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Denne teksten er mer et utkast, eller en kladd, til et kompendium
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1 Introduksjon

1.1 Hva er differenslikninger?
Fra tidligere er vi vant med eksplisitte uttrykk som modeller. I skolemate-
matikken starter ofte oppgaven med: En funksjon er gitt ved f(x) = x2 + 2.
Alternativet er at vi ved regresjon finner et funksjonsuttrykk. Det samme
gjelder ofte for tallfølger. Kanskje tar vi utgangspunkt i et figurmønster for
så å finne den eksplisitte formelen? Da ender vi opp med et eksplisitt uttrykk
for ledd n. Har vi en eksplisitt formel er det greit å finne alle elementene i
tallfølgen, men ved modellering kommer vi ofte opp i en situasjon hvor vi
ikke har en eksplisitt formel og hvor det ofte ikke er så enkelt å finne den.
Et rekursivt uttrykk kan ofte være enklere å finne i mange tilfeller. Da kan
vi uttrykk et ledd i tallfølgen fra et annet. Det er det vi kaller for en diffe-
renslikning. Det skal vi se nærmere på, men la oss starte tallfølger og hva det
er.

1.2 Et eksempel
Vi skal se på forbruk av klær og sko i Norge. Tabellen under viser utviklinga
i millioner 2005-kroner. Data er henta fra Statistisk sentralbyrå

År 2009 2010 2011 2012 2013 2014 2015
Konsum 62054 67066 69356 71493 74222 76578 79824

Så langt kunne denne oppgaven vært fra ei lærebok i grunnskolen. Fort-
settelsen ville vært at elevene skulle brukt dataene til en regresjonsanalyse
og kommet fram til et eller annet funksjonsuttrykk. Det som da skjer er at
elevene forflytter seg fra diskrete verdier gitt i en tabell til en kontinuerlig
definert funksjon som en matematisk modell. Nå kan definisjonsmengden til
funksjonen avgrenses til en diskret mengde, men ofte blir ikke det gjort. Når
vi nå skal se på differenslikninger skal vi holde oss til de oppgitte verdiene
og prøve å komme fram til en diskret modell som passer til verdiene.

Vi velger bokstaven K for konsumet. For å slippe å ha med så mange siffer
setter vi året 2009 til år null. Da kan vi skrive forbruket av klær i 2009, 2010
og 2011 som
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K0 = 62054

K1 = 67066

K2 = 69356

Når vi skal lage en modell for konsumet av klær og sko kan én tilnærming
være å se på forbruket i 2009 og se hvor mye det økte i det neste året.

k0 = 62054

k1 = 67066

k1 ´ k0 = 67066 ´ 62054 = 5012

La oss si at vi antar at forbruket vil øke med samme verdi i årene som
kommer. Da har vi en modell som sier at vi kan legge til 5012 til konsumet
ett år for å få konsumet året etter. Modellen blir da slik

kn+1 = kn + 5012

Her har vi valgt å kalle modellen vår og verdiene som den beskriver for kn. De
virkelige verdiene får da betegnelsen Kn. Nå kan vi sammenlikne modellen
og verdiene vi har fått oppgitt

n 0 1 2 3 4 5 6
Kn 62054 67066 69356 71493 74222 76578 79824
kn 62054 67066 72078 77090 82102 87114 92126

Ut fra tabellen kan vi se at modellen stemmer for de første verdiene, men så
blir forskjellen ganske stor. Det samme kan vi se ved å tegne et punktplott,
slik figur 1.1 viser.

Modellen vår er ikke så bra tilpassa virkeligheten. Den stemmer for de to
første verdiene siden det var de vi tok utgangspunkt i, men den skiller seg fra
virkeligheten for de andre. Nå ser vi at økningen i konsumet var størst det
første året. Økningen de andre årene er langt lavere enn 5012. La oss prøve
å omformulere modellen. Etter å tatt utgangspunkt i gjennomsnittet av alle
økningene har jeg valgt å omformulere modellen til

kn+1 = kn + 2961
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Figur 1.1: En sammenlikning av data og modell

Lager vi samme tabell, ser vi at verdiene passer noe bedre.

n 0 1 2 3 4 5 6
Kn 62054 67066 69356 71493 74222 76578 79824
kn 62054 65015 67976 70937 73898 76859 79820

Figur 1.2 viser verdiene fra den nye modellen og de opprinnelige dataene.

Modellen vår kn+1 = kn + 2961 kan vi også skrive som

kn+1 ´ kn = 2961

Her ser vi at forskjellen mellom ett ledd og det neste alltid er 2961. Veksten
er konstant. Legg også merke til differansen har gitt opphavet til navnet
differenslikning. Vi kan skrive modellen vår litt tydeligere på denne måten

Differenslikning som modell

Kn representerer konsumet av klær og sko i millioner 2005-kroner n år
etter 2009. En modell for konsumet er gitt ved

kn = kn´1 + 2961

hvor k0 = K0 og n ą 0
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Figur 1.2: Ny sammenlikning av data og modell

1.3 Differenslikninger og verktøy
Når vi arbeider med differenslikninger vil et regneark være til hjelp. Diffe-
renslikningene er rekursive og det er noe som passer regneark. Ved å skrive
inn korrekt formel med referanse til forrige resultat i ei celle vil kopiering
resultere i rekursivitet.

Flere kalkulatorer og programvare for matematikk tilbyr også å skrive inn re-
kursive formler direkte. Figur 1.3 viser rekursive definisjoner i WolframAlpha
og TI-Nspire.

1.4 En del ord og uttrykk
Nå har vi sett på et praktisk eksempel og hvordan vi fant ei differenslikning
som modellerte situasjonen. La oss se på noen definisjoner og forklaringer på
matematiske uttrykk før vi går videre.

Tallfølger
Eksemplet vi startet inneholdt ei tallfølge for konsumet fra 2009 og framover.
Tidligere framstilte vi det i en tabell, men vi kan også skrive verdiene slik

t62054, 67066, 69356, 71493, 74222, 76578, 79824u
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(a) WolframAplha

(b) GeoGebra

(c) TI-Nspire

Figur 1.3: Differenslikninger

Ei slik oppramsing kaller vi ei tallfølge.

Definisjon 1

Ei tallfølge er tall som står etter hverandre i en bestemt rekkefølge.

Ei enkel tallfølge er partallene fra og med to og opp til og med ti kan vi skrive
som

P = t2, 4, 6, 8, 10u

Det er ei endelig tallfølge med fem ledd

Ønsker vi en kortere skrivemåte er det vanlig å skrive denne som

t2 ¨ nu50

Setter vi ikke den øvre grensa kan vi skriv alle partallene fra og med to som

P = t2, 4, 6, 8, 10, ¨ ¨ ¨ u
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Det er ei uendelig tallfølge som kan skrives som

t2 ¨ nu8
0

Definisjon 2

Ei tallfølge kan skrives som

ta0, a1, a2, ¨ ¨ ¨ , an, ¨ ¨ ¨ u

Vi kaller tallene a0, a1, a2, ¨ ¨ ¨ for leddene i tallfølga.
an er det generelle, eller det n-te, leddet.

Hele tallfølga kan skrives som tanu

Her er det første leddet skrevet som a0. Indeksen viser at det er ledd nummer
null. Det er også vanlig å beskrive det første leddet i tallfølgen som ledd
nummer én, f.eks, a1 eller f1 eller u1. Vi skal se at det ikke spiller så stor
rolle bare vi vet hva vi gjør. Når vi starter med null indikeres det at det er
en initialbetingelese. a0.

Rekursiv formel
En rekursiv formel for et ledd i ei tallfølge tar utgangspunkt i ett, eller flere,
foregående ledd for å beskrive det neste. I tilfellet vårt med den uendelige
tallfølga av partall blir en rekursiv formel.

an = an´1 + 2

Da ser vi at det kan også gi oddetall eller andre følger med partall. Det første
leddet må derfor oppgis, slik at den rekursive formelen blir

a0 = 2

an = an´1 + 2

I det innledende eksemplet var det en rekursiv formel vi fant

kn+1 = kn + 2961
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Eksplisitt formel
Den eksplisitte formelen gir oss leddet direkte ut fra hvilket nummer det er
i rekka.

an = 2 ¨ n, n P N

Eksplisitte formler er vi vant med fra funksjonsuttrykk. Tar vi utgangspunkt
i det innledende eksemplet kan vi finne en eksplisitt formel. Vi starter med
62054 og legger til 2961 for hvert ledd og kan skrive om den rekursive formelen
til

kn = 62054 + 2961 ¨ n, n P N0

Her står N0 for alle de ikke-negative tallene: N0 = t0, 1, 2, ¨ ¨ ¨ u

Differenslikninger
Da er vi klare for å definere hva differenslikninger er

Definisjon 3

Ei differenslikning har ei tallfølge som løsning.
Leddene beregnes ut fra foregående ledd og et startledd.

Definisjon 4

Kaller vi antall foregående ledd som kreves i beregningen for k, der k P N
kalles differenslikninga for ei differenslikninga av orden k.

Definisjon 5

La k P N. Ei differenslikning av orden k er ei likning på formen

xn+k = a1xn+k´1 + a2xn+k´2 ¨ ¨ ¨ + akxn + f(n), n ě 0

der a1, ¨ ¨ ¨ , ak er reelle tall, f(n) er et gitt uttrykk i n og ak ‰ 0

I dette kurset skal vi bare se på lineære differenslikninger.

Fra før av kjenner vi lineære likninger som likninger på formen

k1x1 + k2x2 + ¨ ¨ ¨ knxn = c

Her er k1, k2, k3, ¨ ¨ ¨ , kn konstanter. De kalles også koeffisienter til likninga. De
ukjente er x1, x2, x3, ¨ ¨ ¨ , xn. I skolematematikken er det vanligste og benytte
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forskjellige bokstaver for den ukjente slik at indekser unngås. Da kan lineære
likninger se slik ut

2x = 10

3x+ 4y = 24

For at ei likning skal kalles lineær kan vi altså bare ha ledd hvor de ukjente
er multiplisert med konstanter. Et eksempel på ei ikke-lineær likning er ei
andregradslikning k1x

2
1+ k2x2 = c. Her ser vi at den ene ukjente ikke bare er

multiplisert med en konstant, men også med seg sjøl.

Vi skal holde oss til lineære differenslikninger og det betyr at de ukjente ikke
vil være multiplisert med annet enn koeffisienter.

Definisjon 6

Ei lineær differenslikning kalles homogen hvis f(n) = 0. Hvis f(n) ‰ 0 kalles
den inhomogen

La oss se på noen eksempler som kan være oppklarende.

Eksempler på differenslikninger

Differenslikning Type
an+1 = 5 ¨ an + 2n førsteordens inhomogen
an+3 = an+2 + an+1 + 5 ¨ an + 2 tredjeordens inhomogen
an+3 = an+2 + an+1 + 5 ¨ an tredjeordens homogen

Løsningen av differenslikninger er tallfølger. Vi kommer til å se på forskjellige
måter disse vokser. Da er vi interessert i forskjellen mellom leddene. Det kaller
vi første-differenser.

Definisjon 7

For ei tallfølge A = ta0, a1, a2, a3, ¨ ¨ ¨ u er dette første-differensene

∆a0 = a1 ´ a0

∆a1 = a2 ´ a1

∆a2 = a3 ´ a2

Lar vi n P N0 kan den n-te førstedifferensen skrives som ∆an = an+1 ´ an
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Figur 1.4 viser hvordan forandringen fra ledd til ledd framstilles grafisk.

∆an = an+1 ´ an

1
an

an+1

n n+ 1
x

y

Figur 1.4: Første-differense framstilt grafisk.

Definisjon 8

Et dynamisk system er relasjonen mellom elementene i en tallfølge.

1.5 Oppgaver
Oppgave 1

Finn differenslikninger for
a. de positive partallene
b. de positive oddetallene
c. tallfølga t1, 4, 5, 9, 14, 23 ¨ ¨ ¨ u

d. tallfølga t1, 2, 6, 24, 120, 720 ¨ ¨ ¨ u

e. tallfølga t1
2
, 1
4
, 1
8
, 1
16
, 1
32

¨ ¨ ¨ u

1.6 Modellering med differenslikninger
Tidligere har vi sett hvordan vi kan modellere virkeligheten. Vi ender opp
med en matematisk modell som vi kan benytte til beregninger. Det kan gjøre
oss i stand til å lage prognoser for hva som skal skje en gang i framtida, gjøre
oss i stand til å vurdere lønnsomhet eller finne antall individer i en levedyktig
populasjon. Den matematiske modellen gjør oss i stand til det, men det er
viktig å huske at den er en forenkling av det vi ønsker å finne ut mer om. Vi
må alltid vurdere konklusjonene opp mot det virkelige vi modellerer.
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En matematisk
konklusjon

Data fra
observasjoner

En matema-
tisk modell

forenkling

analysevurdering

Differenslikninger kan benyttes til å lage modeller. Den differenslikninga vi
kommer fram til skal søke å gi ei tallfølge som best mulig passer som en
modell for situasjonen. Hva som er «best» kan være vanskelig å avgjøre i
mange tilfeller. Ofte kan vi finne en modell som stemmer svært godt overens
med dataene vi har målt, men den kan være usikker når det gjelder å si
noe om framtidige verdier. Når vi arbeider med differenslikninger prøver vi
å finne likninger som ser ut til å stemme overens med dataene vi har. Ofte
ønsker vi å modellering forandring og ta utgangspunkt i

framtidig verdi = nåverdi + forandring

Det uttrykket kan vi også skrive om til

forandring = framtidig verdi - nåverdi

Ved å samle data over en periode og plotte disse kan vi se hva som skjer
med forandringen over tid. Siden vi da har samla enkeltverdier vil de utgjøre
diskrete verdier. Vi har da differenslikninger. Seinere skal vi se på kontinuitet
og da blir det differensiallikninger.

Vi skal nå forsøke å beskrive forandringen som en matematisk modell. Når
vi observerer forandring er vi opptatt av hvordan forandringen skjer og ana-
lysere egenskapene til forandringen. Det hjelper en matematisk modell oss
med.

Før vi gir oss ut på ukjent farvann kan det være greit å vite at differenslik-
ninger egentlig er gammelt nytt. Se bare på denne oppgaven.

Oppgave 2

Du setter 1000 kr i banken til 1 % rente. Renta beregnes, og legges til, hver
måned. Finn ei differenslikning som modellerer forandringen.

Her vil tallfølga bli

A = (1000, 1010, 1020.10, 1030.30, 1040.60, 1051.01, ¨ ¨ ¨ )
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Hvert ledd i tallfølga er gitt ved

an+1 = an +
an ¨ 1

100
= 1.01 ¨ an

Vi må ta med initialbetingelsen som sier at beløpet vi satte inn var 1000 kr
for å skrive det som et dynamisk system

an+1 = 1.01 ¨ an, n = 0, 1, 2, 3 ¨ ¨ ¨

a0 = 1000
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2 Aritmetisk vekst

2.1 Figurtall som viser aritmetisk vekst
Et eksempel på aritmetisk vekst finner vi hvis vi ser på vekst hvor økningen
er konstant. Vi kan se på et enkelt eksempel gjennom denne oppgaven

Oppgave 3

Finn en rekursiv og en eksplisitt formel for antall prikker i figurtallene gitt
ved disse figurene

F1 F2 F3

Tar vi utgangspunkt i figurene kan vi se at den rekursive formelen er gitt ved

Fn+1 = Fn + 1

Startverdien, eller initialverdien, er F1 = 2. Fra den ene figuren til den andre
øker antallet prikker med det samme, én prikk.

Vi tar med en oppgaven til for å illustrer det samme.

Oppgave 4

Finn en rekursiv formel for antall prikker i figurtallene gitt ved disse figurene

F1 F2 F3

Her starter vi med F1 = 4 og hver figur vokser med to prikker. Det gir den
rekursive formelen

Fn+1 = Fn + 2

Det gir tallfølga t4, 6, 8, 10, 12, ¨ ¨ ¨ u med en fast differanse mellom elementene.
Det er et eksempel på aritmetisk vekst.

4 6 8 10 ¨ ¨ ¨ Fn´1 Fn

2 2 2 2
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2.2 Aritmetisk vekst beskrevet av differens-
likninger

Rekursivt kan aritmetisk vekst alltid beskrives ved denne generelle diffe-
renslikninga

an+1 = an + d

hvor d er den konstante veksten.

Ut fra definisjonene er det ei førsteordens (definisjon 5) inhomogen (defini-
sjon 6) differenslikning.

2.3 En eksplisitt formel for aritmetisk vekst
Gjør først denne oppgaven

Oppgave 5

Finn en eksplisitt formel for samme figurmønster

Som ellers vil det være flere muligheter vi kan observere ut fra figurmønstret.
Her er noen muligheter ut fra betraktninger av figurene.

Fn = 2 ¨ (n+ 1)

= 4 + 2 ¨ (n ´ 1)

= 2 ¨ n+ 2

Dette var en eksplisitt formel for antall prikker i hver i akkurat dette tilfellet.
Slike uttrykk kan vi også finne generelt.

Eksplisitte uttrykk for aritmetisk vekst kan vi komme fram til ved å se
på hvordan leddene er bygd opp. For hvert ledd får vi et tillegg d. Da kan vi
finne ledd n på denne måten.

a0 a1 a2 a3 ¨ ¨ ¨ an´1 an

d

n¨d

d d d
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Teorem 1

Hvis ei aritmetisk tallfølge er gitt ved

an+1 = an + d

og a0 som første ledd, er den eksplisitte formelen for et ledd i tallfølga

an = a0 + n ¨ d

for n ě 1

Bevis. Vi skriver ned hvert ledd og viser utviklingen

a1 = a0 + d

a2 = a1 + d = a0 + d+ d = a0 + 2d

a3 = a2 + d = a0 + 2d+ d = a0 + 3d

...
an = an´1 + d = a0 + n ¨ d

Ved den siste generaliseringen ser vi den eksplisitte formelen.

La oss prøve om det stemmer for det eksplisitte uttrykket vi fant. Der var
d = 2. I oppgaven startet vi ikke med a0, men med F1. For å tilpasse til den
generelle eksplisitte formelen må vi gjøre en liten justering

F1 = a0

F2 = a1
...

Fn = an´1

Da får vi at
Fn = F1 + d ¨ (n ´ 1) = 4 + 2 ¨ (n ´ 1)

Det stemmer bra og vi kan summere opp det vi har funnet.
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Aritmetisk vekst

Differenslikninga
an+1 = an + d

hvor d er en konstant beskriver en aritmetisk vekst.
Den eksplisitte formelen blir da

an = a0 + n ¨ d

for n ě 1
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3 Kvadratisk vekst

3.1 Hva er kvadratisk vekst?
For kvadratisk vekst vil ikke veksten ikke konstant, men veksten vil vokse
aritmetisk. La oss se på et eksempel gitt av tallfølga t1, 4, 9, 16, 25, ¨ ¨ ¨ u. Du
kjenner kanskje igjen den som noen av funksjonsverdiene til y = x2

Tidligere har vi sett på førstedifferensen, men nå kan vi også innføre andre-
differensen. Kaller vi førstedifferensen for ∆y er det vanlig å kalle andrediff-
rensen for ∆2y. Her er det diagram som viser de to

2 2 2 ∆2y

3 5 7 9 ∆y

1 4 9 16 25 y

Legg merke til at førstedifferensen følger et mønster av aritmetisk vekst.
Andredifferensen er konstant.

3.2 Differenslikning som beskriver kvadratisk
vekst

Nå skal vi se på en generell kvadratisk vekst. Kaller vi det første tillegget d0
og andredifferense e kan vi sette det opp generelt slik

a0 a1 a2 a3 ¨ ¨ ¨ an´1 an an+1

d0 d0+1¨e d0+2¨e d0+(n´1)¨e d0+n¨e

Teorem 2

Hvis en kvadratisk vekst kan beskrives ved d0 = a1 ´ a0 og e er andrediffe-
rensen vil differenslikninga

an+1 = an + d0 + n ¨ e

med a0 som første ledd, gi ei tallfølge som beskriver veksten

Bevis. Et resonnement basert basert på figuren over viser gyldigheten.
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Rekursivt uttrykk for kvadratisk vekst er da gitt ved denne differenslik-
ninga. Husk at d0 og e er parametre. Her er d0 gitt ved a1´a0. Da er det viktig
å holde på at a0 er det første leddet og e er den konstante andredifferensen

Oppgave 6

Finn ei differenslikning som har

t1, 4, 9, 16, 25, ¨ ¨ ¨ u

som løsning

Starter med å finne d0

d0 = a1 ´ a0 = 4 ´ 1 = 3

Andredifferensen har vi allerede funnet

e = 2

Da har vi

an+1 = an + d0 + n ¨ e = an + 3 + 2 ¨ n

3.3 Eksplisitt formel
En eksplisitt formel kan vi finne når vi har den rekursive, altså diffe-
renslikninga. Når elever arbeider med figurtall må denne overgangen skje
ved prøving og feiling, men nå skal vi se at det er mulig å finne et generelt
uttrykk

Teorem 3

Hvis en kvadratisk vekst er gitt ved

an+1 = an + d0 + n ¨ e

med a0 som første ledd, d0 = a1 ´ a0 og e som andredifferensen, er den
eksplisitte formelen for et ledd i tallfølga

an = a0 + n ¨ d0 +
(n ´ 1) ¨ n

2
¨ e

for n ě 1
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Bevis. Vi følger samme resonnement som tidligere og ser på utviklinga. For
å vise mønstret er leddene med e skrevet til venstre.

a1 = a0 + d0

a2 = a0 + d0 + d0 +1 ¨ e

a3 = a0 + d0 + d0 + d0 +1 ¨ e+ 2 ¨ e

a4 = a0 + d0 + d0 + d0 + d0 +1 ¨ e+ 2 ¨ e+ 3 ¨ e

Det kan vi skrive om som

a1 = a0 + d0

a2 = a0 + 2 ¨ d0 + 1 ¨ e

a3 = a0 + 3 ¨ d0 + (1 + 2) ¨ e

a4 = a0 + 4 ¨ d0 + (1 + 2 + 3) ¨ e

a5 = a0 + 5 ¨ d0 + (1 + 2 + 3 + 4) ¨ e

a6 = a0 + 6 ¨ d0 + (1 + 2 + 3 + 4 + 5) ¨ e

Her kan vi observere at faktoren som e skal multipliseres med er summen av
ei aritmetisk rekke som består av de n ´ 1 første naturlige tallene. Summen
av ei aritmetisk rekke med k ledd er

Sk =
k

2
(l1 + lk)

Her er l1 det første leddet og lk ledd nummer k. I vårt tilfelle er l1 = 1 og
lk = n ´ 1 og summen blir da

Sn´1 =
n ´ 1

2
(1 + (n ´ 1)) =

n ¨ (n ´ 1)

2

Da har vi det som skal til for å finne en eksplisitt formel

an = a0 + n ¨ d0 +
(n ´ 1) ¨ n

2
¨ e
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Da kan vi summere opp det vi har funnet for kvadratisk vekst.

Kvadratisk vekst

Differenslikninga
an+1 = an + d0 + n ¨ e

hvor d0 er a1 ´ a0 og e andredifferensen beskriver en kvadratisk vekst.
Den eksplisitte formelen blir da

an = a0 + n ¨ d0 +
(n ´ 1) ¨ n

2
¨ e

for n ě 1

Hva om vi endrer første ledd?
I dette kompendiet har vi satt første ledd til a0. Det er i tråd med hvordan
andre behandler differenslikninger. Det er ikke noe i veien for å starte med
a1, men da vil noen av formlene forandre seg. Vi kan se på hva som skjer om
vi forandrer på det.

La oss si at vi ønsker å starte med a1 som første ledd. Hva skjer da? Jo, da
blir d1 = a2 ´ a1 og situasjonen kan illustreres slik

a1 a2 a3 a4 ¨ ¨ ¨ an´1 an an+1

d1 d1+1¨e d1+2¨e d1+(n´2)¨e d1+(n´1)¨e

Med med a1 som første ledd kan kvadratisk vekst vil differenslikninga

an+1 = an + d1 + (n ´ 1) ¨ e

gi ei tallfølge som beskriver veksten

Valget av a1 som første ledd får også konsekvenser for den eksplisitte forme-
len. La oss utlede den formelen også. Med a1 som første ledd kan vi følge
samme resonnement som tidligere.
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a2 = a1 + d1

a3 = a1 + d1 + d1 +1 ¨ e

a4 = a1 + d1 + d1 + d1 +1 ¨ e+ 2 ¨ e

a5 = a1 + d1 + d1 + d1 + d1 +1 ¨ e+ 2 ¨ e+ 3 ¨ e

Det kan vi skrive om som

a2 = a1 + d1

a3 = a1 + 2 ¨ d1 + 1 ¨ e

a4 = a1 + 3 ¨ d1 + (1 + 2) ¨ e

a5 = a1 + 4 ¨ d1 + (1 + 2 + 3) ¨ e

a6 = a1 + 5 ¨ d1 + (1 + 2 + 3 + 4) ¨ e

a7 = a1 + 6 ¨ d1 + (1 + 2 + 3 + 4 + 5) ¨ e

Nå er faktoren som e skal multipliseres med summen av ei aritmetisk rekke
som består av de n ´ 2 første naturlige tallene. Da får vi

Sn´2 =
(n ´ 1) ¨ (n ´ 2)

2

Da kan vi finne den eksplisitte formelen som

an = a1 + (n ´ 1) ¨ d1 +
(n ´ 1) ¨ (n ´ 2)

2
¨ e

for n ě 2.

3.4 Håndtrykkproblemet
Oppgave 7

Hvor mange håndtrykk blir det i et selskap med n personer?
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Her kommer håndtrykkene igjen. Denne gangen som et eksempel på kvadra-
tisk vekst. La oss sette opp tabellen for hvor mange håndtrykk det blir når
noen personer møtes.

Antall personer 2 3 4 5 6 7 8 9 10
Antall håndtrykk 1 3 6 10 15 21 28 36 45

Her kan vi observere at kommer det én person til vil antallet håndtrykk øke
med det forrige antall personer.

1 3 6 10 ¨ ¨ ¨ hn´1 hn

2 3 4 5 ¨ ¨ ¨ n ´ 1 n

2 3 4 n´1

Det kan vi argumentere for ved å tenke oss at det er tretti personer i et
selskap. Det kommer én person til og den personen må da håndhilse på alle
de tretti personene. Benytter vi h for håndtrykk kan vi skrive det som

h31 = h30 + 30

Den samme tankegangen gjelder for alle leddene og vi skrive det generelt
som differenslikninger. Under er det to varianter avhengig av hvilket ledd vi
starter med

hn = hn´1 + (n ´ 1) (3.1)
hn+1 = hn + n (3.2)

Nå vet vi at en generell kvadratisk vekst kan skrives eksplisitt som

hn+1 = hn + d0 + n ¨ e

La oss se mer på hva som skjuler seg i dette eksemplet og hvordan vi kan finne
uttrykket vi fant over ved å se på differensene. Ser vi på førstedifferensen ∆h
kan vi observere at den vokser aritmetisk

1 3 6 10 15 21 28
2 3 4 5 6 7

Det er typisk for kvadratisk vekst. Andredifferensen ∆2h er konstant
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2 3 4 5 6 7
1 1 1 1 1

Det er igjen et kjennetegn på at dette er kvadratisk vekst og at det eksplisitte
uttrykket kan skrives som

hn+1 = hn + d0 + n ¨ e

Vi har allerede resonnert oss fram til det, men her er det vist at

∆2h = e = 1

Nå vet vi fra tidligere at d0 = h1 ´ h0, så da gjelder det å finne ut hva h0

og h1 er. Ingen, eller én, person betyr at det ikke blir noen håndtrykk. Det
er ingen andre å hilse på. Vi kan ikke alltid betrakte situasjonen i jakten
på d0. I dette tilfellet har vi starta med at to personer håndhilser og antall
håndtrykk er h2. Vi kan allikevel finne d0 ved å se på det teoretisk. Fortsetter
vi bakover i tallfølgen får vi denne situasjonen:

h0 h1 h2 h3 h4

0 0 1 3 6

0 1 2 3

Da kan vi bestemme d0 = h1 ´ h0 = 0 og vi vet at e = 1. Vi har da formelen

hn+1 = hn + d0 + n ¨ e

= hn + n

Når vi vet at d0 = 0 og e = 1 kan vi også finne den eksplisitte formelen

hn = h0 + n ¨ d0 +
(n ´ 1) ¨ n

2
¨ e

= 0 + n ¨ 0 +
(n ´ 1) ¨ n

2
¨ 1

=
n ¨ (n ´ 1)

2
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Skrevet som et funksjonsuttrykk er det gjenkjennelig fra tidligere arbeid med
hånstrykksproblemet

h(n) =
n ¨ (n ´ 1)

2

Tar vi utgangspunkt i h1 har vi at

d1 = h2 ´ h1 = 1

Andredifferensen er den samme: e = 1

Da blir differenslikninga

hn+1 = hn + 1 + (n ´ 1) = hn + n

Vi kan også finne den eksplisitte formelen på denne måten.

hn = h1 + (n ´ 1) ¨ d1 +
(n ´ 1) ¨ (n ´ 2)

2
¨ e

= (n ´ 1) ¨ 1 +
(n ´ 1) ¨ (n ´ 2)

2
¨ 1

=
2(n ´ 1) + (n ´ 1) ¨ (n ´ 2)

2

=
2n ´ 2 + n2 ´ n ´ 2n+ 2

2

=
n2 ´ n

2

=
n ¨ (n ´ 1)

2

Legg merke til at håndtrykkproblemet er analogt med flere problemer med
nettverk. Generelt gjelder det hvor mange forbindelseslinjer må vi ha mellom
punkter. Da kan punktene være personer, datamaskiner eller byer.

3.5 Antall diagonaler i en mangekant
Et eksempel som likner er denne oppgaven.
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Oppgave 8

Finn en eksplisitt formel for sammenhengen mellom antall hjørner i en
mangekant og antall diagonaler i samme mangekant

Det er naturlig å starte med å tegne noen figurer.

Resultatet kan settes opp i en tabell

Antall hjørner Antall diagonaler
3 0
4 2
5 5
6 9
9 27
10 35
11 44
12 54
13 65

Opplysningene i tabellen forteller oss at førstedifferensen øker lineært på
denne måten
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0 2 5 9 ¨ ¨ ¨ Dn´1 Dn

D3 D4 D5 D6 ¨ ¨ ¨ Dn´1 Dn

2 3 4 n´2

Her ser vi at

D4 = D3 + 2

D5 = D4 + 3

D6 = D5 + 4

...
Dn = Dn´1 + n ´ 2

Det gir oss en versjon av en rekursiv formel

Dn = Dn´1 + n ´ 2

La oss finne en eksplisitt formel. Vi vet at dette er et eksempel på kvadratisk
vekst. Da kan den eksplisitte formelen finnes ved

Dn = Dn´1 + d0 + (n ´ 1) ¨ e

Nå må vi bare finne d0 og e. Andredifferensen er grei å finne ut fra det vi har
satt opp tidligere: e = 1.

Nå gjenstår det å finne d0. For å gjøre det må vi gå bakover i tallfølge og
fjerne oss fra det praktiske tilfellet med diagonaler.

D0 D1 D2 D3 D4

0 ´1 ´1 0 2

´1 0 1 2

Nå kan vi se at d0 = ´1

Den eksplisitte formelen er gitt ved

Dn = D0 + n ¨ d0 +
(n ´ 1) ¨ n

2
¨ e

Da kan vi sette inn og vi får
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Dn = 0 + n ¨ (´1) +
(n ´ 1) ¨ n

2
¨ 1

=
´2n

2
+

n2 ´ n

2
=

n2 ´ n ´ 2n

2

=
n2 ´ 3n

2
=

n(n ´ 3)

2

Da har vi funnet en eksplisitt formel

Dn =
n(n ´ 3)

2

Rekursiv formel
Dn = Dn´1 + n ´ 2

For begge gjelder at n ě 3 og at D3 = 0
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4 Geometrisk vekst

4.1 Geometrisk vekst
Geometrisk vekst er en type vekst du nok er kjent med fra før. Den er alltid
gitt ved differenslikninger på formen sn+1 = r ¨ sn. Vi kan definere slike
differenslikninger mer presist slik

Definisjon 9

Ei differenslikning som modellerer geometrisk vekst er ei første ordens lineær
homogen differenslikning som kan skrives på formen

an+1 = r ¨ an, n ě 0

der r P Rzt0u

Løser vi ei slik differenslikning vil vi få ei geometrisk tallfølge.

Et eksempel er denne differenslikninga

an+1 = 2 ¨ an, n ě 0

Avhengig av initialverdier har den flere løsninger

A = t1, 2, 4, 8, 16 ¨ ¨ ¨ u hvis a0 = 1

A = t4, 8, 16, 32, 64 ¨ ¨ ¨ u hvis a0 = 4

A = t10, 20, 40, 80, ¨ ¨ ¨ u hvis a0 = 10

A = t
1

6
,
1

3
,
2

3
,
4

3
, ¨ ¨ ¨ u hvis a0 =

1

6
A = t0, 0, 0, ¨ ¨ ¨ u hvis a0 = 0

Vi kan starte med et eksempel du kjenner igjen.

Renteberegning
Rentesrente er et eksempel på geometrisk vekst. Gjør denne oppgaven.
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Oppgave 9

Du setter 1000 kr i banken til 2 % rente. Renta beregnes hver måned og
legges til kontoen. Finn ei differenslikning som viser hvor mange penger det
er i banken ved slutten av hver måned.

Ei tallfølgen som gir verdiene i banken etter hver måned er gitt ved

an+1 = 1.02 ¨ an, a0 = 1000, n ě 0

Skriver vi de første leddene i en tabell og tegner en plotdiagram, vil de se
slik ut

n an

0 1000
1 1020,00
2 1040,40
3 1061,21
4 1082,43
5 1104,08
6 1126,16
7 1148,69
8 1171,66
9 1195,09
10 1218,99
11 1243,37
12 1268,24
13 1293,61
14 1319,48
15 1345,87

0 5 10 15

1,000

1,100

1,200

1,300

Antall mnd

Be
lø

p

I grafen er det også lagt inn ei rett linje for å vise at veksten ikke er artitme-
tisk. For geometrisk vekst er ikke veksten hver måned den samme. Veksten
er en faktor, en del, av forrige måneds beløp. I dette tilfellet er det slik at for
hver måned vokser beløpet med en viss prosent. Slik er det med all geometrisk
vekst. Den øker, eller minker, med samme faktor for hvert ledd.

31



Oppgave 10

Er denne tallfølga et eksempel på geometrisk vekst?

t
1

2
,
1

4
,
1

8
,
1

16
,
1

32
,
1

64
, ¨ ¨ ¨ u

Finn i så fall ei differenslikning som har denne tallfølga som løsning.

Oppgave 11

En ball slippes fra 10 meters høyde. Den spretter alltid opp til 80% av forrige
høyde. Vi lar den sprette til den ligger stille. Finn ei differenslikning som
modellerer hvor høgt den spretter.

Dette er et eksempel på geometrisk vekst hvor a0 = 10 og r = 0.8. Da blir
differenslikninga

an+1 = 0.8 ¨ an

n an

0 10.00
1 8.00
2 6.40
3 5.12
4 4.10
5 3.28
6 2.62
7 2.10
8 1.68
9 1.34
10 1.07
11 0.86
12 0.69
13 0.55
14 0.44
15 0.35

0 5 10 15

0

2

4

6

8

10

Antall sprett

H
øy

de

4.2 Eksponentiell vekst
Vi har sett at ei differenslikning for geometrisk vekst kan skrives generelt
som

an+1 = r ¨ an
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Nå skal vi finne et eksplisitt uttrykk for denne veksten.

Teorem 4

Den generelle løsningen til ei differenslikning på formen

an+1 = r ¨ an, n ě 0

er alle tallfølgene

an = a0 ¨ rn, a0 P R, r ‰ 0

Bevis. Vi starter med å se på de første leddene for så å trekke en konklusjon.
Ut fra definisjonen har vi

a1 = a0 ¨ r

a2 = a1 ¨ r = a0 ¨ r ¨ r = a0 ¨ r2

a3 = a2 ¨ r = a0 ¨ r3

...
an = a0 ¨ rn

I tilfellet hvor r er en konstant vil det eksplisitte uttrykket være

an = a0 ¨ rn

Det betyr at vi kan finne løsninga på ei differenslikning for geometrisk vekst
med den eksplisitte formelen. Element n i tallfølgen er an = rn ¨ a0 Siden a0
kan være et hvilket som helst tall er det uendelig mange løsninger.

Legg også merke til hvordan vi kan skrive om den eksplisitte formelen for
andre startverdier enn a0. Følger vi samme utledning som i beviset kan vi
observere at hvis k ě 0 så vil en omskriving gi

an = ak ¨ rn´k

Funksjoner av typen f(n) = a0 ¨rn kaller vi eksponentialfunksjoner. De er ofte
kontinuerlige modeller og krever at eksponenten er definert for n P R. For å
ta steget fra differenslikninger til eksponentialfunksjoner kreves en definisjon
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av potenser hvor eksponenten er reelle tall. Det kan være et stort steg å ta
for mange elever siden det bryter med tidligere definisjoner hvor potenser er
gjentatte multiplikasjoner med seg sjøl.

Eksponentiell vekst benyttes enten synonymt med geometrisk vekst eller for
kontinuerlig geometrisk vekst. En kan finne begge definisjoner ved et søk på
nettet.

La oss se på en oppgaven hvor vi må løse ei slik likning.

Oppgave 12

Du setter 1000 kr i banken til 1 % rente. Renta beregnes hver måned og
settes inn på kontoen. Hvor mange måneder må pengene stå i banken før du
har 2000 kr i banken?

Tallfølga som gir verdiene vi har i banken etter hver måned er gitt ved diffe-
renslikninga

an+1 = 1.01 ¨ an, n ě 0

Det er ei første ordens lineær homogen differenslikning og nå vet vi at den
har den generelle løsningen an = C ¨ rn, C P R. Ut fra oppgaven som
sier at beløpet vokser med 1 % hver måned er vekstfaktoren 1.01. Nå er
a0 = C = 1000

1000 ¨ 1.01n = 2000

1.01n = 2

n =
log 2

log 1.01 = 69.661

Når n = 69 vil beløpet bli 1986.89, så det må få stå én måned til slik at det
blir til 2006.76. Svaret blir at beløpet må stå i 70 måneder.

Geometrisk vekst

Differenslikninga
an+1 = r ¨ an

hvor r er en konstant beskriver en geometrisk vekst.
Den eksplisitte likninga blir da

an = a0 ¨ rn

for n ě 1

34



Oppgave 13

Sierpinski-trekanter kan du lese mer om på Wikipedia. Under ser du de fire
første.

Vi kaller antall svarte trekanter i hver av Sierpinski-trekantene for T1, T2,T3

og T4.
a. Finn T1, T2,T3 og T4

b. Finn ei differenslikning for antall svarte trekanter i figur Tn+1

c. Finn en eksplisitt formel for Tn

Oppgave 14

Antall registrerte elbiler i Norge henta fra Statistikkbanken til Statistisk
sentralbyrå (SSB). Se: http://www.ssb.no. Her er et utdrag som viser antall
registrerte biler.

2008 2009 2010 2011 2012 2013 2014 2015
1693 1776 2068 3909 8031 17770 38652 69134

For enkelhet skyld setter benytter vi variabelen t for år etter 2008, slik at
t = 0 tilsvarer 2008. Dataene er plottet i figur 4.1.
Finn ei differenslikning som kan modellere antall elbiler.

Konvergens av løsninger
Vi har tidligere sett at vi kan komme fram til en eksplisitt formel for en
geometrisk vekst

an = a0r
n

I dette uttrykket var a0 initialverdien. For å ikke ta utgangspunkt i at n = 0
innfører vi heller en verdi C som er uavhengig av den spesielle startverdien.
Da kan vi skrive den generelle løsninga.
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Figur 4.1: Antall registrerte elbiler i Norge

Teorem 5

Den generelle løsningen til en lineær førsteordens homogen differenslikning

an+1 = ran

er tallfølgene
an = Crn , C P R

I det tilfellet at C = a0 får vi en spesiell løsning.

Når vi undersøker hva som skjer med tallfølgene når n går mot uendelig vil
vi enten ende opp med at tallfølgene konverger mot en bestemt verdi eller de
vil divergene. Hva som skjer er avhengig av verdiene til C og r.

Det vi ønsker å finne ut av er hva som skjer med grenseverdiene

lim
nÑ8

an = lim
nÑ8

Crn

Her må vi anta at C ‰ 0. Hvis C = 0 vil vi få tallfølgen t0, 0, 0, ¨ ¨ ¨ u.
For ei generell lineær førsteordens homogen differenslikning an+1 = ran med
løsningene gitt ved

an = Crn , C P R

vil tallfølgene konvergere eller divergere avhengig av verdien til r slik
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verdien til r hva skjer?
|r| ă 1 konvergerer mot 0
|r| ą 1 divergerer
r = 1 konvergerer mot C
r = ´1 divergerer

Likevekstverdi
Konvergens og divergens er uttrykk knytta til matematikken. Ser vi på hva
uttrykkene betyr for en vekstmodell vil de avgjøre hva som skjer. Vil verdiene
oscillerer eller vil de stabilisere seg? Konvergens vil si at vi til slutt vil nå en
stabil verdi. Den kan vi kalle likevektsverdien. Ved divergens vil vi få verdier
som oscillerer.

For ei generell lineær førsteordens homogen differenslikning an+1 = ran med
løsningene gitt ved

an = Crn , C P R

vil tallfølgene konvergere eller divergere avhengig av verdien til r. Ved kon-
vergens vil verdiene gå mot en likevektsverdi.

Verdien av r er viktig. Hvis r = 0 vil alle verdiene være lik null. Hvis r = 1
får vi ei tallfølge med like ledd.

Hva skjer med veksten?

For ei generell lineær førsteordens homogen differenslikning an+1 = ran
vil verdien til r avgjøre hva som skjer i det lange løp.

verdien til r hva skjer?
r = 0 null er konstant løsning
r = 1 a0 er konstant løsning
r ă 0 oscillering
|r| ă 1 avtar mot 0
|r| ą 1 vekst uten grenser
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n an

0 1000
1 1500
2 2250
3 3375
4 5063
5 7594
6 11391
7 17086
8 25629
9 38443
10 57665
11 86498
12 129746
13 194620
14 291929
15 437894

0 5 10 15 20

0
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Figur 4.2: Differenslikninga an+1 = an ¨ 1.5 , a0 = 1000

Eksempel: Eksperimentering
Eksempel 2.1

Vi tenke oss drømmesituasjonen hvor vi får 50 % rente hver måned. Vi setter
inn 1000 kr i banken. Hva skjer med pengene over tid.

Vi kjenner igjen denne situasjonen som en geometrisk vekst med modellen
hvor r = 1.5 og a0 = 1000 og vi har differenslikninga

an+1 = an ¨ 1.5 , a0 = 1000

Lager vi en tabell og tegner et punktplot kan det framstilles som i figur 4.2.

Oppgave 15

Ta utgangspunkt i differenslikninga

an+1 = ran

Lag et regneark hvor det er mulig å skrive inn r i ei celle.
Eksperimenter med forskjellige verdier av r. Hva skjer?
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n an

0 1000
1 -1050
2 1103
3 -1158
4 1216
5 -1276
6 1340
7 -1407
8 1477
9 -1551
10 1629
11 -1710
12 1796
13 -1886
14 1980
15 -2079

0 5 10 15 20

´2,000

0

2,000

n

a
n

Figur 4.3: Differenslikninga an+1 = an ¨ (´1.05) , a0 = 1000

I eksemplet er r = 1.5 og veksten vil ikke gå mot en likevektsverdi. Den
divergerer og vil fortsette å vokse uten grenser. Med litt eksperimentering
oppdaget du kanskje at det ikke alltid er tilfelle?

La oss forlate det praktiske eksemplet og se på hva litt eksperimentering med
samme likning kan føre til. Vi justerer r slik at r ă ´1 ved å sette r = ´1.05.
Resultatet i form av tabell og plot kan du se i figur 4.3.

Som vi ser av figure 4.3 vil verdiene veksle mellom positive og negative verdier
og forskjellen mellom to påfølgende verdier blir større og større.

Vi prøver oss også med at |r| ă 1 og setter r = 0.75. Result vises i figur 4.4.
Leddene i tallfølga gir minkende verdier.

Vi avslutter eksperimenteringa ved å sette r = ´0.75 og studerer resultatet
i figur 4.5.

Konklusjonen er at r er bestemmende for om tallfølgene konvergerer eller
divergerer og om de oscillerer. Eksperimentet utføres nok best med program-
vare som regneark eller f. eks. GeoGebra. Da er det mulig å justere verdien
for r og interaktivt se hva som skjer.
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Figur 4.4: Differenslikninga an+1 = an ¨ 0.75 , a0 = 1000
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Figur 4.5: Differenslikninga an+1 = an ¨ (´0.75) , a0 = 1000
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Eksempel: Eksponentiell populasjonsvekst
En populasjon kan vokse eksponentielt over en kort periode, men etter hvert
vil flere faktorer begrense denne veksten. Da vil veksten være logistisk. Før
vi kommer dit ser vi på en et eksempel med populasjonsvekst uten begrens-
ninger. En populasjon er individer av samme art på et avgrensa område. Vi
tenker oss i denne omgang at antall individer i populasjonen er bestemt av
hvor mange som fødes og hvor mange som dør. Vi benytter disse variablene

Nt+1 størrelsen av den nye populasjonen

Nt størrelsen av den gamle populasjonen

b fødselsraten

d dødsraten

Da kan vi finne ei differenslikning for størrelsen

Nt+1 = Nt + bNt ´ dNt

Nt+1 = Nt + (b ´ d)Nt

Nt+1 = Nt + rNt

Nt+1 = (1 + r)Nt

Nt+1 = λNt

Vi setter differensen mellom fødselsraten og dødsraten, λ = 2.1 og ser hva
modellen gir. Figur 4.6 viser resultatet.

Eksempel: Hvor mange stingsild?
Eksempel 2.2

I et vann er det en populasjon av trepigga stingsild Gasterosteus aculeatus.
Vi tenker oss at populasjonen er regulert ved hvor mange avkom hver hunn
får.
Hvor mange avkom må hver hunn produsere for at populasjonen skal overleve

Vi starter med å innføre noen variabler

an antall voksne hunnfisker i generasjon n

gn totalt antall avkom i generasjon n i populasjonen

d andel av avkom som dør

h andel hunnkjønn av den voksne populasjonen
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Figur 4.6: Eksponentiell populasjonsvekst

r antall avkom per hunnkjønn

Den delen som overlever vil være 1 ´ d. Antall hunnkjønn i generasjon n+1
er da

an+1 = h(1 ´ d)gn+1

Vi må finne et uttrykk for gn+1 og har at

gn+1 = ran

Setter inn og får

an+1 = h(1 ´ d)ran

Det er ei første ordens lineær homogen differenslikning med løsning

an = a0 ¨ (h(1 ´ d)r)n

Ut fra det vi har sett på vet vi at hvis de skal overleve så må

h(1 ´ d)r ą 1
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Antall avkom per hunnkjønn må oppfylle

r ą
1

h(1 ´ d)

Nå må gjøre noen antakelser for populasjonen og vi kan anta at 80% av
avkommene dør. Andelen hunnkjønn i populajsonen setter vi til 50%. Da har
vi at h = 0.5 og 1 ´ d = 0.2

r ą
1

0.5 ¨ 0.2
= 100

Hvert hunnkjønn må produsere minst 100 avkom for at populasjonen skal
overleve.
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5 Kombinasjonsvekst

5.1 En kombinasjon av aritmetisk og geomet-
risk vekst

En kombinasjon av aritmetisk og geometrisk vekst skjuler seg under uttrykket
kombinasjonsvekst. I engelsk litteratur kalles en modell for det en «mixed
model».

Definisjon 10

En kombinasjonsvekst vil være gitt ved ei førsteordens lineær inhomogen
differenslikning av typen

an+1 = ran + d

Da er både r og d konstanter.

Det er kanskje greit å starte med et eksempel på noe kjent. Prøv denne
oppgaven før du leser videre.

Oppgave 16

I starten av en måned oppretter du en sparekonto og setter inn 500 kr.
Samtidig oppretter du en avtale hvor du setter inn 1000 kr i slutten av hver
måned. Rentesatsen er 2% per måned. Finn ei differenslikning som viser hvor
mye du har på kontoen ved slutten av hver måned.

Oppgaven gir et eksempel på en vekst som kombinerer et fast bidrag på 1000
kr hver måned samtidig som hvert ledd vokser med en faktor multiplisert
med forrige ledd. Her får vi en kombinasjonsvekst med d = 1000 og r = 1.02
og differenslikninga bør bli

an = 1.02 ¨ an´1 + 1000

a0 = 500

Løsningen vil være tallfølga som viser hva som står på kontoen etter hver
måned.
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5.2 Eksplisitt formel for kombinasjonsvekst
En eksplisitt formel kan vi finne ut fra den generelle differenslikninga
for kombinasjonsvekst.

Teorem 6

Differenslikninga
an+1 = ran + d

hvor r og d er konstanter beskriver en kombinasjon av geometrisk og aritme-
tisk vekst.
Den eksplisitte formelen blir da

an = a0 ¨ rn + d

(
1 ´ rn

1 ´ r

)
for n ě 1

Bevis. Vi setter opp en utledning av de første leddene og generaliserer ut fra
det.

a1 = a0 ¨ r + d

a2 = a1 ¨ r + d = (a0 ¨ r + d) ¨ r + d = a0 ¨ r2 + d ¨ r + d = a0 ¨ r2 + d(r + 1)

a3 = a2 ¨ r + d = a0 ¨ r3 + d ¨ r2 + d ¨ r + d = a0 ¨ r3 + d(r2 + r + 1)

a4 = a3 ¨ r + d = a0 ¨ r4 + d(r3 + r2 + r + 1)

...
an = a0 ¨ rn + d(rn´1 + rn´2 + ¨ ¨ ¨ + r + 1)

Ser vi på rekka 1 + r + r2 + ¨ ¨ ¨ + rn´2 + rn´1 er det ei geometrisk rekke
hvor første ledd er s1 og faktoren er k. Summen av de i første leddene i ei
geometrisk rekke vil da være gitt ved

Si = s1 ¨
1 ´ ki

1 ´ k

I vårt tilfelle er det n ledd, s1 = 1 og k = r. Da vil summen være

Sn = 1 ¨
1 ´ rn

1 ´ r
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Det gir

an = a0 ¨ rn + d(rn´1 + rn´2 + ¨ ¨ ¨ + r + 1) = a0 ¨ rn + d

(
1 ´ rn

1 ´ r

)

Da har vi både ei differenslikning som kan beskrive kombinasjonsvekst og vi
kan finne den eksplisitte formelen ut fra det.

Kombinasjonsvekst

Differenslikninga
an+1 = ran + d

hvor r og d er konstanter som beskriver en kombinasjon av geometrisk
og aritmetisk vekst.
Den eksplisitte formelen blir da

an = a0 ¨ rn + d

(
1 ´ rn

1 ´ r

)
for n ě 1.

Hva om vi ønsker en annen startverdi enn a0? La oss finne den eksplisitte
formelen hvis vi starter med a1. Da har vi

a2 = a1 ¨ r + d

a3 = a2 ¨ r + d = (a1 ¨ r + d) ¨ r + d = a1 ¨ r2 + d ¨ r + d = a1 ¨ r2 + d(r + 1)

a4 = a3 ¨ r + d = a1 ¨ r3 + d ¨ r2 + d ¨ r + d = a1 ¨ r3 + d(r2 + r + 1)

a5 = a4 ¨ r + d = a1 ¨ r4 + d(r3 + r2 + r + 1)

...
an = a1 ¨ rn´1 + d(rn´2 + rn´3 + ¨ ¨ ¨ + r + 1)

Summen av den geometriske rekka blir i dette tilfellet

Sn´1 = 1 ¨
1 ´ rn´1

1 ´ r

Da vil en eksplisitt formel bli
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an = a1 ¨ rn´1 + d

(
1 ´ rn´1

1 ´ r

)
for n ě 2.

Generelt kan vi skrive det som

an = ak ¨ rn´k + d

(
1 ´ rn´k

1 ´ r

)
for n ě k + 1.

Eksempel: Medisinering
Eksempel 2.1

En pasient tar 100 mg av en medisin. Kroppen bryter ned 1
4

av medisinen
hvert døgn. Finn ei differenslikning som beskriver hvor mye medisin pasienten
har i kroppen.

Dette kjenner vi som et eksempel på geometrisk vekst og differenslikninga
blir

an+1 =
3

4
¨ an , a0 = 100

Setter vi tallfølga inn i en tabell ser vi hvordan medisinen brytes ned slik at
etter 10 dager er det igjen 5.6 mg.

n 0 1 2 3 4 5 6 7 8 9 10
an 100 75 56.3 42.2 32.0 23.7 17.8 13.3 10.0 7.5 5.6

Hva nå om pasienten tar 10 mg av medisinen hver dag? Hvordan går det
med innholdet i kroppen da? Eller hva om pasienten tar 20 mg? Da er det
en kombinasjonsvekst og differenslikninga blir

an+1 =
3

4
¨ an + d , a0 = 100

hvor d er den dosen pasienten tar hver dag.

Bruk et regneark og legg inn denne differenslikninga og eksperimenter litt.
Gjør denne oppgaven.
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d 10 15 20
n an an an

0 100.0 100.0 100.0
1 85.0 90.0 95.0
2 73.8 82.5 91.3
3 65.3 76.9 88.4
4 59.0 72.7 86.3
5 54.2 69.5 84.7
6 50.7 67.1 83.6
7 48.0 65.3 82.7
8 46.0 64.0 82.0
9 44.5 63.0 81.5
10 43.4 62.3 81.1
11 42.5 61.7 80.8
12 41.9 61.3 80.6
13 41.4 61.0 80.5
14 41.1 60.7 80.4
15 40.8 60.5 80.3
16 40.6 60.4 80.2
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80

100

døgn
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d = 10
d = 15
d = 20

Figur 5.1: Konsentrasjon av medisin

Oppgave 17

Lag et regneark hvor du legger inn differenslikninga for den kombinerte veks-
ten. Prøv med forskjellige verdier for d. Hva skjer?

Prøver vi oss med verdiene d = 10, d = 15 og d = 20 får vi tabellen og
plottene i figur 5.1

Vi ser at medisinkonsentrasjonen i kroppen vil etter hvert nærme seg en
konstant verdi. Det ser ut som om hvis den daglige dosen er 10 mg vil kon-
sentrasjonen av medisin etter hvert bli omtrent 40 mg.

5.3 Konvergens og divergens
Eksemplet viser at konsentrasjonen av medisin i kroppen vil stabilisere seg:
det oppstår en likevekt. Går vi ut fra at det eksisterer en likevekstverdi, a,
kan vi sette opp denne likninga
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an+1 = ran + d

a = ra+ d

a ´ ra = d

a =
d

1 ´ r

Det gir grunnlag for dette teoremet.

Teorem 7

Likevektverdien ved kombinasjonsvekst gitt ved differensiallikninga

an+1 = ran + d, r ‰ 1

er gitt ved
a =

d

1 ´ r

Hvis r = 1 og d = 0 vil alle verdiene være likevektverdier. Hvis r = 1 og
d ‰ 0 vil det ikke eksistere en likevektverdi

Da har vi gått ut fra at det fins en likevektsverdi. Det gjør det ikke alltid, men
eksisterer den kan vi finne den ved dette teoremet. Hvis differenslikninga ikke
gir en likevektsverdi er det avhengig av verdien av r. Litt eksperimentering,
eller matematiske utledninger, gir disse egenskapene for kombinasjonsvekst.

Likevekt ved kombinasjonsvekst

En vekst gitt ved modellen

an+1 = ran + d

hvor d ‰ 0 vil vokse avhengig av verdien til r

verdien til r vokser mot
|r| ă 1 en stabil likvekt
|r| ą 1 vokser over alle grenser
r = 1 aritmetisk vekst
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Oppgave 18

Benytt et hjelpemiddel som regneark og eksperimenter med forskjellige ver-
dier for r og undersøk likevekt.

Oppgave 19

Vi tenker oss at NRK produserer en oppfølger til Skam. Hva skjer med seer-
tallene til den nye serien hvis den får 5000 nye seere for hvert avsnitt mens
den samtidig mister 10% av de som ser på?

Oppgave 20

En legemiddelprodusent har laget en ny medisin. Forskning viser at 12 pro-
sent av medisinen brytes ned av kroppen hver sjette time. Legemiddelprodu-
senten anbefaler at pasienten også tar en dose hver sjette time. Den ønskelige
dosen for best effekt er at pasienten har omtrent 250 mg i blodet til en hver
tid. Hvor stor dose bør pasienten ta.

Vi lar an være mengden av medisinen i kroppen etter at pasienten har tatt
dose n. Da vil differenslikninga

an+1 = 0.88 ¨ an + d

gi mengden av medisinen i blodet. d er den repeterende dosen pasienten tar.
Når vi har den kan vi prøve oss fram ved å sette inn i et regneark eller benytte
andre verktøy. En annen metode er å benytte det vi vet om likevekt. Vi vet
at vi ønsker en stabil likevekt lik 250. Det betyr at hvis an = 250, så skal
også an+1 = 250. Setter vi det inn i differenslikninga har vi

an+1 = 0.88 ¨ an + d

250 = 0.88 ¨ 250 + d

d = 250 ´ 0.88 ¨ 250 = 30

Et tredje alternativ er å benytte det vi kom fram til ved samme resonnement
som i forrige alternativ. Her er |r| ă 1 og den stabile likevekta vil være gitt
ved a = d

1´r
. Da kan vi regne ut

a =
d

1 ´ r

250 =
d

1 ´ 0.88

d = 250 ¨ 0.12 = 30
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Oppgave 21

Vi plasserer en kopp kaffe i et rom hvor temperaturen er 22 ˝C. Da kaffen
settes ut er temperaturen 82 ˝C. Vi måler temperaturen etter ett minutt til
79 ˝C

a. Begrunn at differenslikninga

Tn+1 = Tn + k(Tn ´ 22)

kan modellere temperaturen i koppen
b. Finn en verdi for k
c. Lag en tabell og et punktplott for differenslikninga

Oppgave 22

I en feltundersøkelse undersøker noen biologer en innsjø og finner ut at det
er 10000 individer av ørret der. Studier viser at bestanden vil øke med 20
prosent per år. De lokale myndighetene bestemmer at det skal gis tillatelse
til å fiske 1800 ørret per år.

a. Finn ei differenslikning som modellerer antall ørret i vannet for hvert
år.

b. Bruk differenslikninga til å bestemme hvor lang tid det vil ta før antall
ørret er doblet.

c. Tegn et plottdiagram for de neste 15 årene. Kommenter veksten.
d. Anta at det bestemmes at det kan fiskes 2200 ørret per år. Finn ei

differenslikning.
e. Tegn et plottdiagram for de neste 15 årene. Kommenter veksten.
f. Anta at det fiskes 2000 ørret i året. Hva vil da skje?
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6 Logistisk vekst

6.1 Begrenset vekst
I motsetning til geometrisk vekst vil den logistiske avta og til slutt begrenses
mot en bestemt størrelse. Veksttypen ble studert av den belgiske matemati-
keren Pierre-François Verhulst i 1838. Logistisk vekst gir en S-formet vekst-
kurve og etter hvert vil den logistiske vekstkurven (Verhulst-kurve) nærme
seg en asymptote som er lik bæreevnen (eller bærekapasiteten). Det er antall
individer som populasjonen vil bestå av på lang sikt. Bæreevnen reguleres av
faktorer som konkurranse mellom individene, tilgang på mat, sykdom, fødsel,
innvandring, utvandring osv. En geometrisk vekst vil alltid vokse, enten øke
eller minke, og det er ofte en begrensning når vi skal modellere virkeligheten.
Ser vi på populasjoner er det typisk at de vokser for så å stabilisere seg. Det
leder mot logistisk vekst.

bæreevne

tid
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st
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re

lse

faktorer:
- konkurranse
- mat
- sykdom
...

Figur 6.1: Logistisk vekst av en populasjon

Logistisk vekst definerer en tallfølge hvor forandringen fra ledd til ledd be-
stemmes av en vekstfaktor som er lineært avhengig av størrelsen på popula-
sjonen.

Vi skal holde oss innafor biologien og se på populasjonsstørrelser som eksemp-
ler. Da kan det være greit med en liten repetisjon av faktorer som styrer antall
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individer i en populasjon. Det bør nok nevnes at studier av populasjonsdyna-
mikk ofte er svært komplekse og at vi forenkler sterkt i denne sammenhengen.
Figur 6.2 gir en enkel oppsummering.

utvandring

innvandring

dø
d

fø
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el

Figur 6.2: Faktorer som styrer vekst

6.2 Logistisk vekst som differenslikning
Vi innfører disse symbolene

Nt+1 størrelsen av den nye populasjonen

Nt størrelsen av den gamle populasjonen

L likevektsverdi

Gitt at forholdene ikke forandrer seg vil populasjonen stabilisere seg på L
individer i det lange løp. Så kan vi anta at både antall fødsler, og antallet som
dør, er proporsjonalt med antall individer i populasjonen. Det tilgjengelige
næringsgrunnlaget hvor populasjonen lever vil kunne forsørge et visst antall
individer. Konklusjonen blir at veksten vil avta med økende antall individer
og vi kan sette opp denne differenslikninga

∆Nt = Nt+1 ´ Nt = r(L ´ Nt)Nt

r er en faktor bestemt av hvor mange som blir født og dør i populasjonen. Dif-
ferensen (L´Nt) er en faktor som blir mindre desto nærmere L populasjonen
er.

Differenslikninga kan vi skrive om til Nt+1 = Nt + r(L ´ Nt)Nt
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Logistisk vekst

En modell for logistisk vekst kan skrives som

Nt+1 = Nt + r(L ´ Nt)Nt

N0 er initialpopulasjonen og antall individer vil vokse mot L

Oppgave 23

Lag et regneark hvor modellen Nt+1 = Nt + r(L ´ Nt)Nt legges inn. Velg
initialverdi N0 = 50, likevektverdi L = 1000 og r = 0.0015. La regnearket
beregne minst 50 elementer og tegn et punktplott.

Oppgave 24

Lag et regneark hvor du kan eksperimentere med denne differenslikninga. La
r og L være konstanter i hver sin celle.

Oppgave 25

En populasjon med pungorotter, Rattus pungotus, lever i et skogholt. Felt-
studier har vist at antallet individer har stabilisert seg på 500 individer. De
første tellingene ble gjort i 1920. Da ble det registrert 50 individer. I 1975
ble det registrert 500 individer. Etter det året har antallet holdt seg stabilt
på 500 individer.
Finn en verdi for r som modellerer veksten.
Hvor mange individer var det i 1942 etter modellen?

En annen utgave av samme differenslikning
Vi har sett at logistisk vekst kan modelleres med differenslikninga

Nt+1 = Nt + r(L ´ Nt)Nt

Med litt manipulasjon kan vi komme fram til denne versjonen

Nt+1 = r(K ´ Nt)Nt

Overgangen mellom de to typene finner vi ved denne omregninga
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Nt+1 = Nt + r(L ´ Nt)Nt

= Nt + r ¨ L ¨ Nt ´ r ¨ N2
t

= (1 + r ¨ L)Nt ´ r ¨ N2
t

= (1 + r ¨ L ´ r ¨ Nt)Nt

= r

(
1

r
+ L ´ Nt

)
Nt

Nå kan vi innføre noen andre konstanter. Husk at konstantene symboliserer
tall og da ender vi bare opp med noen andre tall.

K =
1

r
+ L

Da ender vi opp med

Nt+1 = r(K ´ Nt)Nt

N0 er initialpopulasjonen og populasjonsstørrelsen kan aldri overstige den
teoretiske verdien K. Det betyr at 0 ă N0 ă K. Igjen er r en konstant
bestemt av antall fødsler og døde.

Oppgave 26

Lag et regneark som viser veksten av en populasjon hvor K = 5000, N0 = 500
og r = 0.00025 Tegn verdiene som punktplott og studer egenskapene

Regnearket og plottet bør bli noe i likhet med tabellen og plottet i figur 6.3.
Der ser det ut til at tallfølga konvergerer mot 1000. Det stemmer med den
forrige differenslikninga for logistisk vekst hvor likevektsverdien var L. Vi har
at K = 1

r
+ L ùñ L = K ´ 1

r
= 5000 ´ 1

0.00025
= 1000

Ved gitte betingelser vil populasjonen nå en likevekt hvor L = K ´ 1
r
. Da vil

antall individer i populasjonen være Nt+1 = Nt = L. I tilfelle en likevektsverdi
eksisterer kan vi sette opp denne likninga og løse den
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t Nt

0 500.00
1 562.50
2 624.02
3 682.68
4 736.84
5 785.31
6 827.46
7 863.15
8 892.68
9 916.63
10 935.74
20 996.07
30 999.78
40 999.99
50 1000.00
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Figur 6.3: Logistisk vekst

L = r(K ´ L)L

= rKL ´ L2r

0 = L+ L2r ´ rKL

0 = L(1 + Lr ´ rK)

L = 0 _ 1 + Lr ´ rK = 0

L = 0 _ L = K ´
1

r

Likevekt inntreffer når L = 0 og når L = K ´ 1
r
.

Vi utvider forrige oppgave og lager et regneark hvor det er mulig å eksperi-
menter med verdiene
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Oppgave 27

Lag et regneark hvor verdiene til K, N0 og r legges inn i egne celler og hvor
verdiene til løsninga av differenslikninga

Nt+1 = r(K ´ Nt)Nt

beregnes.
Tegn verdiene som punktplott. Eksperimenter med forskjellige verdier av K,
N0 og r. Kan du trekke en konklusjon?

Litt eksperimentering viser at mye kan skje når vi forandrer på verdiene i
modellen. Det kan vises at

Teorem 8

Anta at en logistisk vekst har differenslikninga

Nt+1 = r(K ´ Nt)Nt

og at 0 ă N0 ă K. Hvis 1 ă rK ă 3 vil populasjonen nå en likevektsverdi
L = K ´ 1

r

Oppgave 28

Stemmer dette med det du fant ved eksperimentering? Sjekk en gang til.

Her er noen observasjoner som vi kan samle opp

Viktige verdier

Anta at en logistisk vekstmodell har differenslikninga

Nt+1 = r(K ´ Nt)Nt

og at 0 ă N0 ă K. Da vil verdiene til r og K bestemme modellen slik

rK ă 4 vil 0 ă Nt ă K
rK ą 4 vil modellen ikke gi realistiske resultat

57



Oppgave 29

En logistisk vekst er gitt ved differenslikninga

an+1 = 0.00016(17500 ´ an)an

Vil veksten stabilisere seg?

Oppgave 30

Ved et studiested er det 1200 studenter. En av studentene har fått vite at en
meget berømt person kommer på besøk. Hun forteller det til én medstudent.
Du skal lage en logistisk modell for hvordan nyheten sprer seg blant studen-
tene. Det forutsettes at nyheten overbringes fra én person til en annen og at
hver student overbringer den til én annen student hver time (ja, jeg vet det
gammeldags, men kommer ikke å noe annet).
La pn være antall studenter som har hørt nyheten etter n timer. I begynnelsen
vil da pn dobles hver time, men etter hvert som flere studenter har hørt
nyheten vil situasjonen forandres siden de kanskje har hørt om det allerede.
Formuler ei differenslikning.

6.3 Oppgave: SIR-modell
SIR-modellen er en modell for hvordan epidemier sprer seg i befolkninga som
stammer fra 1927. Den ble opprinnelig foreslått av W. O. Kermack og A. G.
McKendrick. Se mer ved å søke på nettet. Den deler populasjonen inn i tre
kategorier: Susceptible, Infected og Removed.

Kaller vi perioden for n har vi

Uttrykk Forklaring Engelsk
Sn antall som er mottakelige for sykdommen susceptible
In antall infiserte infected
Rn antall som er blitt immune eller er døde removed

Vi ser på en lukka populasjon hvor det ikke er kontakt med noen andre. Ved
starten er hver person enten S eller I.

Vi setter delen av de infiserte som enten dør eller blir immune per uke r,
removal rate.

Det betyr at
Rn+1 = Rn + r ¨ In
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Spredningsraten kaller vi s. Den angir en sannsynlighet for hvor stor del av
befolkningen som smittes i perioden.

Antall kontakter mellom personer som er mottakelige for sykdommen og de
som er infiserte kan vi finne ved Sn ¨ In. Da har vi

Sn+1 = Sn ´ a ¨ Sn ¨ In

Antall personer som er infisert etter n uker blir

In+1 = In ´ r ¨ In + a ¨ Sn ¨ In

Oppgave 31

Bruk et regneark og sett opp en modell for R, S og I. Lag celler hvor du kan
skrive inn s og a.
Initalverdiene skal det også være mulig å skrive inn i egne celler.
Tegn plotdiagram og eksperimenter.
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A Aritmetiske rekker

A.1 Aritmetisk tallfølge
I ei aritmetisk tallfølge er det en fast differanse d mellom hvert ledd slik at
den er løsninga av differenslikninga

an = an´1 + d

Det betyr at hvis d = 3 og a0 = 7 vil vi resultatet være

t7, 10, 13, 16, 19, ¨ ¨ ¨ u

A.2 Aritmetisk rekke
Ei rekke er en sum og ei aritmetisk rekke er en sum hvor hvert ledd er ei
aritmetisk tallfølge. Med utgangspunkt i forrige tallfølge vil dette være ei
aritmetisk rekke

7 + 10 + 13 + 16 + 19 + ¨ ¨ ¨

Vi kaller denne rekka for uendelig siden det ikke er et endelig antall ledd.

Ser vi på det generelle leddet ai i ei slik aritmetisk rekke er det gitt rekursivt
av differenslikninga

ai = ai´1 + d

En eksplisitt formel for det generelle leddet er da gitt ved

ai = a1 + (i ´ 1) ¨ d

A.3 Summen av ei aritmetisk rekke
Vi skal nå finne summen av de n første leddene i ei aritmetisk rekke. Da kan
det være greit å huske på hva den unge Gauss1 gjorde. Historien forteller at
en læreren var lei av ham og satte ham til å legge sammen de hundre første
naturlige tallene. Tanken var at han skulle bruke en del tid på det, men

1Carl Friedrich Gauss (1777 - 1855): En tysk matematiker, astronom og fysiker
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svaret kom ganske umiddelbart: 5050 Framgangsmåten danner grunnlag for
hvordan vi kan finne summen av aritmetiske rekker. Her er oppgaven

1 + 2 + 3 + 4 ¨ ¨ ¨ 97 + 98 + 99 + 100

Det Gauss gjorde var at han oppdaget en lur framgangsmåte

1+ 2+ 3+ ¨ ¨ ¨ 98+ 99+ 100

101

101

101

Han benyttet en parvis addisjon, i en alder av åtte år, og fikk femti summer
som hver var 101. Svaret ble da 50 ¨ 101 = 5050.

Generelt kan dette gi oss summen av ei aritmetisk rekke med n ledd

Teorem 9

Anta at Sn = a1 + a2 + a3 + ¨ ¨ ¨ an er ei aritmetisk rekke. Da er

Sn =
n

2
(a1 + an)

Bevis. Vi tar utgangspunkt i den generelle endelig aritmetiske rekka og har
at

Sn = a1 + a2 + a3 + a4 + ¨ ¨ ¨ + an´1 + an

Arrangerer ledden og får

Sn = a1 + an + a2 + an´1 + a3 + an´2 + a4 + an´3 + ¨ ¨ ¨

Vi har at alle parvise summer er like store

a1 + an = a2 + an´1 = a3 + an´2 = ¨ ¨ ¨ = an + a1

Antar vi at n er et partall har vi n
2

slike summer og får Sn = n
2
(a1 + an).

Hvis n er et oddetall vil vi få n´ 1 summer og ett ledd som er a1+an
2

. Det gir

Sn =
n ´ 1

2
(a1 + an) +

a1 + an
2

=
n

2
(a1 + an)
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Et alternativt bevis kan vi også koste på oss

Bevis. Vi starter med samme utgangspunkt

Sn = a1 + a2 + a3 + a4 + ¨ ¨ ¨ + an´1 + an

Denne summen kan vi skrive om

Sn = a1+(a1+ d)+ (a1+2d)+ ¨ ¨ ¨+(a1+(n´ 2)d)+ (a1+(n´ 1)d) (1)

Det samme kan vi også skrive ved å starte i andre enden

Sn = an + an´1 + ¨ ¨ ¨ + a4 + a3 + a2 + a1

Da får vi

Sn = an + (an ´ d) + ¨ ¨ ¨ + (an ´ (n ´ 2)d) + (an ´ (n ´ 1)d) (2)

Legger sammen (1) og (2) og får

2 ¨ Sn = a1 + an + (a1 + d) + (an ´ d) + ¨ ¨ ¨ + (a1 + (n ´ 1)d) + (an ´ (n ´ 1)d)

= a1 + an + a1 + an + ¨ ¨ ¨ + a1 + an

= n ¨ (a1 + an)

Sn =
n

2
(a1 + an)

62



B Geometriske rekker

B.1 Geometriske tallfølger
Definisjon 11

En følge tanu er geometrisk hvis forholdet mellom hvert ledd er konstant for
alle n P N

a2
a1

=
a3
a2

= ¨ ¨ ¨
an
an´1

= k

k kalles kvotienten til følgen

Vi kan illustrere det på denne måten

a1 a2 a3 a4 ¨ ¨ ¨ an´1 an

¨k ¨k ¨k ¨k

B.2 Geometriske rekker
Ei geometrisk rekke er summer av geometriske tallfølger. Hvis tanu er en
geometrisk tallfølge kan vi skrive en geometrisk rekke slik

a1 + a2 + a3 ¨ ¨ ¨ + an´1 + an

Vi skal nå finne et uttrykk for det generelle leddet ai i ei geometrisk rekke og
tar utgangspunkt i den geometriske tallfølgen. Da kan vi observere at hvert
ledd kan uttrykkes med det første leddet

a1 a2 a3 a4 ¨ ¨ ¨ an´1 an

¨k

k¨(n´1)

k¨3

¨k ¨k ¨k

Rekursivt har vi da at ai = k ¨ ai´1 og vi kan uttrykke det generelle leddet
som

ai = ki´1 ¨ a1
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B.3 Summen av de n første leddene
Teorem 10

Summen av de n første leddene i ei geometrisk rekke med kvotient k ‰ 1 kan
vi skrive som

Sn = a1 ¨
1 ´ kn

1 ´ k

Bevis.

Sn = a1 + a2 + a3 + ¨ ¨ ¨ + an´1 + an

Sn = a1 + (k ¨ a1) + (k2 ¨ a1) + ¨ ¨ ¨ + (kn´2 ¨ a1) + (kn´1 ¨ a1)

k ¨ Sn = k ¨ (a1 + k ¨ a1 + k2 ¨ a1 + ¨ ¨ ¨ + kn´2 ¨ a1 + kn´1 ¨ a1)

k ¨ Sn = k ¨ a1 + k2 ¨ a1 + k3 ¨ a1 + ¨ ¨ ¨ + kn´1 ¨ a1 + kn ¨ a1

Subtraherer k ¨ sn fra sn

Sn ´ k ¨ Sn = a1 + k ¨ a1 + k2 ¨ a1 + ¨ ¨ ¨ + kn´1 ¨ a1 ´ k ¨ a1 ´ k2 ¨ a1 ´ ¨ ¨ ¨ ´ kn´1 ¨ a1 ´ kn ¨ a1

Sn ´ k ¨ Sn = a1 ´ kn ¨ a1

Sn(1 ´ k) = a1(1 ´ kn)

Sn = a1 ¨
1 ´ kn

1 ´ k
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