,
sa er ¢ et vendepunkt for grafen til funksjonen.

Legg merke til at det ikke er nok at f”(z) = 0.
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7.3 Noen oppgaver

Oppgave 12

Du har gitt funksjonen
flx) =23 —2>+4

a. Finn monotoniegenskapene til f og eventuelle topp- og bunnpunkt

b. Finn eventuelle vendepunkter og hvor grafen vender den hule siden nedover, og
hvor den vender oppover

c. For hvilken z-verdi avtar funksjonen raskest?

Finn monotoniegenskapene til f og eventuelle topp- og bunnpunkt

Finner den deriverte ved & benytte derivasjonsreglene
f'(z) =32 — 22 = 2(3x — 2)

Tegner en fortegnstabell som viser monotoniegenskapene

(0 [2=0](05 [z=5](G )
x - 0 + + +
3r —2 - - - 0 +
produktet + 0 - 0 +
/" N\ /

Funksjonen vokser i intervallet («—,0) U (3, —)
Funksjonen avtar i intervallet (0, %)
Toppunkt: (0, f(0)) = (0,4)

Bunnpunkt: (2, f(%)) = (3, $5)

Finn eventuelle vendepunkter og hvor grafen vender den hule siden nedover, og
hvor den vender oppover
Da ma vi dobbelderivere

f'(z) = 32° — 2z

F(x) = 62 — 2 = 6(z — 1)

3
Lager en fortegnstabell for den dobbeltderiverte
(=3 3[&E=)
6 + + | ++
x — % - 0 +
f'x) | - 0] +

Da har vi at:
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f(x) vender den hule siden ned i intervallet («<—, 1) og opp i (3, —).

1

f(z) har et vendepunkt for z = 3

Vi kan finne koordinatene ogsa, men legg merke til at vendepunktet er definert som x-verdien.

Koordinatene er (3, f(3)) = (5, 52)

For hvilken z-verdi avtar funksjonen raskest?

Husk at det den andrederiverte forteller hvordan den deriverte endrer seg. Da ma vi ma lgse
likninga
1
f,/($):O:>$:§
For & veere sikre pa den avtar raskest, og ikke minst, ma si se pa fortegnet til f”(x). Her er det
en linezer funksjon med stigningstall seks og som skjeerer y-aksen i -2, sa vi kan veere sikre pa

at f”(x) skifter fortegn fra negativ til positiv. Da vet vi at funksjonen avtar raskest nar x = %
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8 Definisjonen av den deriverte

8.1 Derivasjon med definisjonen av den deriverte

Den deriverte er definert pa denne maten:

Definisjon 9

A
fla)= Jim 52
_ o fat AD) — f(@)
Az—0 Ax

Egentlig er definisjonen bare en formalisering av det vi har sett pa tidligere. Her star det, i
matematisk sprak, at den deriverte er det samme som stigningstallet til tangenten. Vi kjenner

igjen endringsraten som
flz + Az) — f(z)

Ax
Vi har sett at den kan representeres grafisk som en sekant gjennom to punkt pa grafen. Se
figur 8.1.

f(z + Azx)

Ay

z T+ Az

Figur 8.1: Endringsrate som sekant

Resten av definisjonen innebaerer at vi skal se pa noe som kalles en grenseverdi. Vi skal tenke oss
hva som skjer nar verdien Ax blir mindre og mindre — vi leser det som «nar Az gar mot null».
Grenseverdier, og betraktninger rundt dem, er utfordrende. Vi ma forestille oss en overgang fra
sekanter som tegnes med stadig mindre verdier av Az for til slutt a bli tangenten i punktet x.
Mest illustrerende er nok dette med programvare som far fram det dynamiske. Et forsgk pa a
illustrere det er gjort i figur 8.2.

I figuren er det tegnet flere sekanter som likner mer og mer pa tangenten i punktet. Tangenten
er den grgnne linja. Prgv gjerne det samme i et verktgy som GeoGebra.
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7

Figur 8.2: Fra sekant til tangent

8.2 Slik finner vi den deriverte med definisjonen

Definisjonen av den deriverte kan benyttes for a vise derivasjonsreglene og til a finne den
deriverte. Vi skal se pa hvordan vi kan gjgre det, men veer klar over at slike oppgaver ikke er
sentrale i den siste leereplanrevisjonen, LK20. Vi tar det med for at det kan vise hvordan det
er mulig.

La oss se pa funksjonen f(z) = x2. Forst finner vi f(z + Az) ved & sette inn x + Az for z.

flx+Ar) = (z+Ax)> =2 +2-2- Az + (Ax)?

Det benytter vi nar vi setter inn i definisjonen.

Ay  2*+2-x-Av+ (Az)® -
Azr Ax
_2-x-Az+ Ax
N Ax
Az - (2 -2+ Ax)
Ax
=2+ Ax

Nar vi sa skal finne grenseverdien ma vi se pa hva som skjer med dette uttrykket nar Ax blir
en sveert liten storrelse og til slutt null. Her er det ganske greit: vi kan se bort fra den. Da far
vi:

Ay
/ = 1 _— 1 . =
= iy xy = Ao+ an) =2

Vi ser det blir mye regning nar vi skal benytte definisjonen til & finne den deriverte funksjonen.
I de tilfellene at vi ma gjgre det ved regning har vi med enkle andregradsfunksjoner a gjore.
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8.3 Her er lgsningen pa noen typiske oppgaver

Oppgave 13

Bruk definisjonen av den deriverte til & derivere f(z) =2z + 7

Her er bokstaven h brukt i stede for Ax, slik flere leerebgker gjgr.

2@+ h)+7—(2x+7)
h—0 h
20 +2h +7—2x -7

Svar: f'(z) =2

Oppgave 14

Bruk definisjonen av den deriverte til & derivere f(z) = 22 + 3x

For & gjore det litt mer oversiktlig regner jeg ut telleren i definisjonen fgrst og starter med a
finne et uttrykk for f(x + Ax)

flx+Az)=2-(z+Azx)* +3- (v + Ax)
=2-(2*+2 -2 - Az + (Azx)*) + 3 - (v + Ax)
=202 +4-2-Ar+2-(Azx)? +32+3 - Ax

Sa ser vi pa hele telleren f(z + Az) — f(z):

flx+Az)— f(r) =22 +4-2-Ax+2- (Azx)* + 32 +3- Ax — (22° + 32)
=4-2-Av+2-(Ax)* +3- Az

N& kan vi sette inn i brgken %
Ay 4-z-Ax+2-(Az)*+3- Az
Az Ax
Az (dx+2-Ax+3)
B Az
=4r+2-Ax+3
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Na ser vi pa grenseverdien av denne brgken.

Ay
, —_— 1 —_— 1 . —
f'(x) Alimo ; Al:lcmo(4$ +2-Ax+3)=4x+3

fl(x)=4x+3

Igjen ser vi at det stemmer med bruk av derivasjonsreglene for et polynom, eller?
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9 Derivasjonsregler

9.1 Derivasjonsregler

Heldigvis slipper vi & benytte definisjonen til & finne den deriverte. For de funksjonene vi stgter
pa har noen allerede gjort det for oss. Det har resultert i en rekke derivasjonsregler.

9.1.1 Noen grunnleggende derivasjonsregler

Vi skal bare se pa derivasjon av polynomfunksjoner og det feérste vi kan merke oss er denne
regelen.

Definisjon 10

Dersom n er et naturlig tall

(xn)/ _ nxnfl

Nar vi deriverer et polynom sa kan vi derivere ledd for ledd.

Definisjon 11

(u(z) + v(z)) = '(z) + v'(2)

Hvis k er en konstant gjelder denne reglene

Definisjon 12

(k- u(z)) = k- ()
K =

der k er en konstant

Den deriverte til en konstant er altsa null. Tenk pa hvordan grafen til en funksjon som f(z) = k
ser ut. Det er ei horisontal linje. En tangent til et punkt pa denne linja har samme stigningstall
som linja. Da ma f'(z) = 0.

La oss se pa et eksempel

Oppgave 15

Finn den deriverte til f

fx)=2-2*+5-2°+3 - 22 +6-2+7

Benytter reglene under
. (13”)/ — nxn—l

o (u(@) + (@) = u'(z) +v'(2)
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o (k-u(a)) =k-u'(x)
e k=0
Da finner vi at den deriverte funksjonen er

flley=2-4-2"1+5.-3- 25" +3.2. 227 +6-1-271 +0
=82 +15- 22 4+6-2+6

Oppgave 16

Finn den deriverte til disse funksjonene
a) f(x)=6z" +32% — 4z
b) g(z) =32+ 225 —x +7
c) h(z) =22 — 9z + 2

9.1.2 Derivasjon av et produkt

Definisjon 13

Dersom u(z) og v(z) er to deriverbare funksjoner, sa er

La oss se pa en typisk oppgave hvor vi ma benytte denne regelen

Oppgave 17

Deriver funksjonen f(z) = /z - (z* + 1)

Her ma vi benytte regelen for derivasjon av et produkt:

(u(z) -v(@)) = u'(z) - v(r) +u(z) -V (7)

I dette tilfellet er

u(z) = Vo = u'(z) =

v(r) = (z* +1) = v/(z)

[\
%‘»—t
&
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Da setter vi inn i derivasjonsregelen for et produkt
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Fi@) = 5o (a4 1) VE -t
o+ 1+ 2y - 4P
2Vx
2t + 14 2z - 423
2Vx

2t 4+ 148"
=5
_9:1;4—1-1

2Vx

Svar: f'(z) = —9;4;%1

9.1.3 Derivasjon av en brgk

Ved derivasjon av et brgkuttrykk gjelder denne regelen

Definisjon 14

La oss se pa et en oppgaven hvor denne regelen ma tas i bruk.

Oppgave 18

3 —1

x4+ 1

Deriver f(z) =

Dette er en brgk hvor teller en og nevneren er polynomfunksjoner. Vi har at

u(z) =2° —1 = u/(z) = 327

v(z) =2 +1 = V'(2) =42

Setter inn og far

327 (2t 4+ 1) — (23— 1) - 423
(x4 + 1)
328 4 322 — 420 + 423
GRS
—x8 + 42® + 322
(21 + 1)

f'(x) =
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—x8 + 423 + 322

Svar: f'(z) = N

9.2 Bevis for derivasjonsreglene
Dette er for alle som gnsker a se reglene bevist. Har du ikke noe gnske om det kan dette utelates.

Bevis for derivasjonsreglene kan veaere en utfordring, men la oss se pa hvordan det kan gjgres
for noen av reglene. Vi starter med a vise derivasjonsregelen for et produkt

9.2.1 Bevis for produktregelen

Her setter vi at f(z) = u(x) - v(x) og bruker definisjonen av den deriverte

flx+h) = fx)

flw) = lim h
— im u(z+h)-v(x+h) —u(z) - v(z)
h—0 h

Vi legger til og trekker fra u(z + h) - v(x) og far

~ im u(z+h)-v(e+h) —ux) o) +ulx+h) v(z) —ulz+h) vx)
h—0 h

Gjgr om litt pa rekkefglgen

u(x +h)-v(x) —u(z) vz)+ulz+h) vix+h) —ulx+h) v(z)

= lim

h—0 A
o (@) — (@) - v(@) +ula £ ) - (v + h) = o))
h—0 h

Dette kan vi skrive som

o u(x + h) — u(z) v(x +h) —v(z)

~v(z) +ulx+h) -

h—0 h h
= lim uzth) —u@) lim v(z) 4+ lim u(x + h) - lim vl +h) = v()
h—0 h h—0 h—0 h—0

Med bruk av definisjonen av den deriverte kan vi na skrive dette som

=u'(x) v(z)+ulz) v'(x)

9.2.2 Bevis for potensregelen

Nar vi skal bevise potensregelen kan vi benytte produktregelen. Det fgrste beviset gjelder nar
eksponenten er et naturlig tall.
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Vi skal bevise (") = nz"!.

Skrevet som funksjoner vil det si at f(z) = 2" = f'(z) = na" '

Hvis n = 1 kan vi vise at regelen stemmer. Da vil den derivert veere lik 1.

Det kan vi gjore ved a utfere et induksjonsbevis for n € N. Vi starter med & anta at p er
et naturlig tall som vi vet regelen stemmer for. Da kan p f. eks. veere 2 eller 3 og vi har
at

fla)=a"  fl(a)=pa?
Neste steg blir & undersgke om det stemmer for p 4+ 1. Det kan vi gjgre ved a benytte
produktregelen

fl(x)=paPt -z +aP 1 =pa? +aP = (p+1)a?

Ut fra uttrykket kan vi se at regelen stemmer. Vi vet da at den stemmer for p = 1 og
alle verdier som gker med 1. Da ma den stemme for alle naturlige tall. Regelen er bevist
nar eksponenten er et naturlig tall

O
Vi kan gjennomfgre et bevis ved faktorisering ogsa
Definisjonen av den deriverte
_ flz+h)— f(z)
/ —
fiz) = lim h
Vi benytter definisjonen og kan skrive
fla+h)— f@) _(@+h)" —a"
h B h
n—1
Faktoriserer telleren ved at vi vet at a® — b" = (a — b) > akp"~17F
k=0
Setter a = x + h og b = x og deler pa h og far
h n o n n—1
($+ ) Jj — (x+ h)kxnflfk
h
k=0
N& kan vi se hva som skjer nar h nsermer seg null
h—0= (z+h)*—2*h— 0= ledd nr. k— 2Fz" 1% = gn-1
Vi vet at det er n ledd og har at nz"!
O

En annen mate er & benytte binomialteoremet
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(x+h)" = i (B)ak - bk
k=0
S SN () P L
(z+h) L _ k=0 = (Z)xk k=1 _gn -l
h h k=0

Ledd nummer:

n: (Ma"-hmt=1-2" ht =a"h

|
n-1: (nﬁl)l‘nil . h”*(nfl)*l =1.-2". hO — nl.nfl ( n ) _ n: _

n!
(n—1)! " ( 1) !
_9. n n—2  pn—(n—2)—1 _ L Lpn—2 " = i =
n-2: (["))z h 5 T h (,"2) (n—2)l(n— (n—2))!
n! ~n(n—1)
(n—2)120 2
n n—0— n— n n!
L ledd (k=0): (§)af - h™0T =1 () = G = 1
I
2. ledd (k=1): (})z'- A" 7! = nah"2 (1) = 1( - o "
I(n —

N& kan vi skrive alt dette som:

(x+h)" —a"
" ) 1 1
1 —}-nfL‘nflﬂ— n(n — )xn—2h+__"+nxhn—2+hn71 —nhl = nmnfl_}_ n(nQ_ >In72h—|—

e _’_nxh’N,fZ + hnf]_
Vi skal finne lim 4% h})L — f(x)

h—0

1

O

tar denne grenseverdien av hvert ledd og far: nx™~

9.2.3 Bevis for den deriverte av en brgk

Denne regelen kan bevises slik
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Gitt funksjonen f(x) = u(x) Finner den deriverte funksjonen ved definisjonen av den

deriverte
u(@+h) u(z
Py = i LEE D) TaH D)
u(a +h) - o(x) = v(e +h) - u(z)
= lim () - v(z + h)
h—0 h
iy WD) v(@) — v(w + h) - u(a)
h—0 h U(I) . U(I + h)

Legger til og trekker fra fra u(x) - v(x) i telleren og ordner uttrykket

w(x 4+ h)-v(x) —v(x+h) - uwx) +u(z) - v(z) —ulz) - o(z)

s @) o )
_ i W@ R - u(2) —u(2) (@) — ol + h) - u(z) +u(z) - o(z)
e h-v(z) vz + h)

Faktoriserer

o (e ) u(e) -v(@) — (ol 4 h) £ 0(a) u(a)
h—0 h-v(z)-v(x+h)

Dividerer teller og nevner med h

u(z + h) — u(z) v(x+ h)+ov(z)
. . ~v(z) — . ~u(x)

h—0 v(z)-v(z+h)

Bruker reglene for grenseverdier

u(x 4+ h) — u(z) v(x+h)+ov(z)

I S Y LA R R N
lim v(z) - v(z + h)
h—0

N& kan vi skriver dette som
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