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1 Introduksjon

1.1 Hva er differenslikninger?

Fra tidligere er vi vant med eksplisitte uttrykk som modeller. I skolemate-
matikken starter ofte oppgaven med: En funksjon er gitt ved f(z) = 22 + 2.
Alternativet er at vi ved regresjon finner et funksjonsuttrykk. Det samme
gjelder ofte for tallfglger. Kanskje tar vi utgangspunkt i et figurmgnster for
sa a finne den eksplisitte formelen? Da ender vi opp med et eksplisitt uttrykk
for ledd n. Har vi en eksplisitt formel er det greit a finne alle elementene i
tallfglgen, men ved modellering kommer vi ofte opp i en situasjon hvor vi
ikke har en eksplisitt formel og hvor det ofte ikke er sa enkelt a finne den.
Et rekursivt uttrykk kan ofte veere enklere & finne i mange tilfeller. Da kan
vi uttrykk et ledd i tallfslgen fra et annet. Det er det vi kaller for en diffe-
renslikning. Det skal vi se neermere pa, men la oss starte tallfglger og hva det
er.

1.2 Et eksempel

Vi skal se pa forbruk av kleer og sko i Norge. Tabellen under viser utviklinga
i millioner 2005-kroner. Data er henta fra Statistisk sentralbyra

Ar 2009 2010 2011 2012 2013 2014 2015
Konsum 62054 67066 69356 71493 74222 76578 79824

Sa langt kunne denne oppgaven veert fra ei leerebok i grunnskolen. Fort-
settelsen ville veert at elevene skulle brukt dataene til en regresjonsanalyse
og kommet fram til et eller annet funksjonsuttrykk. Det som da skjer er at
elevene forflytter seg fra diskrete verdier gitt i en tabell til en kontinuerlig
definert funksjon som en matematisk modell. Na kan definisjonsmengden til
funksjonen avgrenses til en diskret mengde, men ofte blir ikke det gjort. Nar
vi na skal se pa differenslikninger skal vi holde oss til de oppgitte verdiene
og prove a komme fram til en diskret modell som passer til verdiene.

Vi velger bokstaven K for konsumet. For & slippe a ha med s& mange siffer
setter vi aret 2009 til ar null. Da kan vi skrive forbruket av kleer i 2009, 2010
og 2011 som


http://www.ssb.no

Ky = 62054
K, = 67066
Ky = 69356

Nar vi skal lage en modell for konsumet av kleer og sko kan én tilnserming
vaere a se pa forbruket i 2009 og se hvor mye det gkte i det neste aret.

ko = 62054
k1 = 67066
k1 — ko = 67066 — 62054 = 5012

La oss si at vi antar at forbruket vil gke med samme verdi i arene som
kommer. Da har vi en modell som sier at vi kan legge til 5012 til konsumet
ett ar for a fa konsumet aret etter. Modellen blir da slik

kn+1 = kn —+ 5012

Her har vi valgt a kalle modellen var og verdiene som den beskriver for k,,. De
virkelige verdiene far da betegnelsen K,. Na kan vi sammenlikne modellen
og verdiene vi har fatt oppgitt

n 0 1 2 3 4 ) 6

K, 62054 67066 69356 71493 74222 76578 79824
k, 62054 67066 72078 77090 82102 87114 92126

Ut fra tabellen kan vi se at modellen stemmer for de fgrste verdiene, men sa
blir forskjellen ganske stor. Det samme kan vi se ved a tegne et punktplott,
slik figur 1.1 viser.

Modellen var er ikke sa bra tilpassa virkeligheten. Den stemmer for de to
fgrste verdiene siden det var de vi tok utgangspunkt i, men den skiller seg fra
virkeligheten for de andre. N& ser vi at gkningen i konsumet var stgrst det
forste aret. @Wkningen de andre arene er langt lavere enn 5012. La oss prgve
a omformulere modellen. Etter & tatt utgangspunkt i gjennomsnittet av alle
gkningene har jeg valgt & omformulere modellen til

keni1 = ky + 2961

b}
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Figur 1.1: En sammenlikning av data og modell

Lager vi samme tabell, ser vi at verdiene passer noe bedre.

n 0 1 2 3 4 5 6

K, 62054 67066 69356 71493 74222 76578 79824
k, 62054 65015 67976 70937 73898 76859 79820

Figur 1.2 viser verdiene fra den nye modellen og de opprinnelige dataene.

Modellen var k, 1 = k, + 2961 kan vi ogsa skrive som
kni1 — kn, = 2961

Her ser vi at forskjellen mellom ett ledd og det neste alltid er 2961. Veksten
er konstant. Legg ogsa merke til differansen har gitt opphavet til navnet
differenslikning. Vi kan skrive modellen var litt tydeligere pa denne maten

Differenslikning som modell

K, representerer konsumet av kleer og sko i millioner 2005-kroner n ar
etter 2009. En modell for konsumet er gitt ved

kn = kn—1 + 2961

hvor ko = Ky ogn >0
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Figur 1.2: Ny sammenlikning av data og modell

1.3 Differenslikninger og verktgy

Nar vi arbeider med differenslikninger vil et regneark veere til hjelp. Diffe-
renslikningene er rekursive og det er noe som passer regneark. Ved a skrive
inn korrekt formel med referanse til forrige resultat i ei celle vil kopiering
resultere i rekursivitet.

Flere kalkulatorer og programvare for matematikk tilbyr ogsa a skrive inn re-
kursive formler direkte. Figur 1.3 viser rekursive definisjoner i WolframAlpha
og TI-Nspire.

1.4 En del ord og uttrykk

Na har vi sett pa et praktisk eksempel og hvordan vi fant ei differenslikning
som modellerte situasjonen. La oss se pa noen definisjoner og forklaringer pa
matematiske uttrykk for vi gar videre.

Tallfglger

Eksemplet vi startet inneholdt ei tallfglge for konsumet fra 2009 og framover.
Tidligere framstilte vi det i en tabell, men vi kan ogsa skrive verdiene slik

{62054, 67066, 69356, 71493, 74222, 76578, 79824}



f(n)=f(n-1)+2961, f(1)=62054|
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Figur 1.3: Differenslikninger

Ei slik oppramsing kaller vi ei tallfglge.

Definisjon 1

Ei tallfglge er tall som star etter hverandre i en bestemt rekkefglge.

Ei enkel tallfglge er partallene fra og med to og opp til og med ti kan vi skrive
som

P ={2,4,6,8,10}

Det er ei endelig tallfglge med fem ledd

Onsker vi en kortere skrivemate er det vanlig a skrive denne som

{2k

Setter vi ikke den gvre grensa kan vi skriv alle partallene fra og med to som

P=1{2,4,68,10, -}



Det er ei uendelig tallfglge som kan skrives som

{2-n}¢

Definisjon 2

Ei tallfglge kan skrives som

{a0aa17a27"' aa'na"'}

Vi kaller tallene ag, aq, as, - - - for leddene i tallfglga.
a, er det generelle, eller det n-te, leddet.

Hele tallfglga kan skrives som {a,}

Her er det fgrste leddet skrevet som aq. Indeksen viser at det er ledd nummer
null. Det er ogsa vanlig a beskrive det forste leddet i tallfglgen som ledd
nummer én, f.eks, a; eller f; eller u;. Vi skal se at det ikke spiller sa stor
rolle bare vi vet hva vi gjor. Nar vi starter med null indikeres det at det er
en initialbetingelese. aq.

Rekursiv formel

En rekursiv formel for et ledd i ei tallfglge tar utgangspunkt i ett, eller flere,
foregaende ledd for & beskrive det neste. I tilfellet vart med den uendelige
tallfglga av partall blir en rekursiv formel.

p = Ap—q + 2

Da ser vi at det kan ogsa gi oddetall eller andre folger med partall. Det forste
leddet ma derfor oppgis, slik at den rekursive formelen blir

CLOIQ

(p = Gp_1 + 2

I det innledende eksemplet var det en rekursiv formel vi fant

kns1 = ky + 2961



Eksplisitt formel

Den eksplisitte formelen gir oss leddet direkte ut fra hvilket nummer det er
i rekka.

a, =2-n, neN

Eksplisitte formler er vi vant med fra funksjonsuttrykk. Tar vi utgangspunkt
i det innledende eksemplet kan vi finne en eksplisitt formel. Vi starter med
62054 og legger til 2961 for hvert ledd og kan skrive om den rekursive formelen
til

k, = 62054 + 2961 - n, n € Ny

Her star Ny for alle de ikke-negative tallene: Ny = {0,1,2,-- -}

Differenslikninger

Da er vi klare for a definere hva differenslikninger er

Definisjon 3

Ei differenslikning har ei tallfglge som lgsning.
Leddene beregnes ut fra foregaende ledd og et startledd.

Definisjon 4

Kaller vi antall foregaende ledd som kreves i beregningen for k, der £ € N
kalles differenslikninga for ei differenslikninga av orden k.

Definisjon 5

La k € N. Ei differenslikning av orden k er ei likning pa formen
Lotk = 01Tnik—1 + 02Tnik—2 + GZn + f(n), n=0
der ay,--- ,ay er reelle tall, f(n) er et gitt uttrykk i n og ay # 0

I dette kurset skal vi bare se pa linezere differenslikninger.

Fra for av kjenner vi lineaere likninger som likninger pa formen
]ﬁl‘l + k?gl’g -+ - k?nl’n =C

Herer ky, ko, k3, - - - , k,, konstanter. De kalles ogsa koeffisienter til likninga. De
ukjente er x1,x9, 3, -, x,. I skolematematikken er det vanligste og benytte
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forskjellige bokstaver for den ukjente slik at indekser unngas. Da kan linezere
likninger se slik ut

2z =10
3 +4y =24

For at ei likning skal kalles lineser kan vi altsa bare ha ledd hvor de ukjente
er multiplisert med konstanter. Et eksempel pa ei ikke-lineser likning er ei
andregradslikning k2% + koxy = c. Her ser vi at den ene ukjente ikke bare er
multiplisert med en konstant, men ogsa med seg sjol.

Vi skal holde oss til linezere differenslikninger og det betyr at de ukjente ikke
vil veere multiplisert med annet enn koeffisienter.

Definisjon 6

Ei lineger differenslikning kalles homogen hvis f(n) = 0. Hvis f(n) # 0 kalles
den inhomogen

La oss se pa noen eksempler som kan veere oppklarende.

Eksempler pa differenslikninger

Differenslikning Type

(pi1 =H-a, +2n fgrsteordens inhomogen
Gpi3 = Qpio + Gni1 +5-a, +2 tredjeordens inhomogen
Gpt3 = Qpi2 + Gpy1 +5-ay tredjeordens homogen

Lgsningen av differenslikninger er tallfglger. Vi kommer til a se pa forskjellige
mater disse vokser. Da er vi interessert i forskjellen mellom leddene. Det kaller
vi forste-differenser.

Definisjon 7

For ei tallfolge A = {ag, a1, as,as, -} er dette forste-differensene

ACLO = a1 — Qg
Aa1 = a2 — a1

Aa2 = a3 — Q9

Lar vi n € Ny kan den n-te fgrstedifferensen skrives som Aa, = a,+1 — a,

11



Figur 1.4 viser hvordan forandringen fra ledd til ledd framstilles grafisk.

An+1

Aay = pg1 — ay

-

n n+1

Figur 1.4: Forste-differense framstilt grafisk.

Definisjon 8
Et dynamisk system er relasjonen mellom elementene i en tallfglge.

1.5 Oppgaver

Finn differenslikninger for

a.

o 0 T

de positive partallene

de positive oddetallene

tallfglga {1,4,5,9,14,23---}

tallfglga {1,2,6,24,120,720---}
1

tallfplga {%, i, %7 1_16, ..

1.6 Modellering med differenslikninger

Tidligere har vi sett hvordan vi kan modellere virkeligheten. Vi ender opp
med en matematisk modell som vi kan benytte til beregninger. Det kan gjgre
oss i stand til & lage prognoser for hva som skal skje en gang i framtida, gjgre
oss i stand til & vurdere lgnnsomhet eller finne antall individer i en levedyktig
populasjon. Den matematiske modellen gjor oss i stand til det, men det er
viktig & huske at den er en forenkling av det vi gnsker a finne ut mer om. Vi

ma alltid vurdere konklusjonene opp mot det virkelige vi modellerer.
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Data fra forenkling En matema-
observasjoner tisk modell

En matematisk
konklusjon

Differenslikninger kan benyttes til & lage modeller. Den differenslikninga vi
kommer fram til skal sgke a gi ei tallfglge som best mulig passer som en
modell for situasjonen. Hva som er «best» kan veere vanskelig & avgjore i
mange tilfeller. Ofte kan vi finne en modell som stemmer svaert godt overens
med dataene vi har malt, men den kan veere usikker nar det gjelder & si
noe om framtidige verdier. Nar vi arbeider med differenslikninger prgver vi
a finne likninger som ser ut til a stemme overens med dataene vi har. Ofte
gnsker vi & modellering forandring og ta utgangspunkt i

framtidig verdi = naverdi + forandring
Det uttrykket kan vi ogsa skrive om til
forandring = framtidig verdi - naverdi

Ved & samle data over en periode og plotte disse kan vi se hva som skjer
med forandringen over tid. Siden vi da har samla enkeltverdier vil de utgjore
diskrete verdier. Vi har da differenslikninger. Seinere skal vi se pa kontinuitet
og da blir det differensiallikninger.

Vi skal na forsgke & beskrive forandringen som en matematisk modell. Nar
vi observerer forandring er vi opptatt av hvordan forandringen skjer og ana-
lysere egenskapene til forandringen. Det hjelper en matematisk modell oss
med.

For vi gir oss ut pa ukjent farvann kan det veere greit a vite at differenslik-
ninger egentlig er gammelt nytt. Se bare pa denne oppgaven.

Oppgave 2

Du setter 1000 kr i banken til 1 % rente. Renta beregnes, og legges til, hver
maned. Finn ei differenslikning som modellerer forandringen.

Her vil tallfglga bli

A = (1000, 1010, 1020.10, 1030.30, 1040.60, 1051.01, - - - )

13



Hvert ledd i tallfglga er gitt ved

a .
Ung1 = Qp + —— = 1.01 - a,

Vi mé ta med initialbetingelsen som sier at belgpet vi satte inn var 1000 kr
for a skrive det som et dynamisk system

ani1 = 1.01 - a,, n=20,1,2,3---
ap = 1000

14



2 Aritmetisk vekst

2.1 Figurtall som viser aritmetisk vekst

Et eksempel pa aritmetisk vekst finner vi hvis vi ser pa vekst hvor gkningen
er konstant. Vi kan se pa et enkelt eksempel gjennom denne oppgaven

Finn en rekursiv og en eksplisitt formel for antall prikker i figurtallene gitt

ved disse figurene
b 9 b 0 9 b 0o

Fy Fy Fy

Tar vi utgangspunkt i figurene kan vi se at den rekursive formelen er gitt ved

Fn+1 - Fn+1

Startverdien, eller initialverdien, er F} = 2. Fra den ene figuren til den andre
oker antallet prikker med det samme, én prikk.

Vi tar med en oppgaven til for & illustrer det samme.

Finn en rekursiv formel for antall prikker i figurtallene gitt ved disse figurene

b 9

b 9 b 9

b 9 b 9 b 9
b b b 9

/2] Fy F

Her starter vi med F; = 4 og hver figur vokser med to prikker. Det gir den
rekursive formelen

Fn+1 = Fn + 2
Det gir tallfplga {4,6,8,10,12, - - - } med en fast differanse mellom elementene.
Det er et eksempel pa aritmetisk vekst.

2 2 2 —2,
e 10 E, . F,

15



2.2 Aritmetisk vekst beskrevet av differens-
likninger
Rekursivt kan aritmetisk vekst alltid beskrives ved denne generelle diffe-
renslikninga
Gpi1 = Qp +d
hvor d er den konstante veksten.

Ut fra definisjonene er det ei forsteordens (definisjon 5) inhomogen (defini-
sjon 6) differenslikning.

2.3 En eksplisitt formel for aritmetisk vekst

Gjgr forst denne oppgaven

Finn en eksplisitt formel for samme figurmgnster

Som ellers vil det vaere flere muligheter vi kan observere ut fra figurmgnstret.
Her er noen muligheter ut fra betraktninger av figurene.

F,=2-(n+1)
=4+2-(n—1)
=2-n+2

Dette var en eksplisitt formel for antall prikker i hver i akkurat dette tilfellet.
Slike uttrykk kan vi ogsa finne generelt.

Eksplisitte uttrykk for aritmetisk vekst kan vi komme fram til ved a se
pa hvordan leddene er bygd opp. For hvert ledd far vi et tillegg d. Da kan vi
finne ledd n pa denne maten.

d d d d
Qo a1 a2 as s Qp—1 (02%

n-d
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Hvis ei aritmetisk tallfglge er gitt ved
Qpi1 = ap +d

og ag som forste ledd, er den eksplisitte formelen for et ledd i tallfglga
ayp =ag+n-d

forn>1

Bevis. Vi skriver ned hvert ledd og viser utviklingen

a1:a0+d
as=a,+d=ag+d+d=ay+ 2d
a2+d:a0+2d+d:ao+3d

a3

ap=0Qp_1+d=ag+n-d
Ved den siste generaliseringen ser vi den eksplisitte formelen. O

La oss prgve om det stemmer for det eksplisitte uttrykket vi fant. Der var
d = 2. I oppgaven startet vi ikke med ag, men med F}. For & tilpasse til den
generelle eksplisitte formelen ma vi gjgre en liten justering

Fiy = ag
Fy=a
Fn = ap—1

Da far vi at
F,.=F+d-(n—-1)=4+2-(n—1)

Det stemmer bra og vi kan summere opp det vi har funnet.

17



Aritmetisk vekst

Differenslikninga
Qpi1 = ap +d

hvor d er en konstant beskriver en aritmetisk vekst.
Den eksplisitte formelen blir da

anp =ag+n-d

forn>1

18



3 Kvadratisk vekst

3.1 Hva er kvadratisk vekst?

For kvadratisk vekst vil ikke veksten ikke konstant, men veksten vil vokse
aritmetisk. La oss se pa et eksempel gitt av tallfelga {1,4,9,16,25,---}. Du
kjenner kanskje igjen den som noen av funksjonsverdiene til y = z?

Tidligere har vi sett pa forstedifferensen, men na kan vi ogsa innfgre andre-
differensen. Kaller vi forstedifferensen for Ay er det vanlig a kalle andrediff-
rensen for A?y. Her er det diagram som viser de to

2 2 2 A2y
3 5 7 9 Ay
1 4 9 16 25y

Legg merke til at forstedifferensen fglger et mgnster av aritmetisk vekst.
Andredifferensen er konstant.

3.2 Differenslikning som beskriver kvadratisk
vekst

Na skal vi se pa en generell kvadratisk vekst. Kaller vi det forste tillegget d
og andredifferense e kan vi sette det opp generelt slik

do do+1-e do+2-e d0+(n_l)‘e do+n-e
Qo ai 5] as T Ap—1 Qn Apt1

Hvis en kvadratisk vekst kan beskrives ved dy = a1 — a¢ og e er andrediffe-
rensen vil differenslikninga

Gpi1 = 0p+dog+n-e

med ag som fgrste ledd, gi ei tallfglge som beskriver veksten

Bevis. Et resonnement basert basert pa figuren over viser gyldigheten. [
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Rekursivt uttrykk for kvadratisk vekst er da gitt ved denne differenslik-
ninga. Husk at dj og e er parametre. Her er dj gitt ved a; —ag. Da er det viktig
a holde pa at ag er det forste leddet og e er den konstante andredifferensen

Finn ei differenslikning som har
{1,4,9,16,25, - -}
som lgsning
Starter med & finne d,
do=a1—ap=4—1=3
Andredifferensen har vi allerede funnet

e=2
Da har vi

Gpi1 =0Cp+do+n-e=a,+3+2-n

3.3 Eksplisitt formel

En eksplisitt formel kan vi finne nar vi har den rekursive, altsa diffe-
renslikninga. Nar elever arbeider med figurtall ma denne overgangen skje
ved prgving og feiling, men na skal vi se at det er mulig & finne et generelt
uttrykk

Hvis en kvadratisk vekst er gitt ved
Gpy1 =ap+do+n-e

med ag som fgrste ledd, dy = a; — ag og e som andredifferensen, er den
eksplisitte formelen for et ledd i tallfglga

—1)-
an:ag—l—n-dg—l—%-e

forn>1

20



Bevis. Vi folger samme resonnement som tidligere og ser pa utviklinga. For
a vise mgnstret er leddene med e skrevet til venstre.

a1:a0+do

a2:a0+do+d0 +1€
a3:a0+d0+do+do +1-e+2-¢
ay = ag + do + do + do + dy +l-e4+2-e+3-¢

Det kan vi skrive om som

ay = ag + dy

as=ag+2-dg+1-e
az=ap+3-do+(1+2)-¢
ag=ap+4-dg+(1+2+3) e
as=ap+5-dog+(1+2+3+4)-¢
ag=a9p+6-dg+(1+2+3+4+5)-¢

Her kan vi observere at faktoren som e skal multipliseres med er summen av
ei aritmetisk rekke som bestar av de n — 1 fgrste naturlige tallene. Summen
av ei aritmetisk rekke med k ledd er

Sk = (ll + lk)

N |

Her er [y det forste leddet og [ ledd nummer k. I vart tilfelle er [y = 1 og
lr, =n — 1 og summen blir da

Sn1=”;1<1+(n—1)):%_1)

Da har vi det som skal til for & finne en eksplisitt formel

—1)-
an:ag—l—n-do—l—%-e
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Da kan vi summere opp det vi har funnet for kvadratisk vekst.

Kvadratisk vekst

Differenslikninga
Gpi1 = Qp+do+n-e

hvor dy er a; — ag og e andredifferensen beskriver en kvadratisk vekst.
Den eksplisitte formelen blir da

—1)-
an:ao—l—n-dg—l—%-e

forn>1

Hva om vi endrer fgrste ledd?

I dette kompendiet har vi satt fgrste ledd til ag. Det er i trad med hvordan
andre behandler differenslikninger. Det er ikke noe i veien for a starte med
a1, men da vil noen av formlene forandre seg. Vi kan se pa hva som skjer om
vi forandrer pa det.

La oss si at vi gnsker a starte med a; som forste ledd. Hva skjer da? Jo, da
blir dy = ay — a1 og situasjonen kan illustreres slik

d1 di+1l-e di+2-e di+(n—2)-e di+(n—1)-e
a1 a2 as Q4 T Ap—1 Qp, Any1

Med med a; som fgrste ledd kan kvadratisk vekst vil differenslikninga
pi1=an+di+(n—1)-e

gi ei tallfglge som beskriver veksten

Valget av a; som forste ledd far ogsa konsekvenser for den eksplisitte forme-
len. La oss utlede den formelen ogsa. Med a; som fgrste ledd kan vi folge
samme resonnement som tidligere.
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a2:a1+d1

as = ay +dy + dy +1-e
ay=a1+dy+dy +dy +1l-e+2-¢
as =a; +dy +dy +dy +dy +1l-e4+2-e+3-¢

Det kan vi skrive om som

as = a1 +dy
az=a1+2-di+1-e
ag=a;1+3-di+(1+2)-e
as=a;+4-di+(1+2+3)-¢

a1 +5-di+(1+2+3+4) e
ar=a,+6-d+(1+2+3+4+5) e

Qg

Na er faktoren som e skal multipliseres med summen av ei aritmetisk rekke
som bestar av de n — 2 fgrste naturlige tallene. Da far vi

(n—1)-(n—2)

Sn—2 - 9

Da kan vi finne den eksplisitte formelen som

an:a1+(n—1)-d1+(n_l)é(n_z)~e

for n > 2.

3.4 Handtrykkproblemet

Oppgave 7
Hvor mange handtrykk blir det i et selskap med n personer?
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Her kommer handtrykkene igjen. Denne gangen som et eksempel pa kvadra-
tisk vekst. La oss sette opp tabellen for hvor mange handtrykk det blir nar
noen personer mgtes.

Antall personer 23 4 5 6 7 8 9 10
Antall handtrykk 1 3 6 10 15 21 28 36 45

Her kan vi observere at kommer det én person til vil antallet handtrykk gke
med det forrige antall personer.

Det kan vi argumentere for ved & tenke oss at det er tretti personer i et
selskap. Det kommer én person til og den personen ma da handhilse pa alle
de tretti personene. Benytter vi A for handtrykk kan vi skrive det som

hs1 = hso + 30

Den samme tankegangen gjelder for alle leddene og vi skrive det generelt
som differenslikninger. Under er det to varianter avhengig av hvilket ledd vi
starter med

B = oy + (0 — 1) (3.1)

Na vet vi at en generell kvadratisk vekst kan skrives eksplisitt som

hn+1:hn+d0+n'€

La oss se mer pa hva som skjuler seg i dette eksemplet og hvordan vi kan finne
uttrykket vi fant over ved a se pa differensene. Ser vi pa forstedifferensen Ah
kan vi observere at den vokser aritmetisk

2 3 4 5 6 7

17 *37 *6¢7 10”7 Y157 Yo7 Tos

Det er typisk for kvadratisk vekst. Andredifferensen A2h er konstant
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1 1 1 1 1

97 37 Ty s T e oy

Det er igjen et kjennetegn pa at dette er kvadratisk vekst og at det eksplisitte
uttrykket kan skrives som

hn+1:hn+d0+n'€

Vi har allerede resonnert oss fram til det, men her er det vist at

A’h=e=1

Na vet vi fra tidligere at dy = hy — hg, sa da gjelder det & finne ut hva hg
og hy er. Ingen, eller én, person betyr at det ikke blir noen handtrykk. Det
er ingen andre a hilse pa. Vi kan ikke alltid betrakte situasjonen i jakten
pa dy. I dette tilfellet har vi starta med at to personer handhilser og antall
handtrykk er hy. Vi kan allikevel finne dy ved a se pa det teoretisk. Fortsetter
vi bakover i tallfglgen far vi denne situasjonen:

0 1 2 3
homhlmhzmhsmhzx

0 0 1 3 6

Da kan vi bestemme dy = hy — hg = 0 og vi vet at e = 1. Vi har da formelen

hpi1i =h,+do+n-e
=h,+n

Nar vi vet at dy = 0 og e = 1 kan vi ogsa finne den eksplisitte formelen

—1)-
hn:ho_kn.do_'_%.e
—1)-
=O+n~0+%-1
_n(n-1)
B 2
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Skrevet som et funksjonsuttrykk er det gjenkjennelig fra tidligere arbeid med
hanstrykksproblemet

Tar vi utgangspunkt i ~; har vi at

d1:h2—h1:1

Andredifferensen er den samme: e = 1

Da blir differenslikninga

hpyi=h,+1+(n—1)=h,+n

Vi kan ogsa finne den eksplisitte formelen pa denne méaten.

hn:h1+(n—1)-d1+(n_”é(n_m-e
:(n—1)'1+(n_1)é(n_2)'1
:2(n—1)—|—(n—1)-(n—2)
2

_2n—2—|—n2—n—2n—|—2
B 2
T2
:n-(n—l)

2

Legg merke til at handtrykkproblemet er analogt med flere problemer med
nettverk. Generelt gjelder det hvor mange forbindelseslinjer ma vi ha mellom
punkter. Da kan punktene vaere personer, datamaskiner eller byer.

3.5 Antall diagonaler i en mangekant

Et eksempel som likner er denne oppgaven.
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Finn en eksplisitt formel for sammenhengen mellom antall hjgrner i en
mangekant og antall diagonaler i samme mangekant

Det er naturlig a starte med a tegne noen figurer.

£
A

Resultatet kan settes opp i en tabell
Antall hjgrner Antall diagonaler

3 0
4 2
5) )
6 9
9 27
10 35
11 44
12 o4
13 65

Opplysningene i tabellen forteller oss at forstedifferensen gker linesert pa
denne méaten
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Her ser vi at

Dy=Ds+2
D5:D4+3
Dg=Ds+4

Dn:Dn,1+n—2

Det gir oss en versjon av en rekursiv formel

Dn:Dn,1+n—2

La oss finne en eksplisitt formel. Vi vet at dette er et eksempel pa kvadratisk
vekst. Da kan den eksplisitte formelen finnes ved

D, =D, 1+dy+(n—1)-e
Na ma vi bare finne dy og e. Andredifferensen er grei a finne ut fra det vi har
satt opp tidligere: e = 1.

Na gjenstar det a finne dy. For & gjore det ma vi ga bakover i tallfglge og
fjerne oss fra det praktiske tilfellet med diagonaler.

—1 0 1 2
/i — /! —

Dy D, D, Ds D,
0 -1 —1 0 2
Na kan vi se at dy = —1

Den eksplisitte formelen er gitt ved

-1)-
Dn:Do—l—n-dO—i—%-e

Da kan vi sette inn og vi far
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D,=0+n-(-1)+ 5 1
B —2n+n2—n B n?—n—2n
2 2 2
~n*=3n _ n(n-—3)
22
Da har vi funnet en eksplisitt formel
n(n — 3)

Rekursiv formel
Dn = Dn—l +n—2

For begge gjelder at n > 3 og at D3 =0
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4 Geometrisk vekst

4.1 Geometrisk vekst

Geometrisk vekst er en type vekst du nok er kjent med fra for. Den er alltid
gitt ved differenslikninger pa formen s,,; = r - s,. Vi kan definere slike
differenslikninger mer presist slik

Definisjon 9

Ei differenslikning som modellerer geometrisk vekst er ei fgrste ordens lineger
homogen differenslikning som kan skrives pa formen

Up41 =T - Qp, n=0
der r € R\{0}

Lgser vi ei slik differenslikning vil vi fa ei geometrisk tallfglge.

Et eksempel er denne differenslikninga

Api1 = 2+ Qy, n=0

Avhengig av initialverdier har den flere lgsninger

A=1{1,2,4,8,16- -} hvis ag = 1
A={4,8,16,32,64 -} hvis ap = 4
A = {10, 20,40, 80, - - - } hvis ag = 10
al124
6 333
A=1{0,0,0,---} hvis ap =0

) 1
--}hv1sa0:6

Vi kan starte med et eksempel du kjenner igjen.

Renteberegning

Rentesrente er et eksempel pa geometrisk vekst. Gjor denne oppgaven.
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Oppgave 9

Du setter 1000 kr i banken til 2 % rente. Renta beregnes hver maned og
legges til kontoen. Finn ei differenslikning som viser hvor mange penger det
er i banken ved slutten av hver maned.

Ei tallfglgen som gir verdiene i banken etter hver maned er gitt ved

anp1 = 1.02 - a,, ap=1000, n =0

Skriver vi de forste leddene i en tabell og tegner en plotdiagram, vil de se
slik ut

n ap

0 1000 ‘

1 1020,00 .

2 1040,40 1,300 |- p ¢
3 1061,21 ‘

4 1082,43 %

5 1104,08 21,200 | o .
6 112616 < $°

7 1148,69 .

8 1171,66 1,100 &° :
9 1195,09 &

10 1218,99 1,000 e ¢ |
11 1243,37 ! ‘ . !
12 1268,24 0 ) 10 15
13 1293,61 Antall mnd

14 131948

15 1345,87

I grafen er det ogsa lagt inn ei rett linje for a vise at veksten ikke er artitme-
tisk. For geometrisk vekst er ikke veksten hver maned den samme. Veksten
er en faktor, en del, av forrige maneds belgp. I dette tilfellet er det slik at for
hver maned vokser belgpet med en viss prosent. Slik er det med all geometrisk
vekst. Den gker, eller minker, med samme faktor for hvert ledd.
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Oppgave 10

Er denne tallfglga et eksempel pa geometrisk vekst?

{1 111 1 1 |
274787167 32" 64’

Finn i sa fall ei differenslikning som har denne tallfglga som lgsning.

Oppgave 11

En ball slippes fra 10 meters hgyde. Den spretter alltid opp til 80% av forrige
hgyde. Vi lar den sprette til den ligger stille. Finn ei differenslikning som
modellerer hvor hggt den spretter.

Dette er et eksempel pa geometrisk vekst hvor ag = 10 og r = 0.8. Da blir
differenslikninga
ani1 = 0.8 a,

n p
0 10.00 ‘

1 8.00 10 e |
2 6.40

3 512 8 e |
4 4.10 .

5 3.28 <  6F 2
6 2.62 § .

7 210 41 ° . 8
8  1.68 o

9 134 20 el .
10 1.07 ens,
11 0.86 O ]
12 0.69 0 5 10 15
13 0.55 Antall sprett

14 0.44

15 0.35

4.2 Eksponentiell vekst

Vi har sett at ei differenslikning for geometrisk vekst kan skrives generelt
som
Qp41 =T - Ay

32



Na skal vi finne et eksplisitt uttrykk for denne veksten.

Den generelle lgsningen til ei differenslikning pa formen
i1 =T Qp, n=0

er alle tallfglgene

ay, = ag - 1", ap € R, r+#0

Bevis. Vi starter med & se pa de fgrste leddene for sa a trekke en konklusjon.
Ut fra definisjonen har vi

ay =aog T
(12:(11'7“:@0'7"7“:&0'7‘2

agzag'T:ao'T’S

Ap = Qo - T

I tilfellet hvor r er en konstant vil det eksplisitte uttrykket veere

an = Qg - "

O

Det betyr at vi kan finne lgsninga pa ei differenslikning for geometrisk vekst
med den eksplisitte formelen. Element n i tallfglgen er a,, = r" - ag Siden ag
kan veere et hvilket som helst tall er det uendelig mange lgsninger.

Legg ogsa merke til hvordan vi kan skrive om den eksplisitte formelen for
andre startverdier enn ag. Folger vi samme utledning som i beviset kan vi
observere at hvis k > 0 sa vil en omskriving gi

Funksjoner av typen f(n) = ag-r™ kaller vi eksponentialfunksjoner. De er ofte
kontinuerlige modeller og krever at eksponenten er definert for n € R. For a
ta steget fra differenslikninger til eksponentialfunksjoner kreves en definisjon
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av potenser hvor eksponenten er reelle tall. Det kan veere et stort steg a ta
for mange elever siden det bryter med tidligere definisjoner hvor potenser er
gjentatte multiplikasjoner med seg sjgl.

Eksponentiell vekst benyttes enten synonymt med geometrisk vekst eller for
kontinuerlig geometrisk vekst. En kan finne begge definisjoner ved et sgk pa
nettet.

La oss se pa en oppgaven hvor vi ma lgse ei slik likning.

Oppgave 12

Du setter 1000 kr i banken til 1 % rente. Renta beregnes hver maned og
settes inn pa kontoen. Hvor mange maneder ma pengene sta i banken fgr du
har 2000 kr i banken?

Tallfglga som gir verdiene vi har i banken etter hver maned er gitt ved diffe-
renslikninga
ant1 = 1.01 - ay,, n=0

Det er ei fgrste ordens linezer homogen differenslikning og na vet vi at den
har den generelle lgsningen a,, = C -r", (' € R. Ut fra oppgaven som
sier at belgpet vokser med 1 % hver maned er vekstfaktoren 1.01. Na er
ag = C = 1000

1000 - 1.01™ = 2000
1.01" =2
log 2

= = 69.661
" log 1.01 69.66

Nar n = 69 vil belgpet bli 1986.89, sa det ma fa sta én maned til slik at det
blir til 2006.76. Svaret blir at belgpet ma sta i 70 maneder.

Geometrisk vekst

Differenslikninga
Ap+1 =T - Qn

hvor 7 er en konstant beskriver en geometrisk vekst.
Den eksplisitte likninga blir da

an, = ap - "

forn>1
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Sierpinski-trekanter kan du lese mer om pa Wikipedia. Under ser du de fire

AL L5

Vi kaller antall svarte trekanter i hver av Sierpinski-trekantene for T, 15,75
og Ty.

a. Finn Tl, TQ,Tg og T4

b. Finn ei differenslikning for antall svarte trekanter i figur 7,

c. Finn en eksplisitt formel for T;,

Antall registrerte elbiler i Norge henta fra Statistikkbanken til Statistisk
sentralbyra (SSB). Se: http://www.ssb.no. Her er et utdrag som viser antall
registrerte biler.

2008 2009 2010 2011 2012 2013 2014 2015
1693 1776 2068 3909 8031 17770 38652 69134

For enkelhet skyld setter benytter vi variabelen t for ar etter 2008, slik at
t = 0 tilsvarer 2008. Dataene er plottet i figur 4.1.
Finn ei differenslikning som kan modellere antall elbiler.

Konvergens av Ilgsninger

Vi har tidligere sett at vi kan komme fram til en eksplisitt formel for en
geometrisk vekst
an = aogr”

I dette uttrykket var aq initialverdien. For a ikke ta utgangspunkt i at n =0

innfgrer vi heller en verdi C' som er uavhengig av den spesielle startverdien.
Da kan vi skrive den generelle lgsninga.
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-10*

Antall

ar etter 2008

Figur 4.1: Antall registrerte elbiler i Norge

Den generelle lgsningen til en linezer fgrsteordens homogen differenslikning
Apt1 = Ty

er tallfglgene
a, = Cr" ,CeR
I det tilfellet at C' = ag far vi en spesiell 1gsning.

Nar vi undersgker hva som skjer med tallfglgene nar n gar mot uendelig vil
vi enten ende opp med at tallfslgene konverger mot en bestemt verdi eller de
vil divergene. Hva som skjer er avhengig av verdiene til C' og r.

Det vi gnsker a finne ut av er hva som skjer med grenseverdiene

lim a, = lim Cr"
n—0o0 n—00

Her ma vi anta at C' # 0. Hvis C' = 0 vil vi fa tallfglgen {0,0,0,---}.
For ei generell lineser forsteordens homogen differenslikning a,, .1 = ra,, med
lgsningene gitt ved

a, =Cr" ,CeR

vil tallfglgene konvergere eller divergere avhengig av verdien til r slik
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verdien til » hva skjer?

I <1 konvergerer mot 0
r| > 1 divergerer
r=1 konvergerer mot C'
r=-—1 divergerer

Likevekstverdi

Konvergens og divergens er uttrykk knytta til matematikken. Ser vi pa hva
uttrykkene betyr for en vekstmodell vil de avgjore hva som skjer. Vil verdiene
oscillerer eller vil de stabilisere seg? Konvergens vil si at vi til slutt vil na en
stabil verdi. Den kan vi kalle likevektsverdien. Ved divergens vil vi fa verdier
som oscillerer.

For ei generell lineger forsteordens homogen differenslikning a,, .1 = ra,, med
lgsningene gitt ved
a, =Cr" ,CeR

vil tallfslgene konvergere eller divergere avhengig av verdien til r. Ved kon-
vergens vil verdiene ga mot en likevektsverdi.

Verdien av r er viktig. Hvis r = 0 vil alle verdiene veere lik null. Hvis r =1
far vi ei tallfglge med like ledd.

Hva skjer med veksten?

For ei generell lineger forsteordens homogen differenslikning a,, .1 = ra,
vil verdien til r avgjgre hva som skjer i det lange lap.

verdien til » hva skjer?

r=20 null er konstant lgsning
r=1 ag er konstant lgsning
r<0 oscillering

Ir| <1 avtar mot 0

Ir| > 1 vekst uten grenser
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n Qp,
0 1000 _106
1 1500 ‘ ;
2 2250 5| |
3 3375
4 5063

°
5 7594 A ol |
6 11391 %
7 17086 M
8 25629 1l |
9 38443 .
10 57665 .o °
11 86498 0 .Oooooooooo.. i
12 129746 ; - o - -
5)1 ;gig;g Antall mnd
15 437894

Figur 4.2: Differenslikninga a,,,1 = a, - 1.5, ay = 1000

Eksempel: Eksperimentering

Vi tenke oss drommesituasjonen hvor vi far 50 % rente hver méaned. Vi setter
inn 1000 kr i banken. Hva skjer med pengene over tid.

Vi kjenner igjen denne situasjonen som en geometrisk vekst med modellen
hvor r = 1.5 og ay = 1000 og vi har differenslikninga

(pi1 =y - 1.5 a9 = 1000

Lager vi en tabell og tegner et punktplot kan det framstilles som i figur 4.2.

Oppgave 15

Ta utgangspunkt i differenslikninga
Up4+1 = Tap

Lag et regneark hvor det er mulig a skrive inn r i ei celle.
Eksperimenter med forskjellige verdier av r. Hva skjer?
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n Ay

0 1000

1 -1050

2 1103 2,000 | |
3 -1158

4 1216

5 -1276

6 1340 S 0 .
7 -1407

8 1477

9 -1551

10 1629 —2,000 |
11 -1710 | | | |

12 1796 0 5 10 15 20
13 -1886 n

14 1980

15 -2079

Figur 4.3: Differenslikninga a,,+1 = a,, - (—1.05) ,ao = 1000

I eksemplet er r = 1.5 og veksten vil ikke ga& mot en likevektsverdi. Den
divergerer og vil fortsette a vokse uten grenser. Med litt eksperimentering
oppdaget du kanskje at det ikke alltid er tilfelle?

La oss forlate det praktiske eksemplet og se pa hva litt eksperimentering med
samme likning kan fgre til. Vi justerer r slik at r < —1 ved a sette r = —1.05.
Resultatet i form av tabell og plot kan du se i figur 4.3.

Som vi ser av figure 4.3 vil verdiene veksle mellom positive og negative verdier
og forskjellen mellom to pafglgende verdier blir stgrre og storre.

Vi prover oss ogsa med at || < 1 og setter r = 0.75. Result vises i figur 4.4.
Leddene i tallfglga gir minkende verdier.

Vi avslutter eksperimenteringa ved a sette r = —0.75 og studerer resultatet
i figur 4.5.

Konklusjonen er at r er bestemmende for om tallfglgene konvergerer eller
divergerer og om de oscillerer. Eksperimentet utfgres nok best med program-
vare som regneark eller f. eks. GeoGebra. Da er det mulig a justere verdien
for r og interaktivt se hva som skjer.
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n a,

0 1000

1 750 1,000 |

2 563

3 422 800 |

4 316

5 237 600 |

6 178 S

7 133 400 \

8 100

9 -5 200 |

10 56

11 42 o | | | ‘
12 32 0 5 10 15 20
13 24 n

14 18

15 13

Figur 4.4: Differenslikninga a,,+1 = a, - 0.75 ,ag = 1000

n Gy,

0 1000

1 -750 1,000

2 563

3 -422

4 316 500

5 -237 _

6 178 S

7 -133 ’ /\/\/\/\/

8 100

9 -75 —500 -

10 56

11 -42 \ \ \ \ \
12 32 0 5 10 15 20
13 -24 n

14 18

15 -13

Figur 4.5: Differenslikninga a, 1 = a, - (—0.75) ,ay = 1000
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Eksempel: Eksponentiell populasjonsvekst

En populasjon kan vokse eksponentielt over en kort periode, men etter hvert
vil flere faktorer begrense denne veksten. Da vil veksten veere logistisk. For
vi kommer dit ser vi pa en et eksempel med populasjonsvekst uten begrens-
ninger. En populasjon er individer av samme art pa et avgrensa omrade. Vi
tenker oss i denne omgang at antall individer i populasjonen er bestemt av
hvor mange som fgdes og hvor mange som dgr. Vi benytter disse variablene

N, 1 stgrrelsen av den nye populasjonen

N, stgrrelsen av den gamle populasjonen

b fodselsraten

d dgdsraten

Da kan vi finne ei differenslikning for stgrrelsen

Niyy1 = Ny + bN; — dN,
Nij1 = Ni+ (b—d) Ny
Nyyy = N+ 1N,
Nepr = (1+7r)NVy
Nepr = AN,

Vi setter differensen mellom fgdselsraten og dgdsraten, A\ = 2.1 og ser hva
modellen gir. Figur 4.6 viser resultatet.

Eksempel: Hvor mange stingsild?

I et vann er det en populasjon av trepigga stingsild Gasterosteus aculeatus.
Vi tenker oss at populasjonen er regulert ved hvor mange avkom hver hunn
far.
Hvor mange avkom ma hver hunn produsere for at populasjonen skal overleve
Vi starter med a innfgre noen variabler

a, antall voksne hunnfisker i generasjon n

gn totalt antall avkom i generasjon n i populasjonen

d andel av avkom som dgr

h andel hunnkjgnn av den voksne populasjonen
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2,500 [ e
t N,
0 3.00 2,000 - |
1 6.30

1 L |
2 13.23 = ;500
3 27.78 Z1.000] . |
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Figur 4.6: Eksponentiell populasjonsvekst

r antall avkom per hunnkjgnn

Den delen som overlever vil veere 1 — d. Antall hunnkjonn i generasjon n + 1
er da

a1 = (1l —d)gni1

Vi ma finne et uttrykk for g,.1 og har at

gn+1 = Tan

Setter inn og far

api1 = h(1 —d)ra,

Det er ei forste ordens linezer homogen differenslikning med lgsning

an, = ag - (h(1 —d)r)"

Ut fra det vi har sett pa vet vi at hvis de skal overleve sa ma
h(1—d)r>1
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Antall avkom per hunnkjgnn ma oppfylle

1
> S
"R —d)
N4 ma gjore noen antakelser for populasjonen og vi kan anta at 80% av
avkommene dgr. Andelen hunnkjgnn i populajsonen setter vi til 50%. Da har
viat h=050g1—d=0.2

1

=1
0.5-0.2 00

r>

Hvert hunnkjgnn ma produsere minst 100 avkom for at populasjonen skal
overleve.
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5 Kombinasjonsvekst

5.1 En kombinasjon av aritmetisk og geomet-
risk vekst
En kombinasjon av aritmetisk og geometrisk vekst skjuler seg under uttrykket

kombinasjonsvekst. I engelsk litteratur kalles en modell for det en «mixed
model».

Definisjon 10

En kombinasjonsvekst vil veere gitt ved ei fgrsteordens lineser inhomogen
differenslikning av typen
Qpt1 = T0p + d

Da er bade r og d konstanter.

Det er kanskje greit a starte med et eksempel pa noe kjent. Prgv denne
oppgaven for du leser videre.

I starten av en maned oppretter du en sparekonto og setter inn 500 kr.
Samtidig oppretter du en avtale hvor du setter inn 1000 kr i slutten av hver
maned. Rentesatsen er 2% per méaned. Finn ei differenslikning som viser hvor
mye du har pa kontoen ved slutten av hver maned.

Oppgaven gir et eksempel pa en vekst som kombinerer et fast bidrag pa 1000
kr hver maned samtidig som hvert ledd vokser med en faktor multiplisert
med forrige ledd. Her far vi en kombinasjonsvekst med d = 1000 og r = 1.02
og differenslikninga bgr bli

a, = 1.02-a,_1 + 1000
ag = 500

Lgsningen vil veere tallfglga som viser hva som star pa kontoen etter hver
maned.
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5.2 Eksplisitt formel for kombinasjonsvekst

En eksplisitt formel kan vi finne ut fra den generelle differenslikninga
for kombinasjonsvekst.

Differenslikninga
Gpy1 =Tan +d

hvor r og d er konstanter beskriver en kombinasjon av geometrisk og aritme-
tisk vekst.
Den eksplisitte formelen blir da

1_ n
an:ao‘r”—kd( T)
1—r

forn>1

Bevis. Vi setter opp en utledning av de forste leddene og generaliserer ut fra
det.

ay=ag-r+d

ag=ay-r+d=(ag-r+d)-r+d=ay-r*+d-r+d =ag-r*+d(r+1)
az=ay-r+d=ag-r’+d-r*+d-r+d =ao-r’+d(r’ +r+1)
ag=az r+d =ag-r*+drP +ri+r4+1)

an=ag-r"+dr" "+ "+ 1)

Ser vi p& rekka 1 + 7 + 1%+ -+« + "2 4 7" ! er det ei geometrisk rekke
hvor fgrste ledd er s; og faktoren er k. Summen av de i forste leddene i ei
geometrisk rekke vil da veere gitt ved

11—k

Si:Sl‘ 1—]{7

I vart tilfelle er det n ledd, s; =1 og k = r. Da vil summen vaere

1—r"

S,=1"-
1—r
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Det gir

1 — g
an:ag-r”+d(r"‘1+rn_2+--~+r+1):ao-r”+d(1_7;0)

]

Da har vi bade ei differenslikning som kan beskrive kombinasjonsvekst og vi
kan finne den eksplisitte formelen ut fra det.

Kombinasjonsvekst

Differenslikninga
Gpy1 =Tap +d

hvor r og d er konstanter som beskriver en kombinasjon av geometrisk
og aritmetisk vekst.
Den eksplisitte formelen blir da

1 —pn
an:ao‘r"—l—d( 70)
1—r

for n > 1.

Hva om vi gnsker en annen startverdi enn ay? La oss finne den eksplisitte
formelen hvis vi starter med a;. Da har vi

as=ay-r+d

az=ay r+d=(a;-r+d) -r+d=ay-r*+d-r+d =a-r*+dr+1)
ag=az-r+d=a -r*+d-r*+d-r+d =a; - +dr* +r+1)

as =ay-1r+d =ap-rt+dr*+rPFr+1)

a’n:al'rn_l—f-d(rn_Q—f—T’n_?)—f—-'-—|—7“—}—]_>

Summen av den geometriske rekka blir i dette tilfellet

1 — Tn—l

Sp_1=1"-
! 1—r

Da vil en eksplisitt formel bli
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for n = 2.

Generelt kan vi skrive det som

forn>k+ 1.

Eksempel: Medisinering

En pasient tar 100 mg av en medisin. Kroppen bryter ned i av medisinen
hvert dggn. Finn ei differenslikning som beskriver hvor mye medisin pasienten
har i kroppen.

Dette kjenner vi som et eksempel pa geometrisk vekst og differenslikninga

blir

3
an+1:Z-an ,CLO:100

Setter vi tallfplga inn i en tabell ser vi hvordan medisinen brytes ned slik at
etter 10 dager er det igjen 5.6 mg.

n 0 1 2 3 4 5 6 7 8 9 10
a, 100 75 56.3 422 320 237 178 133 100 7.5 5.6

Hva n& om pasienten tar 10 mg av medisinen hver dag? Hvordan gar det
med innholdet i kroppen da? Eller hva om pasienten tar 20 mg? Da er det
en kombinasjonsvekst og differenslikninga blir

3
an+1:Z~an+d , ag = 100

hvor d er den dosen pasienten tar hver dag.

Bruk et regneark og legg inn denne differenslikninga og eksperimenter litt.
Gjgr denne oppgaven.
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10 15 20

d

n Qp, Qp, Qp,

0 100.0 100.0 100.0 ‘

1 8.0 900 950 100} o

2 738 825 913 °

3 653 769 884 e« %00,

4 59.0 72.7 86.3 o 80| ©000000000
5 542 695 847 & .

6 507 671 86 2 .

7 480 653 827 = 4ol .

8 46.0 64.0 820 . od =10
9 445 630 815 *e, d=15
10 434 623 811 m el g—90
11 425 61.7 80.8 | | | ‘
12 419 61.3 806 0 ) 10 15
13 414 610 80.5 dogn

14 411 60.7 804
15  40.8 60.5 80.3
16 40.6 604 80.2

Figur 5.1: Konsentrasjon av medisin

Oppgave 17

Lag et regneark hvor du legger inn differenslikninga for den kombinerte veks-
ten. Prgv med forskjellige verdier for d. Hva skjer?

Prgver vi oss med verdiene d = 10, d = 15 og d = 20 far vi tabellen og
plottene i figur 5.1

Vi ser at medisinkonsentrasjonen i kroppen vil etter hvert nserme seg en
konstant verdi. Det ser ut som om hvis den daglige dosen er 10 mg vil kon-
sentrasjonen av medisin etter hvert bli omtrent 40 mg.

5.3 Konvergens og divergens
Eksemplet viser at konsentrasjonen av medisin i kroppen vil stabilisere seg:

det oppstar en likevekt. Gar vi ut fra at det eksisterer en likevekstverdi, a,
kan vi sette opp denne likninga
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Gpi1 =7ay +d

a=ra+d
a—ra=d
d
a =
1—r

Det gir grunnlag for dette teoremet.

Likevektverdien ved kombinasjonsvekst gitt ved differensiallikninga
pr1 =ran+d, r#1

er gitt ved
d

“= 1—r
Hvis r = 1 og d = 0 vil alle verdiene veere likevektverdier. Hvis » = 1 og
d # 0 vil det ikke eksistere en likevektverdi

Da har vi gatt ut fra at det fins en likevektsverdi. Det gjgr det ikke alltid, men
eksisterer den kan vi finne den ved dette teoremet. Hvis differenslikninga ikke
gir en likevektsverdi er det avhengig av verdien av r. Litt eksperimentering,
eller matematiske utledninger, gir disse egenskapene for kombinasjonsvekst.

Likevekt ved kombinasjonsvekst

En vekst gitt ved modellen
Qpy1 =Tap +d

hvor d # 0 vil vokse avhengig av verdien til r

verdien til r vokser mot

Ir] <1 en stabil likvekt
Ir| > 1 vokser over alle grenser
7= 1l aritmetisk vekst
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Oppgave 18

Benytt et hjelpemiddel som regneark og eksperimenter med forskjellige ver-
dier for r og undersgk likevekt.

Oppgave 19

Vi tenker oss at NRK produserer en oppfglger til Skam. Hva skjer med seer-
tallene til den nye serien hvis den far 5000 nye seere for hvert avsnitt mens
den samtidig mister 10% av de som ser pa?

Oppgave 20

En legemiddelprodusent har laget en ny medisin. Forskning viser at 12 pro-
sent av medisinen brytes ned av kroppen hver sjette time. Legemiddelprodu-
senten anbefaler at pasienten ogsa tar en dose hver sjette time. Den gnskelige
dosen for best effekt er at pasienten har omtrent 250 mg i blodet til en hver
tid. Hvor stor dose bgr pasienten ta.

Vi lar a, veere mengden av medisinen i kroppen etter at pasienten har tatt
dose n. Da vil differenslikninga

apr1 = 0.88-a, +d

gi mengden av medisinen i blodet. d er den repeterende dosen pasienten tar.
Nar vi har den kan vi prgve oss fram ved a sette inn i et regneark eller benytte
andre verktgy. En annen metode er & benytte det vi vet om likevekt. Vi vet
at vi gnsker en stabil likevekt lik 250. Det betyr at hvis a,, = 250, sa skal
0gsa a,y1 = 250. Setter vi det inn i differenslikninga har vi

ans1 = 0.88 - a, +d
250 = 0.88 - 250 + d
d = 250 — 0.88 - 250 = 30

Et tredje alternativ er & benytte det vi kom fram til ved samme resonnement
som i forrige alternativ. Her er |r| < 1 og den stabile likevekta vil veere gitt

ved a = %. Da kan vi regne ut
d
a =
1—r
d
250 = ——
1—-0.88

d=250-0.12 = 30
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Oppgave 21

Vi plasserer en kopp kaffe i et rom hvor temperaturen er 22°C. Da kaffen
settes ut er temperaturen 82°C. Vi maler temperaturen etter ett minutt til
79°C

a. Begrunn at differenslikninga

Tpir = Ty, + k(T, — 22)

kan modellere temperaturen i koppen
b. Finn en verdi for k
c. Lag en tabell og et punktplott for differenslikninga

Oppgave 22

I en feltundersgkelse undersgker noen biologer en innsjg og finner ut at det
er 10000 individer av grret der. Studier viser at bestanden vil gke med 20
prosent per ar. De lokale myndighetene bestemmer at det skal gis tillatelse
til & fiske 1800 grret per ar.
a. Finn ei differenslikning som modellerer antall grret i vannet for hvert
ar.
b. Bruk differenslikninga til & bestemme hvor lang tid det vil ta fgr antall
grret er doblet.
c. Tegn et plottdiagram for de neste 15 arene. Kommenter veksten.
d. Anta at det bestemmes at det kan fiskes 2200 grret per ar. Finn ei
differenslikning.
e. Tegn et plottdiagram for de neste 15 arene. Kommenter veksten.
f. Anta at det fiskes 2000 grret i aret. Hva vil da skje?

51



6 Logistisk vekst

6.1 Begrenset vekst

I motsetning til geometrisk vekst vil den logistiske avta og til slutt begrenses
mot en bestemt stgrrelse. Veksttypen ble studert av den belgiske matemati-
keren Pierre-Francois Verhulst i 1838. Logistisk vekst gir en S-formet vekst-
kurve og etter hvert vil den logistiske vekstkurven (Verhulst-kurve) naerme
seg en asymptote som er lik beereevnen (eller beerekapasiteten). Det er antall
individer som populasjonen vil besta av pa lang sikt. Beereevnen reguleres av
faktorer som konkurranse mellom individene, tilgang pa mat, sykdom, fgdsel,
innvandring, utvandring osv. En geometrisk vekst vil alltid vokse, enten gke
eller minke, og det er ofte en begrensning nar vi skal modellere virkeligheten.
Ser vi pa populasjoner er det typisk at de vokser for sa a stabilisere seg. Det
leder mot logistisk vekst.

bareevne

faktorer:
- konkurranse
- mat
- sykdom

populasjonssterrelse

tid
Figur 6.1: Logistisk vekst av en populasjon
Logistisk vekst definerer en tallfglge hvor forandringen fra ledd til ledd be-

stemmes av en vekstfaktor som er linezert avhengig av stgrrelsen pa popula-
sjonen.

Vi skal holde oss innafor biologien og se pa populasjonsstgrrelser som eksemp-
ler. Da kan det vaere greit med en liten repetisjon av faktorer som styrer antall
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individer i en populasjon. Det bgr nok nevnes at studier av populasjonsdyna-
mikk ofte er svaert komplekse og at vi forenkler sterkt i denne sammenhengen.
Figur 6.2 gir en enkel oppsummering.

utvandring

¥

fodsel
dad

innvandring

Figur 6.2: Faktorer som styrer vekst

6.2 Logistisk vekst som differenslikning

Vi innfgrer disse symbolene
N1 stgrrelsen av den nye populasjonen
N, stgrrelsen av den gamle populasjonen
L likevektsverdi

Gitt at forholdene ikke forandrer seg vil populasjonen stabilisere seg pa L
individer i det lange lgp. Sa kan vi anta at bade antall fgdsler, og antallet som
dgr, er proporsjonalt med antall individer i populasjonen. Det tilgjengelige
naeringsgrunnlaget hvor populasjonen lever vil kunne forsgrge et visst antall
individer. Konklusjonen blir at veksten vil avta med gkende antall individer
og vi kan sette opp denne differenslikninga

ANt = Nt+1 — Nt = T(L — Nt)Nt
r er en faktor bestemt av hvor mange som blir fadt og der i populasjonen. Dif-

ferensen (L — N,) er en faktor som blir mindre desto naermere L populasjonen
er.

Differenslikninga kan vi skrive om til N1 = Ny + r(L — N;) N,
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Logistisk vekst

En modell for logistisk vekst kan skrives som

Nt+1 = Nt 9 T’(L — Nt)Nt

Ny er initialpopulasjonen og antall individer vil vokse mot L

Oppgave 23

Lag et regneark hvor modellen N,y 1 = N; + r(L — N;)N; legges inn. Velg
initialverdi Ny = 50, likevektverdi L = 1000 og » = 0.0015. La regnearket
beregne minst 50 elementer og tegn et punktplott.

Oppgave 24

Lag et regneark hvor du kan eksperimentere med denne differenslikninga. La
r og L veere konstanter i hver sin celle.

Oppgave 25

En populasjon med pungorotter, Rattus pungotus, lever i et skogholt. Felt-
studier har vist at antallet individer har stabilisert seg pa 500 individer. De
forste tellingene ble gjort i 1920. Da ble det registrert 50 individer. I 1975
ble det registrert 500 individer. Etter det aret har antallet holdt seg stabilt
pa 500 individer.

Finn en verdi for  som modellerer veksten.

Hvor mange individer var det i 1942 etter modellen?

En annen utgave av samme differenslikning

Vi har sett at logistisk vekst kan modelleres med differenslikninga

Nt+1 = Nt + r(L — Nt)Nt

Med litt manipulasjon kan vi komme fram til denne versjonen

Niy1 = T(K - Nt)Nt

Overgangen mellom de to typene finner vi ved denne omregninga
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Niy1 = Ny +r(L — NN,
=N;+r-L-N,—1r-N}
=1 +7r-L)N,—r N}
=(14+r-L—r-N)N,

1
:T<—+L—Nt)Nt
T

Na kan vi innfgre noen andre konstanter. Husk at konstantene symboliserer
tall og da ender vi bare opp med noen andre tall.

K=-+1L
Da ender vi opp med

Nt+1 = T(K — Nt)Nt

Ny er initialpopulasjonen og populasjonsstgrrelsen kan aldri overstige den
teoretiske verdien K. Det betyr at 0 < Ny < K. Igjen er r en konstant
bestemt av antall fodsler og dgde.

Oppgave 26

Lag et regneark som viser veksten av en populasjon hvor K = 5000, Ny = 500
og r = 0.00025 Tegn verdiene som punktplott og studer egenskapene

Regnearket og plottet bgr bli noe i likhet med tabellen og plottet i figur 6.3.
Der ser det ut til at tallfslga konvergerer mot 1000. Det stemmer med den
forrige differenslikninga for logistisk vekst hvor likevektsverdien var L. Vi har

at K=2+L — L=K—2=5000— 55055 = 1000

Ved gitte betingelser vil populasjonen na en likevekt hvor L = K — % Da vil
antall individer i populasjonen veere Ny 1 = N, = L. I tilfelle en likevektsverdi
eksisterer kan vi sette opp denne likninga og lgse den
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0 10 20 30 40
Antall generasjoner

Figur 6.3: Logistisk vekst

L=r(K-L)L
=rKL— L*
0=L+Lr—rKL
0=L(1+ Lr—rK)
L=0v1+Lr—rK=0
1

L=0vL=K-—-
r

Likevekt inntreffer nar L = 0 og nar L = K — %

Vi utvider forrige oppgave og lager et regneark hvor det er mulig a eksperi-

menter med verdiene
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Oppgave 27

Lag et regneark hvor verdiene til K, Ny og r legges inn i egne celler og hvor
verdiene til lgsninga av differenslikninga

Nt+1 = T(K - Nt)Nt

beregnes.
Tegn verdiene som punktplott. Eksperimenter med forskjellige verdier av K,
Ny og r. Kan du trekke en konklusjon?

Litt eksperimentering viser at mye kan skje nar vi forandrer pa verdiene i

modellen. Det kan vises at

Anta at en logistisk vekst har differenslikninga
Nt+1 = T(K — Nt)Nt

ogat 0 < Ny < K. Hvis 1 < rK < 3 vil populasjonen na en likevektsverdi
L=K-:

Oppgave 28
Stemmer dette med det du fant ved eksperimentering? Sjekk en gang til.

Her er noen observasjoner som vi kan samle opp

Viktige verdier

Anta at en logistisk vekstmodell har differenslikninga
Nt+1 = T(K — Nt)Nt
og at 0 < Ny < K. Da vil verdiene til r og K bestemme modellen slik

rK <4 vil0< N, < K
rK > 4 vil modellen ikke gi realistiske resultat
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Oppgave 29

En logistisk vekst er gitt ved differenslikninga
an+1 = 0.00016(17500 — a,,)ay,

Vil veksten stabilisere seg?

Oppgave 30

Ved et studiested er det 1200 studenter. En av studentene har fatt vite at en
meget bergmt person kommer pa besgk. Hun forteller det til én medstudent.
Du skal lage en logistisk modell for hvordan nyheten sprer seg blant studen-
tene. Det forutsettes at nyheten overbringes fra én person til en annen og at
hver student overbringer den til én annen student hver time (ja, jeg vet det
gammeldags, men kommer ikke & noe annet).

La p,, veere antall studenter som har hgrt nyheten etter n timer. I begynnelsen
vil da p, dobles hver time, men etter hvert som flere studenter har hgrt
nyheten vil situasjonen forandres siden de kanskje har hgrt om det allerede.
Formuler ei differenslikning.

6.3 Oppgave: SIR-modell

SIR-modellen er en modell for hvordan epidemier sprer seg i befolkninga som
stammer fra 1927. Den ble opprinnelig foreslatt av W. O. Kermack og A. G.
McKendrick. Se mer ved a sgke pa nettet. Den deler populasjonen inn i tre
kategorier: Susceptible, Infected og Removed.

Kaller vi perioden for n har vi

Uttrykk Forklaring Engelsk
Sh antall som er mottakelige for sykdommen susceptible
I, antall infiserte infected
R, antall som er blitt immune eller er dsde  removed

Vi ser pa en lukka populasjon hvor det ikke er kontakt med noen andre. Ved
starten er hver person enten S eller I.

Vi setter delen av de infiserte som enten dgr eller blir immune per uke r,
removal rate.

Det betyr at
RTL+1 :Rn+TIn
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Spredningsraten kaller vi s. Den angir en sannsynlighet for hvor stor del av
befolkningen som smittes i perioden.

Antall kontakter mellom personer som er mottakelige for sykdommen og de
som er infiserte kan vi finne ved S, - I,,. Da har vi

Spi1 =S, —a-Sy-1I,

Antall personer som er infisert etter n uker blir

Lyyw=1,—7r-I,+a-S, I,

Oppgave 31

Bruk et regneark og sett opp en modell for R, S og I. Lag celler hvor du kan
skrive inn s og a.

Initalverdiene skal det ogsa veere mulig a skrive inn i egne celler.

Tegn plotdiagram og eksperimenter.

29



A Aritmetiske rekker

A.1 Aritmetisk tallfglge

I ei aritmetisk tallfglge er det en fast differanse d mellom hvert ledd slik at
den er lgsninga av differenslikninga

Ap = Ap—1 +d

Det betyr at hvis d = 3 og ag = 7 vil vi resultatet veere

{7,10,13,16,19, -}

A.2 Aritmetisk rekke

Ei rekke er en sum og ei aritmetisk rekke er en sum hvor hvert ledd er ei
aritmetisk tallfglge. Med utgangspunkt i forrige tallfglge vil dette veere ei
aritmetisk rekke

7+10+13+16+19+---

Vi kaller denne rekka for uendelig siden det ikke er et endelig antall ledd.

Ser vi pa det generelle leddet a; i ei slik aritmetisk rekke er det gitt rekursivt
av differenslikninga
a; = a;_1 + d

En eksplisitt formel for det generelle leddet er da gitt ved

a=a+(i—1)-d

A.3 Summen av ei aritmetisk rekke

Vi skal na finne summen av de n fgrste leddene i ei aritmetisk rekke. Da kan
det vaere greit 4 huske pa hva den unge Gauss! gjorde. Historien forteller at
en leereren var lei av ham og satte ham til a legge sammen de hundre forste
naturlige tallene. Tanken var at han skulle bruke en del tid pa det, men

LCarl Friedrich Gauss (1777 - 1855): En tysk matematiker, astronom og fysiker
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svaret kom ganske umiddelbart: 5050 Framgangsmaten danner grunnlag for
hvordan vi kan finne summen av aritmetiske rekker. Her er oppgaven

14+2+34+4---974+98+99 + 100

Det Gauss gjorde var at han oppdaget en lur framgangsmate

1+ 2+ 3+ e 98+ 99+ 100
101

101
101

Han benyttet en parvis addisjon, i en alder av atte ar, og fikk femti summer
som hver var 101. Svaret ble da 50 - 101 = 5050.

Generelt kan dette gi oss summen av ei aritmetisk rekke med n ledd

Anta at S,, = a1 +as + a3z + - - - a,, er ei aritmetisk rekke. Da er

n
Sn — E ((11 +an)

Beuvis. Vi tar utgangspunkt i den generelle endelig aritmetiske rekka og har
at
Sn:a1+a2+a3+a4—l—-~+an_1+an

Arrangerer ledden og far
Sp = a1+ ap+az + a1+ a3+ a9+ as+ap_3+---
Vi har at alle parvise summer er like store

a1+ a, =02+ ap_1 =03 +Qp2="--"=0a, + a1

Antar vi at n er et partall har vi § slike summer og far S, = %(al + ay).

Hvis n er et oddetall vil vi f& n — 1 summer og ett ledd som er ‘”JFTCL" Det gir
n—1 ar+a, n
STL - n = = n
5 (a1t an) +— 5 (a1 +an)
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Et alternativt bevis kan vi ogsa koste pa oss

Bevis. Vi starter med samme utgangspunkt
S,=a1+ay+az+as+---+a,_1+a,

Denne summen kan vi skrive om

Sp=ar1+ (e +d)+ (ar +2d) +- - -+ (a1 + (n — 2)d) + (a1 + (n — 1)d) (1)

Det samme kan vi ogsa skrive ved & starte i andre enden
Sp=an+an1+ -tat+azta+a
Da far vi

Sp = ay + (@, —d) + -+ (a, — (n — 2)d) + (a, — (n — 1)d) (2)

Legger sammen (1) og (2) og far

2-S,=a1+a,+ (a1 +d)+ (ap —d) + -+ (a1 + (n — 1)d) + (an, — (n — 1)d)
=at+a,ta+a,+---+a+a,

=n-(a; + ay,)

n
Sn = E (Cll —I—an)
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B Geometriske rekker

B.1 Geometriske tallfglger

Definisjon 11

En folge {a,} er geometrisk hvis forholdet mellom hvert ledd er konstant for

alle n e N
(05} as Qp,
-2 =22 — .0 =k
ay 5) An—1

k kalles kvotienten til fglgen

Vi kan illustrere det pa denne maten

k k k k
3 3 > ~
ay p) as Gy co Ap—1 G,

B.2 Geometriske rekker

Ei geometrisk rekke er summer av geometriske tallfglger. Hvis {a,} er en
geometrisk tallfplge kan vi skrive en geometrisk rekke slik

CL1+G2+CL3"‘+CLn_1+CLn

Vi skal na finne et uttrykk for det generelle leddet a; i ei geometrisk rekke og
tar utgangspunkt i den geometriske tallfglgen. Da kan vi observere at hvert
ledd kan uttrykkes med det fgrste leddet

ai a2 as Qaq s Qp—1 ap,
k-3
k-(n—1)

Rekursivt har vi da at a; = k - a;_1 og vi kan uttrykke det generelle leddet
som ‘
a; = l{?l_l A
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B.3 Summen av de n fgrste leddene

Summen av de n fgrste leddene i ei geometrisk rekke med kvotient £ # 1 kan
vi skrive som

1— k"
S, =a -
“HT
Beuwis.
Sn:a1+a2+a3+---—|—an71—|—an
Sp=a1+(k-a))+ (K -a)+-+K"?-a) + (K" ay)
k'S”:k'(a1+k'a1+k2'a1+"‘+k’”_2-a1—|—k:"_1.al)
koSp=k-ai+kE -a+k a+-+E"a+ k" a

Subtraherer k - s, fra s,

Spy—k-Sp=ar+k-a;+k*-a+ - +k"Va—k-ag—ka—— k" a — kg
S,—k-S,=a1 — k" -a;
Sn(1—Fk)=a (1 —k")

1—k"

1—k

Sn:al-

ooee
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